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Finally from (8) obtain the direction

2.370 - 1.229
tan .p = ------

-0.231 - 1. 298
- 2.354

that is

.p = 113°01' north of east,

.p = N66°59'W

Thus there have been determined exposure point L(L"" L y , L z), tilt 8, and direc
tion of tilt <1>, as well as several other pieces of information such as P and N, given
only three ground locations, the picture, and the focal-length.

II. CONCLUSION

The PI mentioned in the Introduction studied this paper in great detail and is
now able to determine the exposure point, tilt, and direction of any photograph pre
sented to him, provided he knows the focal length and recognizes three ground
positions.
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ABSTRACT: A method is presented for expressing the total derivative of any
orientation matrix M as the sum of the products of M with three simple skew
symmetric matrices,. the order of multiplication and form of the matrix multi
pliers being dependent only on the form of the orientation matrix. Equations are
first developed in general form and the method is then illustrated by the differen
tiation of three types of orientation matrices in common use.

INTRODUCTION

I N SEVERAL recent papers on analytical photogrammetry l.2.3 reference has been
made to the linearized form of the projective equations of von Gruber.4 I t has

been stated that the linearization of these equations is accomplished by taking the
partial derivatives of the measured photo coordinates with respect to each unknown
variable. However, in most instances the derivation of these partials has been
omitted, and rightly so, because of the complexity of the derivatives with respect to
the elements of angular orientation. The reader, if he is so inclined, is then left the
tedious task of term-wise differentiation of the transformation matrix. When this
undertaking has been completed it is a careful worker indeed who has not committed
at least one small error.

It is the purpose of this paper to show how the partial derivatives of any orthog
onal transformation can be expressed as simple matrix products, thus reducing a
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time-consuming exercise in differential calculus to a systematic calculation in matrix
algebra. The method will first be developed for the general orthogonal transforma
tion and an example will then be given of its application to a specific photogram
metric system. Although this method is completely general, its application to some
of the photogrammetric transformations in common use requires additional explana
tion which, if included in the text, might cause confusion. A complete discussion of
these special cases is therefore presented in the appendix to this paper.

THE GENERAL ORTHOGONAL TRA TSFORMATlON

In the following discussion an orthogonal transformation will be restricted to
mean the transformation which expresses the Cartesian coordinates of a vector in
another Cartesian coordinate system having the same origin, while leaving the
length of the vector invarian t. More precisely

m.x'y

is an orthogonal transformation, if each element, mij, of the transformation matrix
is the cosine of the angle between the i'-axis and thej-axis for each i=x', y', z' and
j=x, y, z.

Every orthogonal transformation is either a rotation of axes or the product of a
rotation and a reflection of axes. Every rotation can be expressed as the product of
three planar rotations. The most elementary form of an orthogonal transformation is
a simple planar rotation.

PLANAR ROTATIONS

A planar rotation is a rotation of axes about a coordinate axis. Let NIi(a) be a
function of a defined to be the planar rotation, clockwise about the i-axis through an
angle a. Three such functions exist:

[~
0 L]cos a

-sm a cos a

['"' a 0 -,~n a]
o 1 (1)

sin a 0 cos a

[

COS a

Mz(a) = -s~n a

sma

cos a

o

(2)

:a (cos a) = - sin a= cos (a + ~)

The derivative of each of these functions with respect to a is obtained by replac
ing each element in the matrix by its derivative with respect to a. The derivatives

~ (sin a) = cos a= sin (a +~)
da 2
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suggest that each element of M i that is a trigonometric function would be replaced
by its derivative, if the rotation M i were increased by 7r/2. Hence the following rule
for forming the pre- (or post-) multiplier matrices:

Let Pi be defined to be the result of replacing by zero the ii-element of M i (7r/2).
The resulting three skew-symmetric matrices

[

0 0

P:r; = 0 0

o -1 ~] (3)

have the unique property

(4)

for each i. The coun terclockwise rotation corresponding to each M i is the transpose
of M,. An equation formed by replacing each matrix in question (4) by its transpose
would be correct, but since the P matrices are skew-symmetric, a simpler expression is

(5)

for each i. Hence the derivative of any planar rotation through any angle a can be
found by multiplication by one of the skew-symmetric matrices (3), provided the
direction of rotation is known.

M LTIPLE PLANAR ROTATIONS

As stated above every rotation can be expressed as the product of three planar
rotations. In fact the general orthogonal transformation (the product of a rotation
and a reflection of axes) can be expressed as the product of three planar rotations
with the axis reflection embodied in one of them. This kind of planar rotation, called
an improper rotation, in no way impairs the generality of the present discussion and
is therefore covered in the appendix.

Consider now the rotation matrix M which is the product of three planar rota
tions, assumed for convenience to be clockwise. If subscripts are again used to denote
the axis of rotation and a, b, c, the rotation angles, then

(6)

Since each planar rotation is a function of a discrete variable, the partial derivatives
of M are obtained by sequentially replacing a single term of the product by its deriva
tive. Hence, by Equation (4)

aM
-=
ab

aM

ac

(7)

(8)

(9)

If any of the above planar rotations were in the counterclockwise direction, it
would only be necessary to attach a minus sign to the right-hand side of the cor
responding derivative expression, as shown in the last section. The above equations,
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therefore, express the partial derivatives of any orthogonal transformation in terms
of simple matrix products.

The utility of Equations (7) and (9) is readily apparent, but in some cases it may
be inconvenient to precompute the product [Ai] [B i ]. This deficiency leads to the
development of the quasi-postmultiplier matrix Q. The Q matrix is so defined as to:
(1) remove the tertiary rotation from the triple product, (2) multiply the secondary
rotation by the appropriate P matrix, and (3) remultiply by the tertiary rotation.*
The Q matrix obviously must be defined in terms of a specific set of rotations, and
hence does not have the generality of the P matrix. Nonetheless, this matrix is easily
formed and can be valuable in numerical work.

For the general transformation (6) the Q matrix is

(10)

Equation (8) can now be rewritten as

(11)

and the total derivative of the transformation can now be written

(12)

Thus, the Qmatrix provides a means for expressing the total derivative of any orthog
onal transformation as the sum of products of the original matrix by simple matrix
multipliers.

ApPLICATION TO PHOTOGRAMMETRY

An orthogonal transformation that has received thorough treatment in photo
gram metric literature2 •5 is the orientation matrix consisting of sequential planar
rotations through roll, pitch, and yaw (w, ¢, and K). In the references cited this trans
formation is employed to go from ground coordinates to photograph and is defined by

[

m",:r; m:r;'1J m",z]
M == my,x my'JI m ll ,z

mz,x mz'y m z 1 z

[

COS K

= -s~n K

S1l1 K

cos K

o

-S~ll¢] [~

cos ¢ 0

o
cos w

-sinw

Si~ w]
cosw

(13)

This equation has the form

By Equation (10),

Q,~G
0

-,~nw] [~
0

-m~
0 L]cosw 0 cos w

S1l1 W cosw 1 0 -sinw cos w

~ [-,~nw
sinw

-,~,w]
(14)

0

cos w 0

* Qcould just as easily have been defined for use as a premultiplier.



712 PHOTOGRAMMETRIC ENGINEERING

and since each planar rotation is in the clockwise direction, the partial derivatives
with respect to the three rotation angles are given by

aM [ m.,. my,y m,'.]
[P.][M] -mx,x -mx'y -mx,z

aK
0 0 0

[-m.,. 'in w+ _. co, w mx,x sin w -m...co,w]aM
[M] [Qy]-- -my,y s~n w + my,. cos w my,x sin w -my,x cosw

ae/>
-m.,y sIn w + m.,. cos w m.,x sin w -m.,x cosw

(15)

(16)

aM
aw

-mx'. mx,y]
-mu'z my,y

-mz!z mz'y

(17)

These partials are in agreement with the expressions obtained by Harris, Tewinkel,
and Whitten 2 by term-wise differentiation.

SUMMARY AND CONCLUSIONS

Every orthogonal transformation, and therefore every photogrammetric orien ta
tion matrix, can be represen ted by a matrix triple product of the form

where Ai, B j , and Ck are planar rotations about the i, j, k-axes through angles a, b,
and c respectively. The total derivative of this transformation can be written as the
sum of matrix products by the equation

dM = ± [Pi][M]da ± [M][Qj]db ± [M][pddc

where

and Pi, Ph P k are simple skew-symmetric matrices defined by Equation (3). The
plus sign applies to the partial derivative of a clockwise planar rotation; the minus
sign, to a counterclockwise planar rotation. .

The differentiation of an orthogonal matrix is reduced by the method of matrix
multipliers to an exercise in matrix algebra. This method is completely rigorous and
general within the scope of orthogonal transformations. It provides the photogram
metrist with an efficient tool for analyzing coordinate transformations and permi ts
a simplified mathematical approach to a variety of photogrammetric problems.
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ApPENDIX

In many photogrammetric techniques, angles are so defined that one or more of
the planar rotations is through the complement or supplement of the angle of inter
est. A further complication arises from the inclusion of a reflection of axes in one or
more of the planar rotations. In working with an unfamiliar transformation one may
have difficulty in recognizing the direction of a particular planar rotation. This
Appendix is included, therefore, to provide a method for establishing whether a
given planar rotation is clockwise or counterclockwise, and to show how the general
technique for differentiating matrices can be applied to representative photogram
metric systems.

DETERMINATION OF THE DIRECTION OF A PLANAR ROTATION

Any clockwise planar rotation can be reduced to the form M i of Equation (1)
and any counterclockwise rotation can be reduced to the form M/ by one or more of
the following operations. These operations, when performed in the order given
(omitting any that do not apply), will transform any rotation, proper or improper,
into one of the forms M i or 1v[;'I'. It must be emphasized that these operations are
performed only to determine the direction of a given planar rotation and, hence, the
algebraic sign of its derivative. The skew-symmetric matrix then multiplies or is
multiplied by the original planar rotation and not the transformed rotation matrix.

1. If one element of the principal diagonal has a minus sign, change the alge
braic signs of either the row or column containing that element.

In this case the rotation can have either direction, depending on whether a row
or column is changed. However, if the signs of a row are changed, the indicated skew
symmetric matrix must be used as a post multiplier; if a column is changed, the indi
cated P matrix must premultiply the rotation. This dual polarity is characteristic of
an improper rotation, and is illustrated by the following example:

[-eO'a sin a °l 1-1
0 TO'" -Sill a

~]A z = sm a cos a
~J = l ~

1
~ lSi~ a

cos a

0 0 0 0

[ co, a
sm a ]-1 ° 0]

-s~n a cos a o 0 1 0

0 1 0 0 1

and

aA
- = - [A z][Pz] = [Pz] [A z]
aa

2. If two elements of the principal diagonal have minus signs, change the alge
braic signs of all elements of the cofactor of the ii-element, where i is the axis of
rotation.

Here the rotation is in reality through the angle (a+7I') or,

[-CO' a
sin a 0] [CO' a

-sin a

I~"
-Sin 71'

~]Az = -s~n a -cosa ~ = Si~ a
cos a o Sln7l' cos 71'

0 0 1 0 0

and

aA
- [A z][Pz] - [Pz] [A z]

aa
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3. If the elements on the principal diagonal are sines of the angle, exchange each
trigonometric function for its cofunction and change the algebraic signs of the off
diagonal elements.

In this case the rotation is through the angle (a+311"/2)

l
311" 311"

sm a cos a cos a -sma 0 cos- -sin- O
2 2

A z = 311" 311"
-cosa sin a sin a cos a 0 +sin- cos- O

1J
2 2

0 0 0 0 1 0 0 1

and

aA
- = - [A z][Pz] = - [Pz] [A z]
aa

If the rotation were through (a +11"/2) , both operations (2) and (3) would be required.
These three rules are sufficient to determine the direction of any planar rotation.

The foregoing principles of matrix differentiation can now be applied, without con
fusion, to transformations of the type described above. The differentiation of two
common photogrammetric transformations which illustrate these principles will now
be given without further explanation. A complete treatment of each transformation,
but not its differentiation, can be found in the literature cited.

TILT, SWING, AND AZIMUTH5

[

-sin a cos a

M = -~sa -s~na

[Az(a)] [By(t)] [Cz(s)]

~][ co;t ~ Si~ t][~~:: s

1 - sin t 0 cos t 0

COOs s O~]sin s

By rules (2) and (3) A z is clockwise; by rule (3) Cz is counterclockwise. Therefore,

and

aM

[

my,,,, my,y my,z]

[Pz] [M] = -m",'z -m",'y -m",'z

000

o
o

cos s

-sin s]
-cos s

o

[-m.,.'in, -m",'z cos s m.,. ,in, + m." co, ']aM
- [M] [Qy]

at
-my,z s~n s -my,z cos s my,,,, sin s + my,y cos s

-mz,z sIn s -mz'z cos s mz,,,, sin s + mz'y cos s

[m.,. -mx,z

~]
aM

- [M] [Pz] = my,y -my,x
as

mz'Y -mz,x
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AZIMUTH, ELEVATION ANGLE, AND AND ROLL3
,5

[-co'" sin K m° o l['''" -S111 a

~]M = Si~ K cos K -S111 W c~s WJ sin a cos a

0 COSW smw 0 0

[Az(K)] [B,,(w)] [Cz(a)]

715

By rule (1) A z must be clockwise if it is to be premultiplied, and by rules (1) and
(3) E" must be clockwise if it is to be postmultiplied. Hence,

and

o
o

-COSa

sin a]
cos a

o

aM [ m.,. my,y ~,.]
[Pz] [M]

= -:"'"
-mx'y -mx'z

aK
0 0

aM
[-m.,. ,in 0 -m,,'z cos a m.,. ,in 0+ m.,. CO'"]

[M] [Q,,] -my,z sin a -my,z cos a . ...L

aw
my,,, SIn a I my,y cos a

-mz'z SIn a -mz'z COS a mz,,, sin a + mz'y cos a

aM [m." -mx,x °l
aa

- [M][Pz] nzy,y -my,x

~Jmz'y -mz 1 z

Electronic Space Rods for Large Plotters*
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ABSTRACT: A servomechanism is described which automatically and continu
ously positions the illuminators for each of the projectors in a stereo plotter.
The position of the plotting table is sensed by means of a lighting system
located on the table platen which is monitored by photosensors associated with
the illuminators. In this manner the optical axis of the illuminators is continu
ously directed onto the center portion of the plotting table platen for all move
ments of the table. lVIechanical connections between the plotting table and the
illuminators are thus replaced by the "space rods" of light emanating from the
plotting table lights.

SEVERAL mechanical systems have been
used with direct projection plotters to

couple illuminator movements to the motion

of the tracing table. These mechanical cou
plings maintain the optic axes through the
lamps, condensers, and projection lenses of the

* Presented at March 24-30, 1963 ASP-ACSM Convention, Hotel Shoreham, Washington, D. C.


