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AstrACT: This paper contains an investigation inlo the stability of the interior
orientation of the frame, panoramic and strip cameras. Mathematical expres-
sions were formulated to relate the measured and calibrated data to ground
points in terms of Universal Ground Coordinates. Using the General Law of
Error Propagation, a theoretical error analysis was performed to determine the
comparative accuracy between camera types when used for target location and
charting.

INTRODUCTION

THE primary objective of this paper is to determine the type of camera system
with the strongest internal geometry which will subsequently secure the greatest
possible amount of accurate interpretable information per pound of airborne equip-
ment. These data are obtained under conditions where ground-control information
is presumed unobtainable.

For the purpose of this paper the interior and exterior orientation parameters are
defined as follows:

a) Interior orientation elements of the aerial camera consist of the focal length
(f) and the photo-coordinates (x, y, frame camera and 7, €, panoramic camera).

b) Exterior elements of orientation are tilt, swing, azimuth of the principal plane,
and position and elevation of the camera station.

In order to establish accurate ground position of photo-images without the use of
geodetic-control points, it is essential to acquire all of the elements of interior and ex-
terior orientation; some elements must be obtained on the film during the instant of
exposure and the remainder from calibration reports. The problem of accurate target
location is further complicated by the errors which are inherent in the design of each
specialized camera, and the errors which occur in the chemical processing, correlation
and data reduction of each photograph.

It is then, the primary intention of this paper to develop the relationships between
photo-coordinates and ground-coordinates for the basic frame, strip and panoramic
cameras in terms of the parameters discussed above and perform an error analysis on
the cameras to determine the strength of their respective internal geometry. The
method employed to formulate the coordinate equations for the frame, strip and pan-
oramic cameras are

(1) to develop the frame coordinate equation which will be utilized as the basis
for the other camera developments,

(2) to determine the photo-coordinate transformation equations which relate the
frame photo-coordinates to the new geometry imposed by the panoramic and
strip cameras, and

_ * Based on work done for Rome Air Development Center under Air Force Contract AF 30 (602)-
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(3) to substitute the panoramic and strip photo-coordinate equations into the
basic frame camera-coordinate equations which will then generate the respec-
tive camera-coordinate equations.

FORMULATION OF THE GENERAL FRAME COORDINATE EQUATIONS

The basic equations which show the relationship between the photo-coordinates
and the ground-coordinates for the frame camera must be developed before an error
analysis can be performed. The formulation of these equations are based on three
types of data:

(1) the object-space Cartesian coordinate-system for defining the position of
point objects including the camera station (X, YV, H-k),

(2) the image-space coordinate system for defining the position of point images
(x, 3, f) and

(3) the relation existing between the coordinate system of object and image-space
in terms of angular orientation (¢, s, ), where

X, Y=Local Universal Ground-Coordinates with the origin at the camera nadir
and the Y axis aligned with local north.
H-h =terrain clearance,
H =altitude above sea level of camera station,
h=elevation of object on terrain,
x, ¥ =photo-coordinates,
f="focal-length,
s =swing,
t=tilt,
a=azimuth of the principal-plane.

If numerical values for ¢, s, and a and the image-space coordinates (x, y, f) of an image
are assumed, the object ground-coordinates (X, V) corresponding to the image-space
coordinates may be calculated. The solution is based on expressing one coordinate
system in terms of the other by use of functions of ¢, s, and «, as coefficients for the
variables x and y. The Universal Ground Coordinate equations may be determined
by means of successive rotations of the camera system through the angle of swing,
tilt, and azimuth, and subsequent substitution into the standard equations for the
vertical photograph.

To commence with the development of the frame coordinate equations the verti-
cal photo-coordinates are first rotated through the swing angle (s) as indicated in
Figure 1.

As determined from the geometry of the rotation, the new photo-coordinates em-
bodying the swing angle are

¥ = xcoss — ysins
and

y = ycoss+ xsins

Referring to Figure 2, the vertical photograph after being rotated through the
swing angle is now tilted. As evident from the geometry, the photo-coordinates after
undergoing tilt and swing are as follows:

xl' i x/
vy = fsint + ¥’ cost
and

—Z = fcost — y'sint
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¥ where
A Z is a negative quantity for it is meas-
o ured from L to O. In keeping with the ap-

propriate system of tilt, swing, and azi-
muth which fully describe the angular
exterior orientation of the photograph, it
is necessary to rotate the photo-coor-
dinates through the azimuth angle («) as

oc—a indicated in Figure 3.
. The new photo-coordinates embody-
o ing the tilt, swing and azimuth orientated
- ‘\\ i systems are
\
) &' = 9" sin a + "' cos
\ <" and
Y = 9" cos a — 2" sin @

F16. 1. Swing transformation.

These converted photo-coordinates are now reduced into terms of Local Universal
Ground Coordinates by substituting, in turn, the developed photo-coordinate equa-
tions into equation (1) and (2) which are readily determined with reference to Figure
4, by application of the principles of similar triangles.
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F1G. 2. Tilt transformation.
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After substitution, the Local Universal Ground-Coordinate equations for the
Frame Camera are:

sint~+ vy costcoss+ xcosisins)sina—+ (x coss — ysins) cos
X:m_h)[(f y ) ( y sin s) a] )

fcost— ycosssini— xsin s sin/

Y=(H—~h)l:

(fsint+ ycosscost—+ xsins cosi) cosa — (¥ cos s — ysin s) COSa:| @

fcost — ycosssint— xsinssin/

It must be reiterated that since the quantities measured from L downward are nega-
tive the magnitude of (H-k) is negative. However, after substitution the negative
signs drop out as equations (3) and (4) indicate. Assuming that all of the parameters
are known, the above equations are sufficient to determine the ground coordinates of
an object. However, the accuracy with which X and Y are determined depends of
course, upon the accuracy of each of the parameters. An error analysis of equations
(3) and (4) may be performed to establish the accuracy of calculating X and ¥ and
results compared to similar analysis of other equations in order to ascertain relative
orders of accuracy.

FORMULATION OF GENERAL PANORAMIC COORDINATE EQUATIONS

Similar to the frame camera, a prerequisite to the development of the pertinent
error equation for panoramic photography is the development of equations and defini-
tion of the terms for transforming the general case of the panoramic photo-coordinates
into a system of Local Universal Ground-Coordinates. The cylindrical platen rotating
lens panoramic conforms to the geometry of the general transformation.

The development of the panoramic camera-coordinate equations are initiated
with the determination of the photo-coordinate transformation equation. These
equations (5) and (6) transform the plane rectangular coordinates measure on the
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F16. 3. Azimuth transformation. Fi16. 4. Transformed photo coordinates.




RELATIVE GEOMETRIC STRENGTH OF CAMERAS 759

FiG. 5. Transformation from frame to panoramic coordinates.

panoramic photograph to their equivalent perspective position in a plane tangent to
the panoramic cylinder at the line chosen as the center of mechanical scan.

Then as evident from Figure 5, triangle A BL is similar to triangle EGL.

It follows that

x  fsece/f
g F
and
x = n sec e¢/f (5)
It is also evident that
y = ftan ¢/ (6)

where n-panoramic photo-coordinate axis, passing through the principal-point and
parallel to the axis of the panoramic cylinder (negative in the direction of flight),
e-panoramic photo-coordinate axis normal to the n photo axis and on the surface of the
panoramic negative (positive to the right of the flight direction) and f the calibrated
focal-length measured along the normal to a plane tangent to the panoramic cylinder
between the cylinder and the exit node of the lens. The center of the mechanical scan
was arbitrarily chosen as one origin for the transformed photo-coordinate system. Air-
borne sensors providing angular data for eventual use in the data reduction process
require a system of references with respect to the camera. The center of scan is
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chosen as one convenient reference for this purpose. In cases of oblique photography,
another origin may be more convenient as a reference for external sensors.
The results of equations (5) and (6) are used directly in equations (3) and (4) for
reducing the coordinates into panoramic Local Universal Ground Coordinates.
The panoramic coordinate equations relating the given data and transformed
photo-coordinates considering tilt, swing and azimuth are as follows:

(fsin¢ + f tan €/f cos { cos s + n sec e/f cos ¢ sin 5) sin «
X=(H-h : e

fcost — ftan e/f cos s sin ¢ — g sec ¢/f sin s sin ¢

(n sec e/f cos s — f tan €¢/f sin s) cos a :I ™
fcost — ftan €/f cosssini — 5 sec ¢/f sin s sin ¢

sint 4 f tan e/f cos s cost + 5 sec e/f sin s cos £) cos «
Yz(H_h)[U /f - nsec o sins cos )

fcost— ftan €/f cos s sin £ — 7 sec €/f sin s sin ¢

(n sec ¢/f cos s — [ tan ¢/f sin s) sin « :| ®

fcost — ftan e/f cosssin{ — g sec ¢/f sin s sin /

The above equations differ from the frame-coordinate equations only in that they
account for the new geometry imposed by the concept of the panoramic camera. As
is evident from the above equations, to locate a ground point the tilt, swing and azi-
muth must be known for a given scan angle. As the optical axis rotates to image the
most oblique rays the exterior orientation of the camera changes because of the mo-
tion of the vehicle. In contrast, the frame-camera equation, optimum in simplicity,
needs only one set of £, 5, and « to locate all points on the photograph.

FORMULATION OF THE STRIP CAMERA COORDINATE EQUATIONS

The inherent design concept of the strip-camera distinguishes itself from the
basic frame and panoramic-cameras in that there exist the problems associated with
moving film. The strip-camera is essentially an uncomplicated camera. Basically, it
includes a lens, lens cone, variable exposure slit and motor drives that move the film
past the exposure slit at a synchronous rate to //H, the ratio of aircraft velocity to
height above terrain. However, it is in this film movement where errors are gen-
erated which cause image displacements and deteriorate the accuracy of target loca-
tion. It is probable that the film travels past the exposure slit in irregular non-uniform
motions. This unpredictable movement can originate from many causes, some of
which are varying roller radius, unprecise motor film drives and out-of-tolerance
sprocket drives and holes.

The equations for transforming the coordinates measured on the strip type pho-
tography into equivalent coordinates of a Universal Coordinate System, must incor-
porate the image displacement caused by the inherent irregular film movement. A
technique to mathematically determine the non-uniform and irregular motion of the
film is to expose markers on the film as it passes the exposure slit. The markers are
imaged on the film at a precise time rate. The time-reference mark device is mounted
at the ends of the exposure slit rigidly fixed with respect to the lens, and the error
associated with the time-flash device shall be considered negligible. Deviation of the
markers in any direction from the predetermined positions will indicate irregular film
movement. The transformation equations (equations 7 and 8) for the strip camera are
developed as follows:

Referring to Figure 6, reference sets 4 and B are marks flashed on film as it passes
over the exposure slit. Each set of marks is flashed on simultaneously at a constant
time interval. Any twisting or nonuniform motion of the film will be shown by a dis-
placement of the reference marks from the calibrated positions.
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F16. 6. Transformation from frame to strip coordinates.

C =calibrated distance between reference marks
Cn=measured distance between reference marks
C1 & Cy=calibrated distances from principal-point to reference marks
d, & dy=distance between adjacent reference marks
e1 & e;=displacement of reference mark in the vertical direction
01 & d;=displacement of reference mark in the horizontal direction
a = principal point
b=new principal point due to movement of film
e=displacement of principal point
I"=calibrated time interval between pulses 4 and B
T'a=real time that reference mark (Set A4) is exposed (this time is given)
T, =the instant of exposure of point p
xo & yo=measured distance from coordinate system which has O as origin
x & y=distances from coordinate system which has principal-point as origin

Starting the development we have

dy + d.

d= J—Z“i (approx.)
and

([l = (1;3

61 == =
2

dQ s (11

52 B S or 61 = o 5-_'
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y is then
C Xo
1= -
where
€ + (2]
e =
2

Then substituting for ¢ and d we get:

B R 2 ,
N *°(d,+d2>] ' ©)

For simplicity it is assumed that the longitudinal and transverse shrinkages are the
same.
Now to develop the photo x coordinate for the strip camera we have

Substituting for §' and x, we get:

() [ (dy — dy) 229 <2y0 >:|
®=—|% + = o ]
Cn 2 (dy 4+ d2) \Cn,

WL P e LI
= [“Hz"“ (dl+d2><cm ¥ 2)]

Substitute and simplifying:

¥ = ﬁ[l Fath=d ( 2, 1/2)] (10)
C’m (dl + d?) Cm

Another fundamental distinction between strip-camera photography and frame
type conventional photography for photogrammetric purposes lies in its instantaneous
two-dimensional rather than three-dimensional ‘“freezing”’ of the object space.
Measurements made normal to the two dimensional perspective result effectively in
measurements of time and not of image space. This basic characteristic of the strip
camera requires that the x photo-coordinate measurement be used to derive the origin
of the ground photo-coordinate system as a function of the direction and velocity or
other vehicle positional parameters. An example of time to the position may be had
in orbiting type vehicles when, after data ‘‘smoothing,” the position of the vehicle
may be predicted or interpolated as a function of orbital time. Assuming the strip-
photo references are flashed with reference to orbital time, the value of 7%, may be

used to calculate an instantaneous origin of the ground coordinate system.
Substituting the transformation equations directly into equations (3) and (4) will
generate the Universal Ground-Coordinate equation characteristic of the strip cam-
era. Since the camera system is constantly moving there is an instantaneous nadir for

and
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every y. Therefore x=0 and the Universal Ground-Coordinate equations for the
strip camera reduce to:

( C 2
lfsintsina-f— li——[yu — xow] - Cl] COS ¢ cos s sin «
m (dl + d?)
X=((—h)/
T AN s T,
cost — | — |y — xg————— | — cos s sin
t ’ ‘m d ’ (dl + dl) l
l: G [ (e; + eg)J :| ) )
| Wy By ——r——— | — €} | 1H$E0S o |
Cm (dl + d?) ’ (11)
T e —
Jeostl —|yg— xg————| — C;|cosssint
s (dy + do)
and
( ) C (e1 + e) ) .
fsintcosa + | —| vy — xg———— | — C, | cos s sin ¢ cos a
(/'m (dl + d?)
V=(H—-h
R ERt =] R BT
feost — | —|yy—xg——=| — Cy | cos s sin /
Cm (dl + dl)
[C[ (€1+32)] } . ]
Y —x———— | —Ci|sinssina |
B =) e 7S 2 e A B

_ l: c |: (er + 63):| ] ;
feost —|—| 3y — x0— —| —Cy|cosssint
( m (dl + d?) J

ERROR ANALYSIS

The frame, strip and panoramic equations previously developed permit a detailed
error analysis which compares the target location accuracy and stability of the inte-
rior orientation of the respective cameras. The error analysis was accomplished by ap-
plying the General Law of Error Propagation to the Local Universal Ground-Co-
ordinate equations.

The law of Error Propagation' asserts that for any given function of two or more
independent variables, say f(x, ¥), the total differential is given by

af of
df = — dw —d
/ ox &2 ay o+

If there are substituted for the infinitesimal increments their finite equivalents, we ob-
tain
5} af
Af=—fo+—jAy (13)
ox dy

which is a good approximation of the magnitudes if the increments are small, and the
function is approximately linear at the point where the derivatives are evaluated.
Since the errors are independent, it is true that

(7'02 = EC,‘O‘,‘2 (14)
where 02 is the variance of the overall errors and o, refers to the component errors.
! Goode, Harry H., “Systems Engineering,” McGraw-Hill Book Co., N. Y. 1957.
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Then, combining equations (13) and (14) with the partial derivatives evaluated
at the point being the C;, to yield

P (j—Z)(a) 4 (%)2@1,)2 (15)

Using the above method, one could analyze several parameters of a complex function
to determine how an error in each variable will affect the final result. This procedure
also indicates the relative rate of change of the function with respect to each variable.
This is a most important consideration for when systems are analyzed on the basis of
operational experimentation it almost invariably appears that more effort could prof-
itably have been spent on one phase than on another phase that ultimately con-
tributed very little to the system error. Theoretical analysis permits determination of
the comparative effects of the various numbers of the internal geometry of the respec-
tive cameras, and indicates which factors require the most consideration and design
effort.

Utilizing equations (3, 4, 7, 8, 11 and 12) as the basis for the formulation of the
error equations, the partial derivatives of each of the equations were taken with
respect to each of the variables contained in the expressions. The determination of
the partial derivatives is a straight-forward exercise and is not included herein. The
squares of the partial derivatives were in turn multiplied by the individual square of
the variance term. The squared product of the two were then summed and the square
root obtained. For example, the error equations for the frame-camera are

oxX 2 aX 2 X \? X 2 X 2
e () () () 1 () 1 ()
oH ok at as da

X : X 2 X \?

+ (* dx) + (— dy) + <—~ df) (16)
dx dy of

and
Ut = <6YdH>z+ <6Yd/)2+ <6Yd>2+ <6Yd >2+ OYd )2
Y \om an " or ¥ 2 (ay 4

av s oY 4 oY 2

@) () 4 () w
as al Jda

The error equations for the panoramic and strip cameras are similarly developed con-
sidering the new geometry. Thus, the numerical results of the error equations stem-
ming from the application of the General Law of Error Propagation provides the
theoretical inherent error which exists in compiling charts or in locating targets for
each camera.

In order to establish a comparison of the geometric strength between the frame,
strip and panoramic camera types it was necessary to assume reasonable numerical
values for the interior and exterior orientation parameters. These values were sub-
stituted into the three sets of partial derivatives shown in the above equations. An
additional procedure to assure an accurate comparison was to have the ray of the
point imaged on the film plane leave the datum at a 45° angle for all three camera
types. This technique enabled the photo-coordinates to be determined for the given
set of conditions and subsequently substituted along with the other assumed param-
eters into the partial derivative equations.

The values of the individual error terms, dH, dt, ds, etc., used in the error analysis
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of the cameras are theoretically predicted errors and are as follows:

dH = 200 ft.
dh = 20 ft.
ds = 6 minutes = .0017 radians

dt = .5 minutes = .00014 radians

da = 6 minutes = .0017 radians

df = 25 microns = 984.3 X 107% inches
dx
dy} = error in measuring photocoordinates = .001 inches

In choosing error terms it was necessary to keep the interior orientation errors rela-
tively large to assure that their influence was apparent in the squared partial terms.
The exterior orientation errors were kept small to assure that the effects of errors in
interior orientation would be evident.

CONCLUSION

Table 1 contains a summary of the results obtained from the numerical evaluation
of the error equations.
TaBLE 1
RELATIVE STRENGTH OF CAMERA GEOMETRIES
Standard Errors Based on the Following Parameters

Tilt 3°

Swing 30°

Azimuth 0°

Altitude 101,000 Ft.

Focal Length 6"

Elevation 1,000 Ft.
Local
(l;/r?zz)’e:;al Frame Camera Panoramic Camera Strip Camera
Coordinates
X-Coordinate 202 Ft. 220 Ft. 230 Ft.
Y-Coordinate 191 Ft. 221 Ft. 235 Ft.

The results in Table 1 were determined for the various camera types using the
same conditions of observation and the same component error values. In an effort to
make the effects on ground error as a function of camera types more apparent, the
error values for factors of exterior orientation were kept small and equal for cor-
responding elements.

The error values assigned to elements of interior orientation were relatively large
but correspondingly equal. In this manner, the relative accuracy of the camera types
was made more apparent. [t is important to note that the results indicated in Table 1
provide a comparison of the strength of the respective camera interior geometry and
not a comparison of the camera under operational conditions. Therefore, the numeri-
cal values are insignificant except for the difference between them. For a more nearly
operational comparison it will be necessary to evaluate the camera types using realis-
tic error values rather than correspondingly equal values for errors in elements of in-
terior orientation.

Table 1 then indicates that the theoretical strength of the solution, and subse-
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quently the best target location capabilities, are greatest for the frame type, followed
by the panoramic and the strip cameras respectively.

For the X-coordinate the percentage error in locating targets between frame and
panoramic camera is 8.929%, between the frame and strip 13.879, and 4.739, between
the panoramic and strip camera. For the Y-coordinate the percentage error between
the frame and panoramic is 15.779%, between frame and strip 23.139, and 6.36%,
between the panoramic and strip.

There are a number of exterior orientation elements which have not been consid-
ered in the camera comparison; however, they are factors which affect the system er-
ror to the same extent regardless of camera type. Since one purpose of this investiga-
tion is an accuracy comparison between camera types, these added elements have not
been considered.

The Utilization of Constraints
in Analytical Photogrammetry™
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(Abstract is on mext page)

INTRODUCTION

WITH the introduction of high speed, large capacity digital computers, the possi-
bility of solving elaborate problems in analytical photogrammetry, in particular
the simultaneous adjustment of large blocks of .
aerial photographs in a control extension, has now
become a reality. A number of techniques that ade-
quately express the projective relations of photo-
grammetry have gained wide acceptance in recent
years; however, most of these techniques have
limited themselves to the case in which the camera
and ground-point parameters are exactly known or
completely unknown. It is the purpose of this
paper to describe a number of constraints and
their application to some of these techniques.
Such constraints are obtained by enforcing the
camera or points in the object space to conform to
some functional or geometrical relationship or to
lie within certain bounds as defined by weighting.
The value of constraints lies in their ability (1) to
utilize geometrical properties of the physical situa-
tion which may lead to a reduction in the number
of unknown camera or ground-point parameters
and, hence, to a reduction in the size of the normal equation matrix which must be
inverted; and (2) to utilize these same geometrical properties and/or weighting fac-
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