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ABSTRACT: This article deals with analytical triangulation of single photo-
graphic strips. The different steps (analytical relative orientation, computation
of the coordinates of the points in each model, assembly of the strip, and the
absolute orientation of the assembled strip) are dealt with in detail. The general
approach used by Mr. Schut of the National Research Council of Canada
is followed, with a different mathematical formulation of the problem. Simple
matrix operations are used, thus considerably facilitating the programming
task for electronic computations. A program has been made for triangulation
of single strips on IBM 650. The adjustment of photographic sirips and blocks
of strips is presently handled at the university of Illinois according to any of
the existing methods of adjustment.

ANALYTICAL Aerotriangulation could be defined as the process of control extension
by means of two-dimensional measurements on photographs. Several methods
and techniques are now in use for the solution of this problem. As could be expected,
each of these methods has its advantages and disadvantages. After a thorough study
of the different methods of analytical aerotriangulation, the general approach used in
the method originated by Mr. G. H. Schut of the National Research Council of
Canada was chosen. In Schut’s approach the condition of resection of corresponding
rays is used as a criterion. At the University of Illinois, a different mathematical
formulation of the problem has been used. Simple matrix operations are used, thus
facilitating considerably the programming task for electronic computations.

The present publication deals only with analytical triangulation of single strips.
The problem has been programmed for the IBM 650. The residuals in the linearized
condition equations were considered as random variables with equal weight. A
rigorous mean square solution for the relative and absolute orientation will be the
subject of another paper now being prepared.

As far as the adjustment of blocks of strips is concerned, this is being handled
at the University of Illinois using any of the existing methods of adjustment (e.g.
Zarzycki's method, Zeller's method of block adjustment, Karara's Cross Bases
Method etc.)

Analytical aerotriangulation of single strips involve the following sequence of
steps:

1. Obtaining the x and v coordinates of the different ground-control and pass-

points in the successive photographs.

2. Applying corrections to these coordinates to eliminate as much as possible the
errors due to lens distortion, film distortion (according to the method de-
scribed in entry 2 of the bibliography) and atmospheric refraction (according
to Leijonhufvud, See bibliography entry No. 8).

3. Analytical relative orientation of each two successive photographs.

4. Computation of the model coordinates of the points in each model.

* This paper summarizes research work supported by the National Science Foundation (NSF G
19749), Dr. H. M. Karara Principal Investigator.
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5. Assembly of the photographic strip.
6. Absolute orientation of the assembled strip (orthogonal transformation of
model coordinates into a chosen ground-coordinates system).
7. Strip and block adjustment.
Step 1 is considered self explanatory and is left out of the present presentation.
Step 7 has been explained above. In the following, steps 3 through 6 are dealt with in
detail:

1. ANALYTICAL RELATIVE ORIENTATION

Let O’ and 0" (see Figure 1) be two successive camera stations (projection-
centers), and choose any right-handed orthogonal coordinate system with origin at
O'. For any point I imaged in both pictures (¢ and "), let p/=(X/, Y/, Z/)"
be the vector from O to 7/, p/'+b= (X" +b,, V. +b,, Z/"+5.)T be the vector from
0’ to ", and b= (b, b,, b.)” be the vector from O’ to 0"'.

As we all know, relative orientation is accomplished when corresponding rays
(e.g. 0’ i’ and 0" 4'") intersect. A necessary and sufficient condition for such an in-
tersection is:

b by b,

%! v/ 2 =0 (1)
X"+b Y/'+b Z'"+0b
Equation (1) can be written as follows:
b. b, b
X/ v/ z/|=0 (2)
X v/ z/

Using the following notations:

b, b l b. b b. by
D;l == i2 > 1,3 =
v Z/ zZ! X! X/ v/
in conjunction with expanding Equation (2), we get:
X/ Di+ YD+ Z/D=0=F; 3)

where F;is a function of the elements of the lefthand side of the Equation (3).
The value of &/, ¢’ and ' of the left camera (0’), as well as b, could be assumed
to be any values. The object of the relative orientation is to compute the value of
k", ' and '’ of the right camera (0”) together with the base-components b, and b..
Using Taylor’s theorem to expand F; in equation (3) in terms of differential
changes in "/, @'/, w'’, b,, and b. we get:
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An equation similar to Equation (4) could be written for each point used in the rela-
tive orientation process (z point result then in # condition equations.) Such a set of
condition equations can be written in matrix notation as follows:

an:’f ASX] == LI:XI (5)

A least square estimate of the vector A is then obtained from the solution of the
following matrix equation:

A = (BT-B)'-BT"-L (6)
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The value obtained for the column vector A is used to obtain better values for "/,
" ", b, b.to start a new iteration process. The process continues until the ab-

solute value of each of the corrections to k”’, ¢’’, w’’, is less than a preassigned value e.
To obtain the coefficients of Equation (4), we make use of the following six

matrices:

cosk  sink O‘I ”cos¢> 0 — sin¢ 1 0 0
A, =| —sinkcosk 0}, Ay = 1 0 , A, =10 Cos @ Sinw
0 0 IJ Lsinqb 0 cos¢ 0 —sinw cosw
[ — sink cosk 0 — sin 0 —cos¢
dA, ) dA¢ [ ¢ —l
=| —cosk —sink 0 |,
dx dqb L J
L O 0 0 cos ¢ 0 —sing
0 0 0 ‘|
dA,
— =10 —sinw CoS w (7)
de J
LO — cosw — sin w

to arrive to the following basic matrices:

A= Ak -A; - A, (8.1)
0A dA, (8.2)
Ik dk .
0A dA,

i i, A (8.3)
o} do

0A dA,

——= = Ay Ay r— (8.4)
dw dw

where:
Matrix A is the well known matrix representing successive rotations w, ¢, and «

about the orthogonal axes X, V, and Z respectively, taking the X-axis, Y-axis
and Z-axis as primary, secondary and tertiary axes, respectively. Matrix A’ is
the matrix evaluated for the assumed rotations of camera O’. This is done once
during the solution of the orientation of camera O relative to camera 0.
The matrices
0A" oA A"

A, :;7, Py and :9»’—’
K ¢ w

are evaluated for the camera O and have to be evaluated for every iteration
cycle.
For every point 7 in the model, the plarimetric coordinates (x;/ and y/) in
the photograph (0’) and (x,” and y,;”’) in the - hctograph (0O”') are used to compute

the following vectors:

(X!, ¥!,Z)T=A"-q/ (9.1)
7 11 r INT — AN 2
(X, ¥, Z{")T = A" -qi (9.2)
(E)A\’,'” 3 }r{// aZ,”)T 9A" . (9 3)
—=, 3 p— -ql' .n
o’ "’ oK’ '’

B



202 PHOTOGRAMMETRIC ENGINEERING

ox/' oy azl'\ oA"
a¢// ? a¢// d ad)ll = a¢u "qi (9 4)
X/ v/ eoz/ dA" .
"’ ’ do'’ 2 A"’ = Y i (9 : 5)
where
q/ = &/, 9/, £ NT
and

qi’ = @, ", £ )T

The sign of f is taken Positive if negative transparancies are used, and Negative
if diapositives are used.
The elements of the 7th row of the matrix B in equation (5)

<6F¢ (')Fvi aFi ar; GFL>
- 6KN’ ad)//’ awlﬂ aby’ E)b,

and the ith row of the matrix L= — F,; could now be evaluated as follows:
oF; 9X/ ary oz’
= D+ -D? + -D;# (10.1)
K"’ K"’ ax”’ k"’
oF; 0. € av.,” az’
= —: Dt + * Pt -D# (10.2)
6¢>N a¢ ’ 3¢” 6¢//
oF; oX,” av;” az;"
= Dt + D + -D? (10.3)
awll awll awll awfl
aF; ) _
- .\ ,‘”'Z.L'I = ZT;/"X,', (10.4)
b,
dF; ;
= F's Xy = X' ¥ (10.5)
db.
— B8 — X Df — XDF— 2D (10.6)

Equations (10) thus represent the six coefficients of equation (4) for any point 1.

2. CompruTATION OF MODEL COORDINATES

Because of the errors in the observed x and y coordintes of the image points, the
the vectors p;/ and p;” will, in general, not lie in one plane, and hence will not inter-
sect. The mid point of the line segment which represent the shortest distance between
the two vectors will be considered as the point of intersection.

The vector equation of the line segment joining any two points on the vectors
p. and p;” is as follows:

b+ up/" — Ap/ (11)

where u and N are variables to be determined.

The condition that this line segment be the shortest distance between the two
vectors is that it is perpendicular to both p;” and p;”’. This condition is expressed by
the following two equations:

(b + wp!" — Mp/)-pi =0 (12)




ANALYTICAL AEROTRIANGULATION 203

and
(b + wp” — Np) P! =0 (13)
Or, in other words: ‘
Ao/ pi — upi"-pi = b-pi (14) ‘
and
Ao/ -pi"" — wp!’-pi’ = b-pi’ (15)

Equations (14) and (15) are to be solved to get the values of u and \.
The vector from O’ to the mid point of the shortest distance between the two
vectors can be expressed as follows:

10w/ + wp!’ +b)

The components of this vector are the spatial coordinates of the point 7 under
consideration.
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3. ASSEMBLY OF THE STRIP

Cantilever assembly of the strip is done in the following fashion: k, ¢ and w of
the first picture are chosen to be equal to zero, and b, is assigned a convenient value
depending on the chosen approximate scale of the strip. The coordinates of all the
points in the first model are then determined. For the second model, the values of
the rotations of the camera O’ are taken equal to the rotations of the camera O in
the previous model. The value of b, is computed so that the elevation of a chosen set
of points in the common overlap area between the two models agree in the two
successive models.

4. ANALYTICAL ABSOLUTE ORIENTATION

After the strip has been triangulated and assembled, a set of ground-control
points is used to transform the strip coordinates of the points into the ground-
coordinate system. Since the first photograph of the strip is not absolutely oriented,
a three-dimensional orthogonal transformation is used in this step. As it is required
to determine SEVEN parameters of transformation (3 rotations k, ¢, w and four
constants N\, Uy, Vy and W), a minimum of SEVEN terrestrial coordinates are re-
quired for the solution (see Figure 2).

THREE-DIMENSIONAL ORTHOGONAL TRANSFORMATION

The transformation can be expressed in matrix notation as follows:
P;=)-p,+ P (16)
where
P.(U;, Vi W)Tis a 3 X1 vector whose components are the terrestrial coordinates
of the point 1.
pi=(u; v;, w7 is a 3 X1 vector whose components are the strip coordinates of
point 1.
Py=(Uy, Vo, Wy)T is a 3 X1 constant vector
A =a scale factor
A=a 3X3 orthogonal matrix as defined in equation (8.1)
If #n ground control points are available, # equations similar to Equation (16)
can be written. Subtracting the first equation, corresponding to point 1, from every
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subsequent equation (corresponding to points 2 through n), we get the following
matrix equation:

(P; — P)) = M-(p: — p)) i=23---,n (17)

For the sake of clarity of presentation of the solution, the control-points will be
considered to be given in full coordinates (U, V and W). The solution is still valid,
however, for the other cases where some of the ground-control points may not be
given in full coordinates (some points might be given in U and V only, others in
W only.)

Expanding Equation (17), using Taylor’'s Theorem, we get:

0A
(P; — P1 — M(p; — p1) =A(Pi—Pl)'A)\+>\T(Pi — p1)- Ak
K

oA 9A
43— (g = pi)-dp+ A—(pi—py)-do (18
1o} ow

A 0A O0A

where A, —y —— ——
dk  d¢p Ow

are defined in Equation (7) and are evaluated using \, k, ¢ and w as deduced from
the previous iteration. The approximate values for N and « to start the iteration proc-
ess can be evaluated from a two dimensional transformation of coordinates using any
two control points given in U and V. The approximate values of ¢ and w can be
chosen as zero.

Equations (18) can be briefly written in matrix notations as follows:

Bz(u~1)><4'A4><1 = L3(u—-1)><1 (19)
where A is the column vector of corrections, in other words:
A = (A\, Ak, Ag, Aw)T (20)

A least square estimate A of the correction vector A is then obtained from the
equations:

A = (BT-B)"'-BT-L (21)

Successive iteration cycles are performed until the absolute value of each of the
corrections Ak, A¢ and Aw is less than a pre-assigned value e.

After determining the final values of N\ and A, the value of Py is determined from
the equation:

Py = )\A-p1 — Py (22)

ACCURACY OF THE TRANSFORMATION:

A comparison between the transformed and the field-determined values of the
coordinates of the ground-control points gives an idea about the accuracy of the
transformation.

The following formula is generally used to estimate the accuracy (Mean Square
Error) of the transformed position of the set of ground-control points used in deter-
mining the transformation elements.

(AU-AU) + (AV-AV) + (AW -AW)
Bn—17)

m.s.e. p = (23)
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where
AU,;=U; (Given)—U,; (Computed)
AV;=V; (Given—V,; (Computed)
AW,;=W,; (Given) W; (Computed)
n=number of points used in the transformation (i.e., the number of points
common to the two coordinate systems).

REMARKS ON THE IBM 650 PROGRAM:

The above described problem has been programmed for the IBM 650. Due to
the limited storage capacity of this electronic computer, no attempt was made to
deal with the case of unequal weights of observations. The case of unequal weights
will be considered in a future program for analytical aerotriangulation. This, how-
ever, will be programmed for the IBM 7090 to be acquired in the immediate future
by the University of Illinois.

The solution of the analytical relative orientation generally requires three
iterations and can handle up to 21 points. The approximate time required for rela-
tive orientation using 9 points is about four minutes per model.

The absolute orientation also requires about three iterations and takes around
four minutes for the determination of the transformation constants.
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Ortho-Contour Photography

Kenzo Torsuai* and Mitsuvyost KUREYA

HE image produced by the usual method
Tof photography is inevitably perspective.
Its aspect is so similar to that which we ob-
serve visually that it can be said to be the
simplest for grasping the concept of the ob-
ject. In photogrammetry, however, great
efforts are expended in order to get an ortho-
projective diagram of contours of the object
from the perspective images. This is the func-
tion of most items of “mapping equipment.”
It would be quite convenient if the ortho-
projective image of the object itself, or even
better, the ortho-projective image of its con-

tours could be photographed directly. A
method which enables us to accomplish the
former process was invented by Cooke, and
reported by Prickett and Morris in 1950.!
This method necessitates the use of a on-
spherical lens large enough to cover the ob-
ject. Although they have ameliorated this de-
fect by the attempt to widen the area to be

! R. Prickett and M. Morris: The Orthocamera:
Orthogonal Photographic Scanning Camera. PHO-
TOGRAMMETRIC ENGINEERING, XVI (1950), pp.
823-830.

* Tokyo National Research-Institute of Cultural Properties, Ueno Park, Tokyo.




