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quently the best target location capabilities, are greatest for the frame type, followed
by the panoramic and the strip cameras respectively.

For the X-coordinate the percentage error in locating targets between frame and
panoramic camera is 8.92%, between the frame and strip 13.87% and 4.73% between
the panoramic and strip camera. For the V-coordinate the percentage error between
the frame and panoramic is 15.77%, between frame and strip 23.13% and 6.36%
between the panoramic and strip.

There are a number of exterior orientation elements which have not been consid­
ered in the camera comparison; however, they are factors which affect the system er­
ror to the same extent regardless of camera type. Since one purpose of this investiga­
tion is an accuracy comparison between camera types, these added elements have not
been considered.
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INTRODUCTION

W ITH the introduction of high speed, large capacity digital computers, the possi­
bility of solving elaborate problems in analytical photogrammetry, in particular

the simultaneous adjustment of large blocks of
aerial photographs in a control extension, has now
become a reality. A number of techniques that ade­
quately express the projective relations of photo­
grammetry have gained wide acceptance in recent
years; however, most of these techniques have
limited themselves to the case in which the camera
and ground-point parameters are exactly known or
completely unknown. It is the purpose of this
paper to describe a number of constraints and
their application to some of these techniques.

Such constraints are obtained by enforcing the
camera or points in the object space to conform to
some functional or geometrical relationship or to
lie within certain bounds as defined by weighting.
The value of constraints lies in their ability (1) to
utilize geometrical properties of the physical situa­
tion which may lead to a reduction in the number
of unknown camera or ground-point parameters
and, hence, to a reduction in the size of the normal equation matrix which must be
inverted; and (2) to utilize these same geometrical properties and/or weighting fac-

* Presented at the Society's 27th Annual Meeting, The Shoreham Hotel, Washington, D. C., March
19-22, 1961.

t Subsequent to the Annual Meeting, the author became a member of the staff of Autometric Cor­
poration, Alexandria, Va.
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tors to reduce the magnitude of error pr-opaga:tte.n particularly in areas lacking in
ground control.

THE PROJECTIVE EQUATIONS

In order to better explain the manner in which constraints may be utilized in an­
alytical photogrammetry, a description of the projective equations of photogram­
metry, the formation of the condition equations, and the solution of the resulting
normal equations is given below. The description is brief since complete derivations
have been given by Schmid (1959) and Brown (1958).

ABSTRACT: The universality of the projective equations of analytical photogram­
metry, as first developed by von Gruber, has been well documented in the work of
Hellmut Schmid and Duane Brown. These equations have shown themselves
amenable to both aerial and terrestrial photography and are completely rigorous
from a statistical viewpoint.

This rigorousness has led to the possibility of utilizing various constraints in
the solution of problems in analytical photogrammetry. The utilization of both
weight constraints, in which the camera and control point parameters may be
weighted in accordance with how well they are known, and geometrical con­
straints, in which the camera and control point parameters are enforced to some
geometrical pattern, are described.

The projective equations, completely stating the relations which exist between
the image-space (photograph), the center of perspective (the lens), and the object­
space were first developed by von Gruber (1932). They are

(au);(Xj - Xic) + (a21);(Yj - Y/) + (a31);(Zj - Z/)
Xij = X p ' - !i-----------------------

, (alS);(Xj - X/) + (a23)i( Y j - Y/) + (a33);(Zj - Zic)

(a12);(Xj - Xic) + (a22);(Yj - Y/) + (aS2);(Zj - Z/)
y,:; = YPi - !i----------------------­

(alS);(Xj - X/) + (a23)i( Y j - Y/) + (a3S);(Zj - Z/)

(1)

in which

the subscripts i andj indicate the ith photograph and thejth object-space point;
Xu and Yij are the photographic coordinates of the jth object-space point imaged

on the ith photograph;
x Pi ' YPi' and Ii are the coordinates of the principal-point and focal-length of the

ith photograph;
(au); through (adi are the elements of the orientation matrix relating the photo­

graph coordinate system to the object-space coordinate system (these elements
are functions of the rotations roll, w, pitch, ¢, and yaw, K);

Xj, Y j , and Zj are the object-space coordinates of thejth object-space point; and
X/, Y/, and Z/ are the object-space coordinates of the center of perspective (or

camera station).

These projective equations apply equally well to terrestrial and aerial photog­
raphy, to any number of cameras, and to any number of object-space points imaged
on the photographs. The single condition enforced is that an object-space point, a cor­
responding image-space point, and the perspective center are collinear (after correc­
tions for lens distortion, film shrinkage, atmospheric refraction, etc., have been ap­
plied). The condition equations, fulfilling this requirement, are formed by equating
the projective equations to zero, that is
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(2)

These equations are solved for the camera inner-orientation parameters x Pi ' YP" and
ji; the camera exterior-orientation parameters roll, w, pitch, 4>, and yaw,K (implicit
in the a's); the camera-position parameters X/, Y/, and Z/; and the object-point
coordinates Xj, Yj, and Zj. However, in order to obtain a solution, the condition
equations must first be linearized. .

Let

and

ji = 1;0 + Oji,

X;" = (X;")O + oX;",

Vic = (Y/)O + oY;",

Z;" = (Zic)O + oZ.·,

Wi = Wio + OWi,

X j = Xjo + oXil

Y j = Y/ + oYil

Zj = Zjo + OZh

(3)

in which the superscript (0) indicates measured or estimated values, the o's are correc­
tions to the initial approximations, and the v's are residuals of the photographic meas­
urements. Equations (3) are substituted into equations (2) which, after linearization
by Taylor's expansion, become

+ bij90Z;" + b.•/ooX j + b,j11oYj + biPoZj + tij = 0

+ &i/OZ/ + &./ooXj + &i/lO Y j + bi/ 20Zj + fij = 0
(4)

in which

and

iV' I '
v:-

tij=e,}, f"j=-e,:j° (equations (2) with approximate values)

and so on.
The condition equations (4) are solved for the differential corrections (ox Pi '

OYPi' ... , oZ!, oXil 0 Y j, oZj) which are then added to the original approximations
(xPiO, ypO, ... , (Z:)G, Xjo, Yjo, ZjO) to form new approximations. The iteration is
continu~d until such time as the o's become negligibly small.

Because there is usually a redundancy of data, a rigorous least-squares adjustment
is employed for solving the condition equations. This adjustment requires the forma­
tion and solution of a set of normal equations. Before the normal equations are
formed, the matrix partitioning of Brown (1958) is employed to simplify the notation
of the condition equations.

The linearized condition equations (4) for the ith camera station and the jth
object-space point may be expressed in matrix form as
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(5)

in which

Oi =
b,} .

b,} .(
V,)',J

v'i:j = _ 1

Vi;

(b .. tO
•• .. _ ~J

B'J - _
bi /

O

fOX;

loy; ,

oZ;

Finally, by a continued application of the partitioning process, the condition equa­
tions for all object-space points and all camera stations are form ulated as

V + 135 + BB = e, (7)

or, equivalently,

V + EO = e. (8)

The normal equations, as formed frol1l the condition equations (8), are

No = c (9)

where

c = BTWe

and W is the weight matrix of the plate coordinates, usually a unit matrix. The solu­
tion of the normal equations (9) is

(10)

Equation (10) gives, directly, the solution to the photogrammetric projective
equations. With the partitioning employed in equations (7), the normal equations
(9) become

(11)

in which

Iv = ipWB,
NT = j3 T W13,

N = 13TWB,
.\i = BTWB,

,
c = BTWe

'c = BTWe

CONSTRAINTS A. D THEIR UTILIZATION

The methods of applying constraints in analytical photogrammetry, as described
in this paper, follow the procedures developed by Brown (1959) in his extended solu­
tion for the Bermuda geodetic tie. The constraints are of two general types: the geo­
metrical or functional constraint and the weight constraint.

FUNCTIONAL CONSTRAINT

The functional constraint is obtained from the functional relationship that may
exist between the camera station or object-space point parameters and a new or dif-
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ferent set of parameters. In some cases the new set of parameters may be smaller in
number than the original, thus reducing the number of unknown parameters in the
condition equations. As an example of a functional constraint, suppose that each of
the camera-station position parameters X/, Y/, and Z{ is a function of the param­
eters a, {j, and 'Y. That is

XiC = F1(a, (3, 'Y)

Yi" = F 2(a, (3, 'Y)

Z/ = F 3(a, (3, 'Y)

The differentials of these equations are

(12)

or

aa a(3 a'Y
oX;" 00'. av/ av/ av/ ,

~

0/ = oV;, ------ 0(3 U;'o'
aO' a(3 a'Y

OZic 0)'az;, az/ az/
------

aa a(3 a'Y

(14)

In order to utilize the constraints, a, (j, and 'Y in the condition equations, the func­
tional relationships of equations (12) and (14) are merely substituted, where applica­
ble, into equations (5). Thus, equation (5) becomes

Vii--t::--B i;(5;" + &4,-)+ Br':8r =-e-.T

where 5/' is given by if,} + B'J (t}f) ... 8'J ~j :.: E<'j

(15)

OXPi

0;" =
°YP;

(16)

OK; J

and f:;j is a function of aO, {j0, and 'Yo instead of (X{) 0, (Y/) 0, and (Z/) 0. As a result of
the solution of equations (15) the most likely corrections oa, o{j, and o'Y to the original
assumed values aO, {j0, and 'Yo are determined. If desired, the final values of X/, Y/,
and Z/ may be found by substituting the adjusted values of a, {j, and 'Y into equa­
tions (12).

The constraint just described is employed to reduce the number of unknown
parameters in the condition equations. Another application of functional constraints
is to perform the transformation of correlated parameters when one or more of the
original parameters is unknown. Taking the previous example, suppose again that
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each of the camera-station position parameters X/, Y/, and Z/ is a function of the
parameters a'i, (3i, and "Ii where this time a, (3, and "I are different for each station.
Further, suppose that one of the parameters, e.g., (3i, is unknown. That is

XiC = F 1 ( OIi,(3iO,'Yi)

Y;" = FZ(OIi, (3iO, "Ii)

Zic = F3(OIi, (3iO, "Ii)

(17)

I n order to be able to use the functional constrain tit is necessary that a further
functional relationship exist between the two systems of parameters. For example,
suppose that

(X;")O = Cl(OIi, (3iO, "Ii)

(Y/)O = Cz((X/)O, ai, "Ii)

(Z/)O = C 3((X i c)0, 01;, "Ii)

(18)

Thus, while X.,c is a function of the unknown (3;0, Y/ and Z/ are functions of only the
known parameters ai and "Ii and the unknown (X/)o. The differentials become

oX = oX

acz
oy = -oX

ax
aC 3

oz = -oXax

(19)

with oX being the only unknown differential to be determined.
Functional constraints may be applied to the camera inner-orientation param­

eters, to the camera exterior-orientation parameters, and to the object-point coordi­
nates in exactly the same manner.

WElGHT CONSTRAINTS

The weight constraint is enforced by utilizing in the condition equations the
standard deviations of the various parameters. For example, suppose that the standard
deviations ux;", Uy;", and CTz;" of the camera station parameters X/, Y/, and Z/ are
known or can be closely approximated. The covariance matrix ~/, of the camera
station parameters is

["'x/>' ax/y;;
, 'J

U)r., Z,'"

i/ = r G- U (Y,o) Z d'JiCZ{#J (20)(JX i l"i6

lC1X/Z~G. qYicZi~ U(z,o)z

iq which, normally, the off-diagonal elements are zeroes. Finally, the weight matrix,
W/, of the camera-position parameters is the inverse of the covariance matrix. That
IS

W·.' = ""l-l
t ~t· (21)

In a similar manner the weight matrices of the camera inner-orientation parameters,
the camera exterior-orientation parameters, and the object-space point coordinates
may be determined.

In order to utilize the weight matrices in the solution of problems of analytic pho­
togrammetry (see Brown, 1959, Appendix), the partitioned normal equations (11)
become
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N J[iJ [i+[~]WJ
1\' + [tv] ;5 = 'c + [Hi] m (22)

The augmen teo weight matrices, [W] and [W], are diagonal matrices consisting of
the individual weight matrices Wi and Wj as given by the inverses of the covariance
matrices ii and i j • For those parameters which are treated as completely un­
known, the appropriate positions of the augmented weight matrix are filled with zero
elemen ts. The augmented supplemen tary discrepancy vectors, [~] and [~], consist
of the supplementary discrepancy vectors ~ and ~ with zero elements in the appro­
priate locations for unknown quantities. The elements of the vectors ~ and ~ are the
difference between the observed values and the approximation values of the camera­
station and object-space-point parameters. For the first iteration of the solution of
the normal equations (22), the supplementary discrepancy vectors would nor­
mally be zero since the observed values would be taken as the first approximations.
For each succeeding iteration the supplementary discrepancy vector would be the'
difference between the new approximations obtained from the preceding iteration
and the original observed values.

As a by-product of the solution of the normal equations, new covariance matrices,
i; and :i;, of the com puted or adj usted camera-station and object-space-poin t
parameters are obtained. These covariance matrices are given by the inverse of the
coefficient matrix of the normal equations. Thus, the accuracy of the various param­
eters, as determined from the solution of the normal equations, can be determined as
a function of the accuracy of the various input data.

As with the functional constraints, the weight constraints may also be employed
to perform the transformation of correlated parameters when one or more of the orig­
inal parameters is unknown. In fact, the utilization of weight constraints is to be pre­
ferred since the method is completely general, and does not require that an addi­
tional functional relationship exist between the two systems of parameters as does
the method of functional constraints. Suppose, as before, that each of the camera­
station position parameters X/, Y;<, and Z/ is a function of the parameters ai, fJi.
and "Yi and that one of the parameters, e.g., fJi, is unknown. In this event, values for
the standard deviations of ai and "Yi, craG' and cr-y€). are chosen such that they are as
realistic as possible. Then, an approximate value, f3/, is chosen for f3i' and the cor­
responding standard deviation, crPi' is chosen to be sufficiently large that the value of
fJiO is weighted out of the solution. The covariance matrix, A/, of the parameters
ai, fJi' and "Y i is

U'ai
2

(1ai{3i U'ai'Yi

A;' = <Tai{ji uP.
2

U{3i'Y' (23)

fIat)'; UP''Yi (J''Yi
2

Then, the covariance matrix, i;/, of the camera position parameters X/, Y/, and
Z,e is given by

(24)

where U/ is the same as in equation (14). From this point the covariance matrix is
transformed to the weight matrix and utilized in the normal equations as outlined
in equations (21) and (22). Finally, the covariance matrix, A./, of the adjusted camera
station parameters is given by

(25)

where, again, i;/ is the inverse of the coefficient matrix of the normal equations. A



CONSTRAINTS IN ANALYTICAL PHOTOGRAMMETRY 773

similar application of the weight constraint can be made to the camera inner-orienta­
tion parameters, to the camera exterior-orientation parameters, and to the object
point coordinates.

SOME EXAMPLES OF CONSTRAINTS

To best illustrate the manner in which functional constraints and weight con­
straints may be utilized in analytical photogrammetry, several examples of these
constraints will be examined in detail.

GEODETIC CONSTRAINTS

One of the major problems of analytical photogrammetry is the control extension
by means of aerial triangulation. Since the projective equations are based on a Car­
tesian coordinate system in the object space, the coordinate system used in the con­
trol extension must also be Cartesian. If the control extension is to cover only a small
area, a local plane-coordinate system or a map-projection system, such as the Uni­
versal Transverse Mercator projection, may be used. However, for large areas a geo­
centric-coordinate system is to be preferred. In such a system (see Church, 1948) the
origin is at the center of the earth, the positive Z axis is directed along the polar axis
through the North Pole, the positive X axis is directed along the equatorial plane
through the Greenwich meridian, and the positive Y axis is directed so as to form a
right-hand system. If the latitude, C/>, longitude, A, and elevation, h, of a point are
given, then its coordinates in the geocentric system are

111 which

x
y

Z

(LV + h) cos 4> cos A

(LV + h) cos 4> sin A

[LV(1 - e2) + h] sin 4>

a

F 1(4), A, h)

F 2 (4), A, h)

F 3 (4), A, h)

(26)

N= v1 - e2 sin2 4>

where a is the semi-major axis of the reference ellipsoid and e is the eccentricity of the
reference ellipsoid. Note that h is the sum of the topographic elevation and geoid
undulation.

The above relations are adequate if all three coordinate parameters (c/>, A, and h)
of the point to be transformed are perfectly known. However, it often happens that
only the elevation of a point will be known or only the latitude and/or longitude will
be known. To handle this situation either the function constraint or the weight con­
straint may be employed. The function constraint is represented by the "geodetic
restraint" (Dodge, 1959) and the weight constraint by the concept of the "relaxed
absolute" control point or geoid constraint (Brown, 1959).

In the geodetic restraint method a number of different constraints are employed
depending upon which elements of the geographic coordinates of a point are known.
For example, if the point is known in longitude only, it is constrained to lie in the
meridian plane

X sin A + Y cos A = 0 (27)

Then, following the procedures outlined in equations (17) through (19), the geo­
centric-coordinates of the point are

XO = XO = F L(4)0, A, hO)

yo = - XO tan A (28)
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oX = oX

oY = - tanMX

oZ = oZ

(29)

which may be substituted into the condition equations (5).
Should a point be known only in latitude, the point is constrained to lie on the

cone

(
z + e2N sin 4»2

X2 + p - = O.
tan 4>

Then the geocentric coordinates of the point arc

XO = x o

Yo = yo

Zo = V(XO)2 + (YO)2 tan 4> - eW sin 4>

and the differentials are

oX = oX

oY = oY

XOoX + YOoY
oZ = tan 4>.

V(XO)2 + (YO)2

(30)

(31)

(32)

In the same manner, if both the latitude and longitude of a point are known, the
point is constrained to lie on the intersection of the meridian plane and the prime
vertical plane, while if only the elevation of a point is known, the point is constrained
to lie on a spheroidal surface (or, for small areas, a spherical surface) parallel to and at
a distance h from the reference ellipsoid.

A considerably different approach is taken in the concept of the "relaxed abso­
lute" control point. Here, the element or elements of the geographic coordinates which
are known will have as realistic a standard deviation as possible associated with them,
while the unknown elements will have standard deviations sufficiently large to weight
them out of the solution. Approximate geocentric coordinates are then computed by
using both known and approximate geographic coordinates in equations (26). These
values, along with the standard deviations transformed to weights (equations (23),
(24) and (21)), are then entered in the normal equations (22). Finally, equation (25)
is used to obtain the adjusted standard deviations of the geographic coordinates.

CAMERA STATION CONSTRAINTS

The geodetic constraint offered examples of both the functional constraint and the
weight constraint as employed in transforming correlated parameters from one coo.
ordinate system to another but without reducing the number of parameters. The re­
maining constraints to be described in this paper offer techniques for reducing the
number of unknown parameters and, usually, of increasing the strength of the solu­
tion. Since the weight constraint can be applied to any parameter, including the func­
tional parameters, as exemplified in the geodetic constraint, no further examples of
the weight constraint will be given.

Flying Height and Heading Constraints

The flying height and heading constraints are particularly applicable to the prob­
lem of aerial triangulation in areas where there is little or no ground control and it
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would not be feasible to obtain extremely high accuracy. Thus, assumptions can be
made concerning flight characteristics which are within the expected accuracy of the
triangulation. These assumptions are that the aircraft is flying at a constant, though
unknown, altitude and that the aircraft maintains a constant, though unknown,
heading. In order to simplify the formulation, a plane-coordinate system (X, Y, h) is
employed in the projective equations where X is directed east, Y is directed north,
and h is the flying height above sea level. Then, by applying the geodetic COll­

straints, the flying height and heading constraints can be transformed into the geo­
centric-coordinate system.

Based on the assumptions of a constant flying height and heading and utilizing
the concepts of equations (12) through (16), the coordinates of the camera stations
are

and the differentials are

(X/)O = (X1e)O + di
Osin aO

(Y/)O = (Y1c)O + di
Ocos aO

(h/)O = (he)O

(33)

(34)

oX;" = OXIc + di Ocos aOoa + sin aOodi

OY;" = oYle - di Osin aOoa + cosaood i

oh." = ohe

where Xl' and YI" are the coordinates of the first camera station, d i is the distance
from the first to the ith camera station, and a is the heading or azimuth of the
flight-line measured clockwise from north.

If the coordinates of each camera station had been considered unknown, there
would have been 3n unknowns for n camera stations. By utilizing the altitude and
heading constraints, the number of unknowns is reduced to n+4. This represents a
considerable reduction in the size of the normal equation matrix which requires inver­
SIOn.

Orbital Constraints

Duane Brown (1960) has suggested that for photography taken from an orbiting
satellite the camera station can be considered constrained to an orbit. If one consid­
ers that for short strips (a few thousand miles in length) the perturbations of the
orbit may be ignored, the positions of the constrained camera stations will be a func­
tion of the six Keplerian orbital parameters, a, e, i, w, 0, T, and of the time of exposure,
t i . The orbital parameters are defined by Kepler's equation

E - e sin E = (ti - T)ja312 (35)

in which

E is the eccentric anomaly, which is solved for as a function of
e, the eccentricity of the orbit,
a, the semi-major axis of the orbit,
T, the time of perigee passage, and
t i , the time of exposure.

The additional elements required to transform the orbit positions to the geocentric
coordinate-system are

0, the right ascension of the ascending node,
w, the argument of perigee, and
i, the inclination of the orbital plane.
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If the position parameters of the camera station and the partials of the position
parameters are determined as functions of the orbital parameters, the geocentric
coordinates of the camera station are

(x/)O = FI(aO, eO, ivo, w O, QO, TO; tJ
( V .c)°= F.,(aO eO iO W O QO TO. t·)

1. _"" Ii, ,t

and the differentials are

(36)

ax;" ax;"
oX;c = -- oa + -- oe +

aa ae
av;c av;"

ov/ = -- oa + -- oe +
aa ae

az;" az;c
oZ/ = -- oa + -- oe +aa ae

aV;"
+--OT

aT
az;"

+--OT
aT

(37)

Thus, if the time of each exposure is known, the determination of the 3n unknown
coordinates of the camera stations may be replaced by the determination of the six
orbital parameters.

Inner-Orientation Constraints

The projective equations (1) allow one to consider the inner orientation param­
eters x Pi ' YPi' andf; as unknowns for each camera station. In the case of missile photo­
grammetry and flare triangulation, this concept is often adopted since a different
camera is employed at each camera station and a star background on the photographs
allows for an accurate calibration of the cameras. On the other hand, in conventional
aerial photography a single, precalibrated camera is usually employed for obtaining
all photography on a mission. Thus, the inner orientation elements are treated as
known. Photography taken from an orbiting satellite presen ts still a third possibility.
Here it may be impossible to maintain the camera calibration through the launching
and recovery of the camera. Therefore, though the inner orientation parameters may
be considered as constants during a mission, they must be treated as unknowns. Based
on this assumption that the parameters are constant, the inner orientation parameters
become

and the differentials are

(XpJO = xpo

(Yp)O = ypo

f;o = jO

0YPi = oyP

of; = of

(38)

(39)

Other Camera-Station Constraints

Normally, the use of stellar or solar photography would be considered in the
same manner as missile photography or flare triangulation. That is, the stars or sun
would be treated as known object-space points at an infinite distance and employed
directly in the projective equations. However, in aerial triangulation where, in addi-
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tion to the mapping camera, a stellar camera may have been employed to obtain ori­
entation information, the orientation of the mapping camera with respect to the
stellar camera may be unknown though it remains constant. Thus, the unknown
parameters of orientation between the two cameras may logically be carried as con­
straints in the solution of the aerial triangulation. In the same manner, it should be
possible to devise many more constraints on the various camera station parameters.

OBJECT-SPACE CONSTRAINTS

The object-space constraints are applied in the same manner as the camera-station
constraints except that the object-space points are constrained instead of the camera
stations. Some examples of object-space constraints follow.

H orizon- Constraints

Occasionally it may be desirable to determine the orientation parameters of in­
dividual oblique photographs, or even to carry out a complete aerial triangulation
of trimetrogon or of other photography which includes photographs of the horizon.
The utilization of horizon constraints is applicable in these instances, particularly
when there is a lack of known ground-control points. The horizon constraint makes
use of the condition that points on the horizon, as viewed from the camera station,
lie on a cone which is tangent to the surface of the Earth and has its apex at the
camera station and that all the horizon points are equidistant from the camera sta­
tion. (This condition does not account for irregularities in the Earth's surface or that
the horizon points lie above sea level. However, in lieu of sufficient ground-control,
this condition will be a valuable constraint.)

As an example of the horizon constraint, the orientation parameters of a single
oblique photograph of known flying height, h, will be determined. A geocentric co­
ordinate-system is chosen such that the Z axis passes through the camera station.
The coordinates of the camera station then become

Xc = 0

ye = 0

Ze = R + h

(40)

in which R is the radius of the earth (for the expected accuracy of the solution, a mean
value of the radius can probably be used). The coordinates of points on the horizon, as
determined from the aforementioned conditions, are

(X/,)O = (X/,)O

(41)

and the differentials are

oX/I = oX/,

oY/, = - [ R2 oX/,
'/R2 1- ]11 (R + h)2

oZ/' = 0

(42)
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Thus, three horizon points are sufficient to determine the three orientation parame­
ters of the camera station. By a similar formulation, the horizon constraints may be
applied to the problem of aerial triangulation.

Other Object Space Constraints

Any set of object-space points which conforms to a geometrical pattern may be
constrained to that pattern. For example, if a number of points lie along a shore line
(or on a very flat plane) they may all be constrained to lie at the same, though un­
known, elevation. In a similar fashion, if object-space points lie along straight high­
ways, railroads, or utility lines, they could be constrained to lie on a straight line. The
formulation would be the same as that for the flying height and heading constraints as
applied to the camera stations (equations (33) and (34)).

The geometrical constraints can be extremely useful in terrestrial photogram­
metry, particularly in architectural and engineering work where the object photo­
graphed will almost invariably conform to a geometrical pattern. A paper by Borchers
(1960) gives some idea of the constraints available in architecture which, though
applied in analog fashion in a stereoplotter, are equally applicable to the analytical
solution. Possibly the simplest way to utilize this type of constraint is to make the
object-space coordinate system a part of the geometrical pattern. For example, the
base of one corner of a rectangular building could be the origin, the Z axis could be
directed vertically upward along that corner, and the X and Yaxes could be directed
along the base of the building on the two sides. A single known dimension on one sur­
face of the building or the distance from the camera station to the building would be
sufficient to give scale.

CONCLUSIONS

The utilization of constraints represents a powerful tool in the solution of prob­
lems in analytical photogrammetry. The weight constraint allows for every parameter
in the projective equations to be assigned weights corresponding to the accuracy of
the original observations or approximations, thus assuring that errors will not build
up through the solution of analytical problems. In addition, use of the weight con­
straint makes possible the transformation from one system of correlated parameters
to another when one or more of the parameters of the initial system is unknown. On
the other hand, the geometric or functional constraints not only allow one to take
advantage of the geometric patterns or paths to which the camera station or object
space points may conform but also may lead to a considerable reduction in the number
of unknown parameters which must be determined.
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