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to be made in theequipments being evaluated.
It is also a task of this unit to plan tests and
flight plans that will provide or simultate the
necessary dynamic operating conditions to
properly evaluate and calibrate range equip
ment.

CONCLUSIONS

The Photogrammetric Triangulation Sys
tem represents the application of sound de
sign principles to the solution of instrumenta
tion problems defined by the most rigid of

performance specifications. The system is
completely self-contained and independent
in operation. I ts performance has already
demonstrated a sound instrumentation and
engineering approach, and it has become the
range standard for all optical and electronic
instrumentation and systems. When operated
as specified, the system will provide data to
an accuracy of 1 part in 200,000, which is 10
times greater than the next most accurate
system in use today, the tracking Cinetheo
dolite.

A Photogrammetric Radio Telescope
Calibration :If:

DONN L. OCKERT,

Photogrammetry, Inc.,
Silver Spring, Maryland

INTRODUCTION

A RADIO telescope with a reflector 40 feet in
diameter is operated by the Ohio State

University Department of Electrical En
gineering. The reflector was designed to be a
paraboloid of revolution with a focus of 18
feet. Although the structure, shown in Figure
1, was designed and built within the Depart
ment of Electrical Engineering, the errors
accumulated during construction were not
known. Once erected, its size prevented any
simple direct measurement of the reflector.
It became obvious that a photogrammetric
method that would measure photographs of
the telescope rather than the telescope itself
would be desirable, if reasonable accuracy
could be obtained with available equipment.
Encouraged by some kind advice and ideas
from Professor Frederick J. Doyle, and armed
with the facilities of the Institute of Geodesy,
Photogrammetry, and Cartography which in
clude a Wild A-7 Autograph, the author un
dertook to calibrate the telescope by a photo
grammetric method.

There are two different photogrammetric
approaches to the problem of measuring such
a geometric figure: one approach is to employ
a system that requires exact knowledge about
the position and angular attitude of the
camera; the other approach is to employ a

DONN L. OCKERT

system that requires only approximate
knowledge of the position and angular atti
tude of the camera. Of course, both ap
proaches require a precision camera, but less
field work is required in the second approach
since instrument set-up time is reduced.

The second approach is the subject of this
paper, and the purpose is to investigate the

* Presented at the Society's 25th Annual Meeting, Hotel Shoreham, Washington, D. C. March 10,
1959. This paper is a part of the panel on Special Applications of Photogrammetry.
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FIG. 1. (Courtesy of Prof. P. Borchers.) The Ohio
State University 40-foot radio telescope.

feasibility of two methods used for the cali
bration of the Ohio State University 40-foot
radio telescope.

The problem is to calibrate the reflector of
the telescope, i.e., to determine the deviation
between the designed surface and the actual
surface in a direction parallel to the axis of
rotation, and to determine the focal-length of
the actual constructed figure.

FIELD WORK

The most important single item of the field
work is, of course, the exposure of the nega
tives. The negatives of the 40-foot telescope
were exposed in the camera of a Wild T-30
phototheodolite. This instrument, shown in
Figure 2, consists of a precise camera and a
T-2 theodolite mounted together as a single
instrumen t.

The camera has a fixed focus and a fixed
aperture ratio of 165 mm. and f/12 respec
tively. The shutter shown in Figure 2 was
added to the camera in order to make it us
able for faster emulations. Glass plates
mounted in individual plate holders are ex
posed in the camera, and a special device
positions the plates at the focal-plane.

Although the usual tasks where a photo
theodolite is employed require the use of both
the theodolite and the camera, only the
camera was needed and its angular attitude
and position were, at best, only approxi
mately known. Proper framing of the antenna

FIG. 2. Wild P-30 Phototheodolite. The shu tter
was added by the Institute of Geodesy, Photo
grammetry, and Cartography.

required an uptilt of the camera which could
not be accomplished with the available ver
tical settings. Consequently, the whole frame
was tilted with the foot screws. This made the
level bubbles useless, yet the photographs
were not random exposures. The camera
was positioned in front of the telescope so
that: (1) the photographs would be more or
less perpendicular to the base, (2) the dis
tance to the object would be as short as
possible to provide full coverage at the largest
attainable scale, and (3) the base (distance
between exposure stations) would be as large
as possible and still achieve stereoscopic
coverage of the object.

These criteria differ markedly from those
usually used with a terrestrial camera. Dr.
Zeller! gives a rule of thumb that the base
distance should be between 1 and 7};1J of the
object distance. He obtains the lower limit
from plotting accuracy considerations, and
the upper limit from the practical point that
two completely opposite sides of an object
may be photographed which makes stereo
perception difficult. But if the photographs
are made as close:as possible to the surface of
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FIG. 3. Stereopair of the radio telescope.

FIG. 4. Wild A-7 Autograph and coordinate
printer of the Institute of Geodesy, Photogram
metry, and Cartography.

is in standard positIOn; i.e., the surface is
generated about the z axis and it is tangent to
the xy plane. If the coordinates of points on
the constructed surface are to be compared to
the designed surface, the constructed surface

ordinates are regular rectangular coordinates
of a left-handed coordinate system built into
the machine and they are read, or recorded,
direct to 0.01 mm. The glass negatives ex
posed in the field were used directly in the
Autograph in order to avoid any loss of detail
as a result of further photographic processing.

In order to understand the procedure fol
lowed with the Autograph, some of the prob
lems of axis definition should be explored.
Different operations are performed with the
machine to recover the axes of reference for
the antenna. The equation for the designed
surface of the antenna,

(1)x2 + y2 = 72z,

the telescope, and still include the whole sur
face of the antenna in the field of view, and
are perpendicular to the base, then the upper
limit will not be critical since only one side of
the surface is photographed. The lower limit
need not be considered because the base
length will be limited by the field of view of
the camera.

From the criteria given here it may be
seen that the camera could be hand-held, or
if the telescope could not be aimed horizon
tally as in Figure 3, then the photographs
could be made using an aerial camera. How
ever, for this project it was desirable to have
the camera mounted because the low-speed
emulsion used required a long exposure and
because it was convenient to view the image
upon a ground glass for camera adjustment.

The field work at the site was completed
when a few measurements were made of the
accessible parts of the antenna. Some meas
ured distance on the antenna must be known
to compute the scale of the stereoscopic
model. The distance between two ordinary
surveyor's chaining pins placed in the wire
mesh was measured. These pins are visible in
Figure 3.

Other distances were measured as a check
between the center ring and the outer rim at
two places to complete the field work required.

THE STEREOSCOPIC MODEL

A first-order stereoscopic plotting machine,
a Wild A-7 Autograph, was employed to form
and measure the stereoscopic model. Figure 4
shows the Autograph and an au tomatic co
ordinate printer (on the left) which records
the coordinates of the model space. The co-
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must also be in standard position. Thus, a
reference axis system for the an tenna surface
must be defined in such a way that it may be
recovered either directly or analytically. Two
definitions are considered here.

The first definition attempts to reestablish
the axis system used during construction to
locate the various points on the surface. The
xy plane is defined as being tangent to the
apparent center of the surface and parallel to
the plane of the outer rim with the z axis per
pendicular to the plane of the outer rim and
passing through its center. This defines ex
actly the position of the axes for equation (1)
in terms of observable features on the antenna
proper. An approximation of this axis sys
tem, or one parallel to it, can be obtained di
rectly in the Autograph provided the outer
rim of the antenna is accurately constructed.

A second reference axis system may be
defined in such a way that it is independent
of any single feature of the antenna or its
original axes. This system is taken as the sys
tem that is in standard position with respect
to the second-degree surface that best fi ts, in
the sense of least squares, the measured
points on the antenna. In this way the posi
tion of the axis system is defined by the shape
of the whole antenna surface rather than any
particular feature such as the outer rim.

Although the first definition may appear
adequate to the problem, measurements were
made of the model wi th respect to both axes,
to determine whether or not the axes defined
by a fitted surface would lead to a more ac
curate calibration. A further aim was to de
termine the requirement for an absolute
orien tation of the model.

With these reference systems in mind, two
different models were measured in the Auto
graph: the first was absolutely oriented, and
the second was not. After the original glass
negatives were placed in the machine and a
relative orientation completed, the resulting
model was carefully scaled and "leveled"; i.e.,
the outer rim was made as parallel as possible
to the xy plane of the machine. Small errors
in the outer rim make it not quite planar so
the operator had to make a visual adjustment
to the average plane of the rim. Arbitrary
values were assigned to the center to avoid
negative coordinates, and the xyz coordinates
of some 62 points on the model surface were
recorded on the prin ter.

Then a second model was formed in the
Autograph with the same negatives. But no
absolute orientation was attempted, and the
model, after a careful relative orientation, was
left at an unknown scale and angular attitude

in the machine. Again coordinates of points
on the surface were recorded to complete
measurements of the telescope model.

The coordinates from the scaled and
leveled model were directly compared to the
design equation, and the coordinates from the
first and second models were used in the com
putation procedure outline in the next section.

COMPUTATION

The model formed in the Wild Autograph
was a true three-dimensional scale model
that differed geometrically from the actual
antenna only in size and a restricted point of
view. Since the size of an object has no bear
ing on its shape, the shape of the model can
be considered as that of the antenna. Fur
ther, the shape of the antenna is independent
of its position, therefore, the shape of the
antenna model is used to establish the second
reference axis system defined above.

Al though one of the models was posi tioned
and the coordinate origin known, the only
data used in this reduction were the coor
dinates of points on the surface. The points
on the surface of the an ten na can be though t
of as vectors from an unknown origin. The
problem is to establish the surface that best
fits the vectors, to recover the origin, to put
the surface in standard position, and, finally,
to establish the actual surface on the axis sys
tem of the surface of best fit, also in standard
position, for a comparison with the designed
surface of Equation (1).

The first problem is to find the equation of
a second degree surface that fits the antenna
in terms of the machine axis system. Since
the origin and angular attitude of the surface
are presumed to be unknown, the general
quadratic equation,

Ax' + By' + Cz' + Dxy + Exz + Fyz + Fx
(2)+ Ny + Iz + 1 = 0,

must be used. The Autograph coordinates of
poin ts on the surface give the x, y, and z val
ues. Then wi th any nine poin ts on the surface,
the coefficients can be computed in a system
of nine equations in nine unknowns. How
ever, many points on the surface were meas
ured and they all should be used to compute
the coefficients of Equation (2). The method
of least squares provides a solution utilizing
the high redundancy of observations on the
surface.

In the least squares method, Equation (2)
is considered to be an observation equation.
The x, y, z coordinates of each point measured
should satisfy this equation. Small errors in
the surface and in the measurement cause
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FIG. 5. Error map of the reflecting surface. Isoerror line interval: 10 ml11.

(0 :S i :S 62)

small deviations from zero in Equation (2).
Let Vi be the residual at point i, and the form
of the error equations is

Vi = AXi2+ BYi2+ CZi2+ DXiY, + EXiZi
(3)

+ FYiZi + GXi + NYi + IZi + 1.

From the error equations, a system of normal
equations, nine linear equations in nine un
knowns, is formed such that the sum of the
squares of the residuals will be a minimum.
The general form of the normal equations is
given in Table I.

In the normal equations of Table 1

[X2X2) = LXi"

[x2(xy)) = L Xi3Yi.

The products are purposely not completed
within the brackets to show the general for
mation of the equations. The matrix of co
efficients is symmetrical, and the coefficients
are written only in the upper half for brevity.

An example computation is given here for
the oriented model where the coordinates of
62 points were recorded. The bulk of the time

TABLE I

[X2X2) + [X2y2) + [X2Z2) + [x2(xy)) + [x2(xz)) + [x2(yz)) + [x2x) + [x2y) + [x2z) + [x2) = 0,

[y2y2) + [y2Z2) + [y2(xy)) + [y2(XZ)) + [y2(yZ)) + [y2X ) + [y2y ) + [y2Z) + [y2) = 0,

+ [Z2Z2) + [Z2(xy)) + [Z2(XZ)) + [Z2(yZ)) + [Z2X) + [Z2y ) + [Z2Z) + [Z2) = 0

([xy)(xy)) + [(xy)(xz)) + [(xy)(yz)) + [(xy)(x)] + [(xy»>] + [(xy)z] + [xy] = 0,

[(xz)(xz)] + [(xz)(yz)] + [(xz)x] + [(xz)y) + [(xz)z] + [xz] = 0, (4)

+ r(yz)(yz)] + [(yz)x] + [(yz)y] + [(yz)z] + [yz] = 0,

rxx ] + [xy] + [xz] + [x] = 0,

ryy ] + [yz) + [y] = 0,

[zz] + [z] = 0,
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TABLE II

MODEL COORDINATES FROM AUTOGRAPH

(Values in Millimeters)

391

Pt.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

x
186.16
225.45
260.79
286.92
300.35
298.16
280.03
251.86
215.53
175.74
140.29
112.63
99.55

102.00
119.09
148.98
189.92
218.68
244.85
264.46
274.00
272.23
258.88
238.06
211.09
182.06
155.58
135.48
126.04
127.70
140.45

y

99.87
102.13
119.13
148.65
186.69
226.07
262.12
287.21
300.11
298.56
281.90
251. 59
214.39
174.88
139.51
112.97
126.04
127.81
140.41
162.23
190.45
219.60
246.05
264.31
273.94
272.76
260.13
237.68
210.54
181.36
155.20

z

195.58
195.28
195.37
194.88
195.27
195.28
195.23
195.50
195.53
195.15
195.02
194.98
195.37
195.33
195.81
196.03
182.63
182.53
182.52
182.20
182.42
182.28
182.28
182.32
182.37
182.32
182.23
182.18
182.35
182.55
182.67

Pt.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

x

162.51
193.16
212.55
230.31
243.66
250.06
248.50
239.86
225.51
207.07
188.30
169.74
156.50
150.19
151.41
159.77
174.49
187.14
206.61
222.05
224.39
212.49
193.76
177 .61
176.01
198.44
200.88
202.48
202.81
201.49
199.39

y

135.78
150.38
151.15
159.78
174.47
193.60
213.46
230.85
243.36
249.83
248.96
240.42
225.61
207.04
187.37
169.86
156.47
178.25
175.40
187.26
206.61
221. 76
224.63
212.80
193.61
197.59
197.34
198.50
200.91
202.62
202.94

z

182.68
174.05
173.92
173.93
182.90
182.80
182.77
182.78
174.00
173.80
182.87
182.75
182.85
182.93
182.98
174.20
173.80
168.65
168.80
168.67
168.62
168.30
168.57
168.82
168.72
166.82
166.80
166.78
166.87
166.87
166.88

(6)

required for the computation is needed to
form the normal equations. The author used
an IBM 650 Data Processing Machine for
the most of the actual compu tations.

Table II lists the Autograph coordinates for
the 62 points, and Table III gives the normal
equations with the Gauss-Doolittle forward
solution. Following the format of the United
States Coast and Geodetic Survey and Rains
ford 2, Table III shows the normal equation
in the first row of each horizontal set, the re
duced equations in the second row, and the
divided equation in the third row. The solu
tion of the normal equations gives the co
efficients of Equation (2). This equation of
the surface of best fit multiplied by lOG is

7.135058x2+ 7.199703y2 - .366048z2+'144419xy

+ .086025xz - .057182yz - 2901.83x- 2905.015y (5)

-2448.98z+1 000000=0.

The surface defined by this equation is not in
standard position. It must be translated to

the origin to remove the linear terms, and ro
tated to remove the product terms. The
translation constants are computed by com
pleting the square. From the general form

ax2 + bx = a (x2 + ~ +~) - ~,
a 4a2 4a

= a(x + ~) 2 _ ~,
2a 4a

completing the square for x in (5) yields

b 2901.83
- = - = - 203.35
2a 14.270116 '

and similarly for y and z, b/2a = - 201. 74 and
+3345.16, respectively. The correction to
the constant term is b2/4a which when evalu
ated for x, y, and z makes the constan t term,
K, equal 45080353. If we define a new axis
system such that

X = x - 203.35,

Y = y - 201.74,

Z = z + 3345.16,
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TABLE III

SOLUTION OF NORMAL EQ ATlONS

A B C D E F C fi I J

136206.77 111992 10 86269.505 117583. 13 106472 .02 95328.29 586872 . 14 527594.00 475905.28 2633.892
136206.77 111992.10 86269.505 117583.13 106472 .02 95328.289 586872.14 527594.00 475905.28 26.'-3.892
1.0000000 .92222124 .63337164 .86326935 .78169404 .69987923 4.3086855 3.8734785 3.4939914 .01933745

136553.20 86314.525 117742.80 95375.519 106621. 92 527836.50 587650.57 476146.43 2635.171
44470.920 15381.906 21063.460 7831.9620 28240.980 45297.760 153851.58 84847.000 469.5286
1.0000000 .34588684 .47364570 .17611423 .63504375 1.0185928 3.4595997 1.9079210 .01055810

66765.456 81018.320 73406.759 73407.923 404600.38 404614.86 366758.22 2021.323
6804.399 -741.074 3261.429 3261.505 17224.310 17236.540 35985.850 190.6868
1.0000000 - .10891101 .47931184 .47932301 2.5331466 2.5331466 5.2886155 .02802405

111992.10 95328.289 95375.519 527594.00 527836.50 448033.35 2485.648
428.860 59.889 60.523 1386.100 1386.880 930.750 10.2669
1.0000000 .13965697 .14112531 3.2320571 3.2338759 2.1702887 0.2393998

86268.505 81018.320 475905.28 448033.35 404600.38 2237.355
90.037 -44.603 723.870 65.460 266.88 2.9340
1.0000000 -.49538523 8.0396948 .72703444 2.9641148 .03258660

86314.525 448033.35 476146.43 404614.86 2237.468
68.026 434.640 766.710 409.09 4.4943
1.0000000 6.3893217 11.270838 6.0137300 .06606739

2633892.162485647.63 2237354.61 12412.15
2427.20 2159.60 1543.50 17.0970
1.0000000 .88974951 .63591793 .00704392

2635170.73 2237467.89 12412.90
523.50 176.90 1.9540
1.0000000 .33791786 .00373257

2021323.17 11176.64
4.90 .012
1.0000000 .00244898

62.00
49.259
1.0000000

is called by Dresden 3 the discriminating equa
tion. Jacobson4 and Perlis5 call this the char-

The center matrix is the coefficient matrix for
the quadratic Equation (7). Let A be the
coefficien t matrix, then

al2 al3!
a22 a23 .

032 033

A

where

a = f"(O) = - (all + a22 + a,,)

- 13.968713,

Ia22 a2'1 Iau aU I+ Iau a1z
!b=j'(O) = +

a22 a" a" a,,, a21 a22

= 46.115206

=f(o) = - IA I

= 18.821417.

f(A) = - (A' + a'>-.2 + b'>-. + c) = 0 (11)

acteristic equation of A. Writing Equation (9)
out we have

is the resul t of such an expansion, the coeffi
cien ts as given by Dresden' are

Then

1

7.135058-'>-. .0722095 .0430125 I

f(A) 0722095 7.199703-'>-. -.028591 =0 (10)

.0430125 -.028591 -.366048-A

Expansion of (10) leads to a cubic equation
in A. If

(7)

(9)

.04301251 [Xl
-.028591 Yj = K(8)

-.366048 lz

.0722095

7.199703

-.028591

f(A) = I A - AI I = 0

[

7.135058

(xyz) .0722095

.0430125

IS

the equation of the surface of best fit is

7.135058X2 + 7.199703f2 - .366048Z2

+ .14419XY + .086025XZ - .057182YZ = K.

The translation constants listed in Equation
(6) are given in millimeters at model scale,
1 :60. The values assigned to the center of the
antenna in the Autograph are (200, 200,
166.70). The differences between the assigned
values of the center and the translations,
Equation (6), represent the relative positions
of the cen ters of the constructed surface and
the surface of best fit. The largez translation is
not unreasonable since the surface of best fit is
a hyperboloid of two sheets.

Equation (7) expressed in matrix notation
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7.5654137 P2 = .029005 h

Let P3 = 1 and

(18)

.5437830 - .00577071

.8392259 .0038338] .

- .0000749 .9999760

1(.2 + v2 = 365.7610',

r .8392083

P = 1-.5437662

1 .0069223

normalize the vector, and

[

-.0057707]

P3 = .0038339j'

.9999760

An evaluation of P to check on a possible re
flection of the surface shows that

I pI = + 1.000000

which indicates no reflection.
The vectors translated to the computed

center of Equation (6) are rotated by (13).
Substituting Pinto (13),

u = .8392083X - .5437662 Y + .0069223Z,

v = .5437830X - .8392259Y - .0000749Z, (17)

10 = - .0057707X + .0038338Y + .9999760Z,

gives the specific relation between the trans
lated Au tograph axis system and the axis sys
tem that is in standard posi tion wi th respect
to the surface of best fi t, the 1t v w system.

The w coordinates are parallel to the direc
tion of focus and they represen t the ordinates
of each measured point on the constructed
surface from the lIV plane. Substituting the
uv coordinates from (17) into the equation
of the designed surface,

The other vectors are found in the same way
to obtain

yields the designed w value for each point.
Equation (18) is given in millimeters at model
scale, 1 :60. The difference between w from
(17) and w from (18) are the deviations be
tween the rotated model of the actual surface
and designed surface.

Similarly, the original model coordinates
translated to the apparent center point (200,
200,166.70), were substituted into (18), and,
again, the differences of the z ordinate for tl e
model surface and the designed surface were
noted. Assuming that the model represented
the actual telescope surface, these ordinate
differences represent the error at each meas
ured point on the antenna.

Examination of these errors computed both
ways indicated that the axes determined
solely by the shape of the antenna were not
parallel to nor coincident with the original
axes employed to layout and construct the
original antenna surface. However, the error
computed directly from the oriented model
coordinates where the model was visually ad
justed by the Autograph operator indicated

(13)

(12)

(14)

(15)(A - AJ)Pi = 0

fA, 0 0Ir111
(11 v w) [0 A2 0 lv = K

o 0 A3 10

I(A) = A3 - 13.968713A2+ 46. 115206A

+ 18.821417 = 0

and the roots are

A, = 7.0886242, A2 = 7.2464946, A3 = - .3664058.

which gives a new axis system with elements
u, v, and w in terms of the presen t translated
system. The surface of best fit should be in
standard position in this new axis system.
Therefore the matrix equation of the surface
of best ftt in the new system is

The matrix P is required to transform the
translated coordinates into the new 11 v w co
ordinates. The column vectors of P are some
times called characteristic vectors, but they
may be better known as Eigenvectors. Let Pi
indicate a column of P, then

is used to compute the Eigenvectors. For A3
(15) becomes

[7.5014638 .0722095 .04301251 [Pl l

l .0722095 7.5661088 - .028591 P2 = 0 (16)

.0430125 -.028591 -.000378 pJ

The roots resemble the diagonal elements of
the coef'ficien t matrix because the model was
oriented in the Autograph.

These roots of the characteristic equation
are used to compute a transformation matrix,
P, transposed such that

p, = .0057708,

P. = .0038339,

Ps=1.

which check in the third equation. Dividing

each elemen t by ...;pl 2 + P22 + P32 we

which is a homogeneous system of equations
that has a non-trivial solution because
(A -AI) is theoretically singular. Practically,
however, the singularity of (A -AI) depends
upon the value of A. A must be determined
with sufficient accuracy to determine P.

Since the matrix in (16) is singular, one of
the variables is arbitrary. Eliminating PI
from the first two equations yields
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that the model was very nearly in the correct
position. To further check on the misalign
men t of the fitted axes, the second model tha t
was neither leveled nor scaled was measured
at 213 points, and the data were used in a
calculation outlined above. In addition, the
method outlined above was modified so that
the fitted surface would be a paraboloid rather
than a general second degree surface.

These two additional computations closely
agreed with the first results, and showed that
the axes could not be determined with the de
sired accuracy from the shape alone in this
case and that the initial model coordinates
were sufficient to calibrate the antenna. The
errors determined from the initial coordinates
are shown in Table IV. The primary reason
why the fitted surfaces failed to adequately
define reference axes is that there is not
enough of the paraboloid existing. Anyone
of the other second-degree surfaces would
nearly fit the measured coordinates without
being exactly centered. It is uneconomical to

TABLE TV

Z ERRORS DIRECT FROM LEVEL MODEL

(Scale 1: 1)

build much more of a paraboloid for radio
purposes, but there are other areas of engi
neering where second degree surfaces are em
ployed; e.g., plexiglass domes and balloons.
The shapes of these surfaces may well serve
to establish reference axes for measurement.

The focal length of the dish can be obtai ned
from Equation (1) rewritten as

so that a value of p, which is 4 times the focal
length, is obtained for each point measured.
An average value for the focal-length may be
obtained for the whole surface, or for particu
lar zones of the surface. The average focal
length determined in this way for the Ohio
State 40 foot dish is 17.70 feet. It is interesting
to note that the focal-lengths for all of the
surfaces fitted by least squares were 17.70
feet ± .02 feet.

In closing this section a few remarks on the
accuracy achieved in the calibration are pre
sented. The reading accuracy of the operator
was determined from repeated observation of
several points. The standard reading error of
the operator was ±0.02 mm. for all three
coordinate directions at model scale which
corresponds to ± 1.2 mm. on the antenna it
self. Investigation into the errors introduced
by relative and absolute orientation of the
circular model indicated that these errors
were larger, and that the standard error of
anyone point including reading errors was
± 10 mm. on the antenna. This is a large er
ror; large enough that it is known that it can
be reduced more than 50% by increasing the
accuracy of the relative orientation with a
control system in the foreground as done by
Hallert,6 yet small enough to indicate that a
photogrammetric calibration is worthwhile
and small enough to be of use to the electrical
engineers since the construction tolerances
were much larger.

CONCLUSION

Photogrammetric calibration of large radio
telescope antennas is not only feasible, but
very practical as well. The large error experi
enced in this particular example does not indi
cate the limitations of such a procedure, be
cause two distinct things could be done to
materially reduce this error: (1) a wide-angle
camera with a larger format would allow
larger scale photography wi th a correspond
ing decrease in error, and (2) special con trot
not on the antenna would decrease model er
rors caused by the relative orientation. It is
not unreasonable to expect a standard error

(19)
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at any point of + 3 mm. (full scale) for a 40
loot dish if the above two changes were
adopted.

The old and standard method of directly
measuring a stereoscopic model referenced to
visually oriented axes proved to be more reli
able than measuring the model referenced to
axes determined from the shape of the model.
Since only a small part of the paraboloid is
represented in a radio antenna and since this
part of the surface differs very little from
other second degree surfaces including the
sphere, the shape method of defining reference
axes is not practical. However, the method
may be of value in determining the orienta
tion of a vector with respect to other sur
faces.
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Determining Small Defiections zn
Aerodynamic Models*

JOSEPH P. SHERRY,

President, Stereofoto, Inc.,
3064 Eaton Rapids Road, Lansing, Mich

ABSTRACT: Through the use of photogrammetry this paper presents an approach
to the probtem of the determination of smatl deflections in aerodynamic modets.
The results of experiments in both the static and dynamic conditions are pre
sented.

T HIS paper presents the results of experi
men ts to determine the feasibility of

utilizing photogrammetry for determining
small deflections of an aerodynamic model in
both static and dynamic conditions. Since the
consistent determination of these deflections
is at present exceedingly difficult, or impossi
ble, it is hoped that photogrammetry may
provide the solution, provided sufficient ac
curacy can be obtained. These then are the re
sults of the first such steps in that direction.

Photographs for the project were taken
with a pair of Santoni photo-theodolites,
equipped with a pair of auxiliary lenses of 100
cm. focal-length. The cameras utilized glass
plate negatives 10X15 cm. in size. The the
odolites were mounted on a bar to obtain a
minimum of motion.

The model to be photographed was about

14" wide by 10" high. It was constructed of
balsa wood, with an aluminum spar through
its center, so that in all respects it would react
as a full-sized section would respond when
loads of different amounts and with vari
ous condi tions were applied.

For horizontal and vertical control an
aluminum sheet, with a one-inch grid scribed
upon it, was mounted upon a sheet of three
quarter inch plywood. The outline of the
model was traced upon the surface of the ply
wood, and this portion was cut out so that the
surface of the model was flush to the surface
of the plywood.

To check the calibration of the plotting in
strument, three machined aluminum plugs
were mounted upon the surface of the alum
inum sheet. The heights of these plugs were
.250", .500" and .880".

* Presented at the Society's 25th Annual Meeting, Hotel Shoreham, Washington, D. C. March 10,
1959. This paper is a part of the panel on Special Applications of Photogrammetry.


