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Calibration of a Precision Coordinate
Comparator*
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(Abstract is on next page)

SECTION |:—INTRODUCTION

THE comparator is a precision coordinate measuring instrument which has been
manufactured and adjusted to meet a particular level of accuracy when used in
accordance with the manufacturer’s specifications. However, by proper calibration
it 1s possible to achieve additional accuracy in the measurements. The calibration
procedure consists of determining an appropriate error model to describe the sys-
tematic errors of the comparator. The correction is then performed by operating
on the observations with the correction equations obtained from the computed error
model. Since calibration is not entirely a stable condition, it is necessary that re-
calibration be performed at periodic intervals. In the meantime a comparator evalu-
ation will determine whether significant changes in accuracy have taken place.
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A coordinate measuring comparator, especially one of the precision lead-screw
type, is affected by several types of systematic errors. These include: periodic screw-
error, scale-error and secular screw-error, curvature and weave of the ways, and
nonperpendicularity of the axes.

SecTION 1]:—PERIODIC SCREW-ERROR

Periodic screw-error is considered as the error associated with one complete
revolution of the screw. These errors are also described by Bennett [1]. The method
to be discussed was developed by Brown at Air Force Missile Test Center (AFMTC)
[2], although it is fundamentally similar to that described by Bennett. However,
Bennett concludes with a graphical evaluation of the periodic error. While this analysis
has the purpose of both evaluating and calibrating the periodic error to achieve an
increase in accuracy, it should be pointed out that an error model can be fitted to the
data obtained in the method of Bennett, and thus be used for calibration purposes.

ABSTRACT: The procedures for calibrating a screw-type, precision coordinate
comparator are described. The errors to be calibrated are: periodic screw-error,
scale-error and secular screw-error, curvature and weave of the ways, and non-
perpendicularity of the axes. Periodic error is calibrated using a 2 mm. scale
graduated into 0.1 mm. increments. The calibration model is formed by a least
squares sine wave fit. Scale-error and secular screw-error are calibrated using
a 240 mm. calibrated scale graduated inlo I mm. increments. The calibration
model is formed by a least squares polynomial fit and a harmonic analysis.
Curvature and weave of the ways are calibrated using « line divided into pre-
ciston equal increments. The calibration model is formed using the principle of
inversion, and a linear least square function fit and harmonic analysis. Non-
perpendicularity of the axes is calibrated wusing non-calibrated points on
plate. The calibration model is formed using the principle of inversion.

The calibration is performed for the individual corrections. The total correc-
tion 1s obtained by the cumulative summation of the individual corrections.

The periodic screw-error can be determined with the use of a graduated scale.
It is not necessary that the scale be calibrated. The scale used at AFMTC is a 2
mm. scale graduated to 0.1 mm. Also available is a micrometer jig which will trans-
late the scale a measured distance along its axis. The procedure is to make linear
observations with the comparator on the scale graduations and to record the values.
The scale is then moved 0.50 mm. with the jig and the set of observations repeated.

It is, of course, necessary that the observations be made with sufficient precision
to make the calibration valid. A minimum of two sets of observations in each position
is therefore necessary in order to establish this precision. Each set must be corrected
for temperature fluctuations. The setting standard deviation is computed from the
repeated readings and must not be greater than 0.5 microns. An average value for
the observation is determined from the repeated readings.

An error model in the form of a sine-wave is then fitted to the averaged values of
the observations. The sine-wave is described by the equation:

ox; = asin (u + b), (2.1)
in which
u = 27A, (2.2)

where A is the incremental comparator measurement deviating from the full mm.
value.
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The a coefficient represents the amplitude of the periodic error function and the b
coefficient locates the origin of the sine-curve with reference to the full mm. gradua-
tion.

The description of the data handling and of the least squares adjustment as
developed by Brown is given in Appendix A.

A satisfactory calibration has been achieved when the variance of the residuals
from the adjustment is not significantly different from the standard error of the mean
for the replicated readings. An [/ test may be used to establish the validity of the
calibration.

The periodic-error may change slightly at different portions of the screw. Thus,
it is advisable to evaluate and calibrate the periodic-error at several different places
along the screw. An average value of the several calibrations can be used as the final-
error model.

Similarly for the second comparator screw, the periodic-error function is com-
puted by:

6y, = a’ sin (' + b'). (2.3)

SECTION [IT:+—ScALE ERROR AND SECULAR SCREW ERROR

Scale-error and secular screw-error are caused by variations in the pitch of the
screw. These errors are also described by Bennett [1] as absolute cumulative error
and as relative cumulative error. Scale or “‘absolute cumulative error is the difference
between the true length of an object at standard temperature and its apparent
length at the same temperature.” Secular or relative cumulative error is ‘‘the differ-
ence between the apparent length of an object measured on the comparator screw
and the apparent length of the same object measured on a perfectly uniform screw
having a constant pitch.” The method to be discussed is fundamentally similar to
that described by Bennett. However, Bennett concludes with a graphical evaluation
of the screw-errors, while this dI’lclIYSIS has the purpose of both evaluating and cali-
brating the screw-errors to achieve an increase in accuracy. It should be pointed out
that an error model can be developed for the data obtained in the method of Bennett,
and thus used for calibration purposes.

Scale-error and secular screw-error can be determined with the use of a cali-
brated scale. For a 240 mm. screw, it is necessary to have a 240 mm. scale. The scale
should be graduated at 1 mm. intervals and the graduation values recorded to 0.1
microns. The scale should be calibrated to have a standard error of not more than
0.3 microns. The scale is approximately aligned with the axis of the screw to be
calibrated. Linear observations are made with the comparator on the scale gradua-
tions and the values recorded. The deviations of the comparator values from the
calibrated scale for equal 1 mm. intervals are obtained by the expression:

e=S+06—M, (3.1)
in which

S=the equal 1 mm. increment,
6= the calibrated scale deviation,
M = the comparator value.

It is, of course, necessary that the e; values be obtained with sufficient precision
to make the calibration valid. A minimum of two sets of observations is therefore
necessary in order to establish this precision. Each set must be corrected for tempera-
ture fluctuations. The setting standard deviation is computed from the repeated read-
ings and must not be greater than 0.5 microns. An average value of ¢; is determined
from these readings.
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The e; values are a function of 1) the scale-error of the comparator and 2) the
secular screw-errors of the comparator. Analysis of these errors may be handled by
any of several techniques. A suggested method is to first fit a polynomial in the form:

6172 = do + % + a.g.fﬁ’ + (13&@3, (32)
in which
F =% — %o, (3.3)

where x is the equal 1 mm. interval and xq is the origin of the calibration to the set
of data. The constant term represents the displacement of the data at the origin;
the linear coefficient represents the scale-error of the screw; and the higher order
coefficients represent the long period secular errors. The residuals from this fit will be
a function of the higher order harmonics of the secular screw-error. These n higher
order harmonics may be evaluated from the residuals by a harmonic analysis [3] in
the form:

n n—1
dus = Ao+ 2, Agsin k&’ + D By cos k. (3.4)
k=1 k=1

The Ay, By coefficients which are significant represent the harmonics which are
causing the remaining secular screw-errors, and

A satisfactory calibration has been achieved when the variance of the residuals
from the harmonic analysis is not significantly different from the combined variance
of the scale calibration and the standard error of the mean for the repeated readings.
The combined variance is obtained by:

o = [e.2 + 0,2 (3.6)

An F test may be used to establish the validity of the calibration.
Similarly for the second comparator screw, the displacement, the scale-error,
and long period secular-errors, are computed by:

oy: = ad’ + &'y + a)'9* + a)'3? 3.7)
in which
y=3 = Yo (3.8)

where y is the equal 1 mm. interval and y, is the origin of the calibration. The n
higher order harmonics of the secular screw-errors may be evaluated from the
residuals by the harmonic analysis:

n—1

dys = Ay + 2 A sin ki + > B cos k', (3.9)

k=1 k=1

in which

sl i

j' = — 9. (3.10)
n

SECTION 1V+—CURVATURE AND WEAVE OF THE WAYS

Curvature and weave of the ways is the deviation of the motion of the comparator
stage from a straight line. Curvature and weave in a comparator way causes measur-
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ing error in the coordinate direction perpendicular to that way. Curvature and weave
of the ways can be determined with a scribed straight line graduated at precision
equal intervals. A specially scribed scale or the central line of a grid may be used.
The line itself does not have to be calibrated since the principle of inversion is used
in the error determination. Since the line is scribed on only one surface it is necessary
to mount the line in contact with a similar unscribed glass (strip or plate) of the
same thickness. All the glass used should be plane-parallel. This will allow the line
to be returned to the same horizontal plane after inverting, and prevent any major
refocusing of the miscroscope.

The line to be measured is aligned with the axis of the comparator way under
investigation, and the perpendicular coordinate is measured at each equally-spaced
graduation mark. The linear and perpendicular coordinate of the central point on
the line are recorded. The plate is then inverted about the axis of the line and returned
to its original position on the comparator. It is possible to return the central point
on the line to within several microns of its original position. The line is again aligned
with the axis of the comparator and the observations repeated.

It is, of course, necessary that the observations be made with sufficient precision
to make the calibration valid. A minimum of two sets of observations in each position
is therefore necessary in order to establish this precision. Each set must be cor-
rected for temperature fluctuations. The setting standard deviation is computed
from the replicated readings and must not be greater than 0.5 microns. An average
value for the observations is determined from such readings.

An average value for the perpendicular coordinate at each graduation mark
along the line is computed from the direct and inverted sets of observations. This
set of average values represents an ideal straight theoretical line which is displaced
from, and at an angle to, the comparator axis under investigation. A linear poly-
nomial in the form:

,VI = gy + aix, ('1'-1)

in which
X =x— X (4-2)

where x is the equal 1 mm. interval and x, is the origin of the calibration, is fit to the
set of data. The constant term represents the displacement of the line from the axis
at the origin, and the linear coefficient represents the slope of the line with the axis.
The residuals from this fit will be a function of the curvature and weave of the com-
parator way.

The n harmonics of curvature and weave of the comparator way may now be
evaluated from the residuals by a harmonic analysis [3] in the form

n—1

dys = Ay + D Apsin ki’ 4+ Y By cos k¥, (4.3)
k=1 k=1
in which
m
& =—z (4.4)
n

The Ay, By coefficients which are significant represent the harmonics which are
causing the curvature and weave errors.

A satisfactory calibration has been achieved when the variance of the residuals
from the harmonic analysis is not significantly different from the standard error of
the mean for the replicated readings. An I test may be used to establish the validity
of the calibration.
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Similarly for the second comparator way, the displacement and slope of the ideal
straight theoretical line are computed by:

ol

¥ = a) + a5, (4.5)
in which

)‘t = y — ;\'()v (4.6)
where y is the equal 1 mm. interval and vy, is the origin of the calibration, and the

n harmonics of curvature and weave evaluated from the residuals by the harmonic
analysis:

n n—1
5.\'4 =4 0/ + Z rlkl sin k'\_” + Z Bk, COs k)_',, (47)
k=1 k=1
in which
m
§=—3. (4.8)
n
]
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F1G. 1. Relation Between Comparator Coordinates x, y, and
Rectangular Coordinates x', v’ (after Zug).

SECTION V:—NONPERPENDICULARITY OF THE AXES

Nonperpendicularity of the comparator axes may be represented by the cor-
rection angle € through which the secondary guide way must be rotated to be perpen-
dicular to the principal guide way. Figure 1 illustrates the geometry of the coordinate
comparator.

Determination of the nonperpendicularity error may be performed by any of
several methods. One method presented by Zug [4] is based upon the principal of
inversion of the plate about its axis parallel to the comparator primary axis. Another
method is based upon using a precision or calibrated grid or graduated circle. In
the former method the nonperpendicularity calibration is dependent upon the reading
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F16. 2. Comparator Measures for Determination of e (after Zug).

error. In the latter method, it is dependent upon both the reading error and the ac-
curacy of the grid calibration.

The development presented below is based upon the method of inversion. It is
suggested that the observations be made on a grid plate.

Two widely separated points on the grid x-axis are selected as reference points.
A sufficient number of points on both sides of the grid x-axis are selected as the
data points. It is suggested that at least four points be used to give sufhcient re-
dundancy and strength to the solution. With the plate in the direct position, the
grid x-axis is approximately aligned with the comparator principal-axis and the
reference marks observed. The points 7 and k are identified and measured. The plate
is then inverted about its own x-axis, the plate again aligned, and the reference
marks observed. The points 7 and k are again measured. The measuring procedure
is illustrated in Figure 2.

It is, of course, necessary that the observations be made with sufficient precision
to make the calibration valid. A minimum of two sets of observations in each position
is therefore necessary in order to establish this precision. Each set must be corrected
for temperature fluctuations. The setting standard deviation is computed from the
repeated readings and must not be greater than 0.5 microns. An average value for
the observation is determined from these readings.

The average value of the observations in each position is corrected for the periodic
and systematic errors of the screw and of the comparator ways. The corrected values
are then rotated parallel to the comparator principal-axis, and centered at the com-
parator origin, by the equations:

_(E)L_ vr,;’Vl)(yL_,)'l> + (2.\',‘ == .l'r;.\'l)(xl'r j .\'l)

v/ = T — (5.1)
gt = P e = O — ) + Qs — & — @)y — )
. 2M
in which
M = [(% — x)* + (3, — y)?]'7 (5.2)

Determination of the nonperpendicularity error is performed using the observa-
tions as transformed into the comparator coordinate system. The development of
the condition equations for the method of plate inversion is taken freely from Zug [4].

The relationship between the measured comparator coordinates x’, ¥" and the
rectangular coordinates x’/, y” of the point P is shown from Figure 1 to be in the
form:

&' = 2" 4+ 9 sin ¢ v’ =y cos e (5.3)

After the comparator coordinates x, y for images 7 and k are measured, corrected,
and transformed, the rectangular coordinates x’’ for images 7 and k are given by
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the first of Equation (5.3) as:

7 ’ e
v;" = x) + 9./ sine
r ! 7 g , (5.4)
x = ' + v sine,
whence,
w' —a! = (" — /) + (n' — y/) sine (5.5)

It is obvious that the difference between the rectangular coordinates x”’ for image
1 and & will be unaltered by inversion of the plate. If the comparator coordinates in
the inverted position are denoted by x, vy, we may then write for the inverted position:

o — ! =@ —x)+ O — /) sine (5.6)

combining (5.5) and (5.6) there results as the expression for:

sin e = — ':(L_ - )—_ﬁLiSQ] (5.7)
' = ¥) — (' — /)

An averaging solution to compute the value, sin ¢, may be performed using re-
dundant data. It is suggested that four points equally distributed on the plate be
selected. Distribution of the points is shown in Figure 3. The selected points are to
be used in pairs, each pair of points giving rise to a condition equation. Since the

Fi16. 3. Suggested Distribution of Points.

A

solution becomes indeterminate when the pair of points is parallel to the principal
guide way, it is suggested that the following combinations be used:

1-3 23
1-4 24,

An intermediate solution is computed for each jth pair of points. An average
value is obtained from the intermediate solutions by:

4
Z sin €;
ine="" (5.8)
sine =—— 5.
4
The value for cos e may then be computed by:

cos € = [1 — sin? ¢]!/2 (5.9)

The standard deviations of the individual sin € about the average value is obtained
by the usual method. A satisfactory calibration has been achieved when the variance
is not significantly different from the standard error of the mean for the repeated
readings. An F test may be used to establish the validity of the calibration.

With the values for sin € and cos e computed, the corrections to the data points
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for the nonperpendicularity error may be computed from equation (5.3) by:
dx; = y sin e, dys = y(cos e — 1). (5.10)

SEcTION VI:—CORRECTION FOR COMPARATOR CALIBRATION

The total corrections for the entire comparator calibration are determined by
summing the individual corrections from each phase of the calibration. Thus:
o = 6.\'1 + 6.1"2 + B.L‘g + 5.\'4 + 6.\75,
8y = 8y + 6ye + 6ys + 6ys + Ovs. (6-1)

The individual corrections are obtained using the calibration error model and
the calibration coefficients determined independently for each error of the com-
parator, as follows:

Periodic Screw Error:

ox; = asin (u+b), (6.2)
oy, = a’ sin (u' +b'). (6.3)

in which
u = 2rA, (6.4)

where A is the incremental comparator measurement deviating from the full mm.
value; b, b’ are the origins of the calibrations with reference to the full millimeter
graduations; a, a” are the amplitudes.

Scale Error and Secular Screw Error:

0xs = ap + o1& + a8 + a;3d,

n n—1
ox3 = Ao+ D, A sin k% 4+ 2, By cos ki, (6.5)
k=1 k=1
in which
™
£ = x — X, F = —4, (6.6)
n

where «x is the measurement and x, is the origin of the calibration
The ai, A;, and B;, are the calibration coefficients.

8y, = ay’ + &' + a2’ 9% + ai'3?, (6.7)
oys = Ao + 'Z‘ Ay sin k¥ + nif B, cos ky'.
k=1 k=1
in which
F=y—m F=—3 (6.8)

where y is the measurement and y, is the origin of the calibration.
The a/, 4/, B/ are the calibration coefficients.
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Curvature and Weave of the Ways

n n—1
dxy = Ay + 2 A sinky + D By cos kY, (6.9)
k=1 k=1
n n—1
dys = Ao+ D Apsin k¥ + Y By cos ki (6.10)
k=1 k=1
in which
F=x—x, F=3—
™ T (6.11)
i==w §=—3
n n

where x, y, are the measurements and xq, ¥, are the origin of the calibrations.
The Ay, A, B, B/ are the calibration coefhicients.

Nonperpendicularity of the Axes:

dx5 = v sin g, (6.12)
0ys = y(cos e — 1). (6.13)
The values of the observations, corrected for comparator calibration are obtained
by:
' = x + ox,
y =y éy. (6.14)
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ApPPENDIX A
Prriopic ERROR STUDY

Prepared by IF. CoLLEN, Data Reduction Analyst, Optical
Systems Data Reduction, RCA Data Processing

In the development of the mathematics and the computation of lead screw
periodic error at the AFMTC, Brown considered only the simplest form of periodic-
error. In the ideal case, the periodic-error can be expressed in terms of one turn of
the lead-screw and in every complete rotation the characteristics of the error will be
the same. It was only logical, then, that Brown used the sine-curve to describe the
direction and magnitude of the error. To my knowledge Brown has not distributed
this work in published form:.

First, let & represent the true measurement and x, the measurement which in-
cludes the periodic error with amplitude a. Further, let # be a measure of the screw’s
rotation and let b locate the origin of the sine-curve with reference to the full mm
graduation. Brown recommends the following expression as one practical for evalua-
tion of the lead-screw, and convenient for correcting the readings which contain
periodic error:

&= x4 asin (u + b) (A1)
in which x is the full comparator measurements and:
u = 274, (A.2)

where A is the incremental comparator measurement deviation from the full mm
value.

In an effort to minimize scale-errors, the prescribed procedure is to first perform
the readings of the scale in an initial position and then repeat the readings in an
offset position in which the scale is moved 0.50 mm.

If we have several readings of the scale in the initial positions, these can be
written as:

X1 = &y + a sin (#; + b)
K12 = K12 + a sin (ng + b)
13 = X3 + asin (uyy + b)

Fin = %1, + a sin (#1, + ). (A.3)
The expressions for the readings in the offset position are similar:

g1 = X21 + @ sin (#2 + b)
F2a = 29 + a sin (92 + b)
Koy = x93 + a sin (ug3 + b)

Ton = X2, + a sin (#s, + ). (A.4)
Subtract the readings in the initial position from the corresponding readings in

171
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the offset position. These differences can be expressed as:
Fop — &1 = ¥ — &1+ asin (#s + 0) — asin (uy + b)
Fgp — F1g = ¥ep — X2 + @sin (usy + b) — asin (u12 + b)

Xog — X13 = Xog3 — X3 + asin (Mg;; + b) == asin (ul.’i + b)
To; — Xyi = X9; — X1; + asin (ue; + b) — asin (u1; + b)

Ton — X1n = X, — X1, + asin (s, + b) — asin (uy, + b).
The general Equation (A.5) may be rewritten as:
x/ = K; + a[sin (u2; + b) — sin (uy; + b)]
in which
K,

Il
P
]
&
|
2

Al s & =
Xy = X221 — Xi1i.

Trigonometric substitution leads to:
x' = K + a[cos b(sin us — sin u,) + sin b(cos #; — cos us)]
Equation (A.9) can be further reduced to:
& = K + A(sin uy — sin u;) + B(cos u; — cos us),
in which
A = a cos b, B = asin b.

Trigonometric substitution again leads to:

2 = K+ A[2 cos (us + uy) sin L (us — uy)]

— B2 sin 3(us + w)) sin 3(us — uy)].

(A5)

(A.6)

(A.7)
(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

Recalling that the displacement between the two sets of readings was specified

as 0.50 mm. it follows that:
uy — uy; = 180 degrees.

Therefore:
sin 3(#s — uy) = 1,
and Equation (A.12) simplifies to:
2 = K+ 24 cos 3(us + u1) — 2B sin L(uy, + uy).
One more step involving the above principle that:
uy = u; + 180°;
will simplify Equation (A.15) to the convenient form:

x' =K — 24 sin u — 2B cos u.

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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LEAST SQUARES SOLUTION

From the basic condition equation described above:
¥ = K — 24 sin u + 2B cos u, (A.18)

may be derived the following set of normal equations:

<N — > sinu; — 2 cosu; (K Dox
| Z sin? u; Z sin u; cos u;| |24 ~ = |— Z x; sin u;] . (A.19)
{ > cos?u; ) |2B) \— 2 «/ cos u)

Solution of the normal equations takes the form:
K) N — > sinu; — 2 cosu, ‘1I’ P4
24| = Dsin?u; Y sinucosu;| | — . af sinu; (A.20)

l2B Zcosgu; [—Zx/ CoSs u;

*

Finally,
a=+/A>+B% and b=tan"'B/A4 (A.21)
in the original form of the periodic error equation:
= x4 asin (u+ b), (A.22)
The correction equation for the periodic error then takes the form:
oxr = asin (u + b), (A.23)
in which
dx = (¥ — x). (A.24)

ERROR PROPAGATION

Brown utilizes the inverse of the normal equation coefficient matrix from the
least squares solution in the study of errors associated with the computation of the
coefficients K, 4 and B. The error bounds for the N points along the sine curve may
be computed by the equation:

N —Zsinm —Zcosui }“{ 1
—sin u;|, (A.25)

> cos®u, —COS ;]

*0:2 = 300*(1 — sinu, — cos u,) D osinu; . sinu, cos u;

in which

oy is the mean error of the residuals obtained in fitting the sine curve through
the empirical data.

Note: * represents a symmetric matrix.




