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contribute to the uncertainty of this location. Because of this, and the difficulty of
statically determining when the c.g. is truly centered, displacements will certainly
occur. To further minimize these displacements, it appears mandatory that in-flight
film shifts must also be compensated to maintain a reasonable balance. From an
examination of the derived equation of motion (8) it is also evident that the longer
the isolator base, the smaller will be the rotation due to an unbalance. Structural
rigidity, however, must be maintained. This assumption has been made throughout
this discussion for both the camera and its mounting support.

It has also been assumed throughout this discussion that vibratory inputs to the
camera platform are purely translational. This is the only type data usually available
from airframe manufacturers. Aircraft structural flexure, however, must certainly
have some rotational modes of vibration of which very little information is known.

Of further importance in the evaluation of the use of vibration isolators as a
mounting method is the uniformity of each support. Identical isolators have been
assumed here. Unless the spring constants and damping factors of these isolators are
carefully matched to each other, additional rotation above that predicted by this
analysis can result.

Although other factors, such as atmospherics, aircraft roll and pitch, and image
motion exist which affect resolution, the discussion herein has been with reference to
those effects caused only by vibration. In particular, the effect of c.g. location on reso-
lution and the manner by which it may be evaluated has been outlined.
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ABSTRACT: Transformation equations of second and higher degrees are mainly
used to improve the fit on given control points by correcting for deformations in-
cidental to strips or blocks. The common practice that is almost always applied
at the present time is to perform the transformation for the horizontal position,
X and Y, separate from that for height, Z. The purpose of this paper is to briefly
present some of the equations currently used and then give a detailed development
of new equations that would allow the simultaneous adjustment of all three co-
ordinates, X, V, and Z, in one operation.

INTRODUCTION

TRANSFORMATION and adjustment of instrument coordinates to fit available
ground-control became a problem with the development of instrumental triangu-
lation on the first-order stereo-plotters. Owing to the absence of better techniques
and/or facilities, the early solution to the problem was in the form of graphical

* Presented at 1963 Semi-Annual Meeting and Professor Earl Church Memorial Meeting, The
Thousand Island Club, Wellesley Island, Alexandria Bay, N. Y., Sept. 23, 1963.
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methods supplemented by transformation computations on the desk calculator.!
However, with the advent of electronic computers, the practice slowly diverted from
the graphical methods to numerical solulutions. Consequently, different organiza-
tions published a variety of mathematical
formulations for the numerical adjust-
ment of instrument data on electronic
computers. (See references 2 to 5.)

The common characteristic of the ma-
jority of these methods is the separation
of the horizontal adjustment from that
for the heights. Principal reasons for this
practice are:

(1) ground-control is normally classi-
fied as horizontal and vertical-
control;

(2) analytical formulae are derived
from earlier graphical techniques
which followed the same practice;
and

(3) simultaneous three-dimensional
equations suitable for photogram-

Dr. Epwarp M. MIKHAIL metric adjustment are not avail-

able.

Therefore, no serious attempts were made to consider the simultaneous horizontal and
vertical adjustments.

The present programs of adjustment almost exclusively make use of polynomials
to account for different kinds of deformations incidental to strips or blocks. These
polynomials may be in the form of conformal or non-conformal transformation equa-
tions of second and higher degrees in the model coordinates. The following are
examples of such equations for horizontal and vertical adjustment:

horizontal adjustment:®

X =Ao+ Ax+ By + E(x* — y*) + F-2xy

Y = By— Bx+ Ay — F(a2 — y2) + E-2xy (1)
vertical adjustment:*
Z =2+ Gx*+ Hxz+ Ixy + Jy+ Ko + L (2)
where:
x, y, 2: are the model coordinates in the strip,
X, V, Z: are the ground coordinates,
Ao, A, - - -, L: the unknown coefficients of transformation.

Because of the separation between the horizontal and vertical adjustments there
are usually some requirements which the model coordinates must satisfy. For in-
stance, for the horizontal adjustment the strips must be approximately level in order
to ensure that the height differences have no appreciable effect on the plane coordi-
nates. For the vertical adjustment, the model coordinates must be in the so-called
axis-of-flight coordinate system and the model heights must be at the same scale of
the ground system.

Current methods of coordinate transformation and adjustment do perform the
task required especially with respect to instrument coordinates. One disadvantage of
this method is the need for two separate programs to transform and adjust data. Also,
present-day analytical methods of triangulation remove the restriction imposed by
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separate horizontal and vertical ground-control points. A simultaneous three-dimen-
sional transformation and adjustment of coordinates would furnish a more compact
and efficient method of dealing with the problem. In the following paragraphs, equa-
tions for a three-dimensional transformation of higher degrees are developed.

THREE-DIMENSIONAL TRANSFORMATION

The transformation equations of three-dimensions that are commonly known are
those of the first degree, given by:

X a1 aiz Qi3 kY Aq
V=5l an an ax y |+] Bo 3)
Z az1 Qz2 Qasz z Co

where:
s: a change of scale factor,
@11, A1z, + - ¢, @3 the nine elements of the orthogonal matrix of rotation,
(Aq, By, Cy): the vector of the three elements of translation.

It is obvious from Equation (3) that this kind of transformation accounts for a
shift of the origin parallel to the three axes, three rotations about the three axes, and
a change in scale. However, since this equation is linear in the coordinates, no allow-
ance can be made for the deformations common to the models represented by a strip
or a block and formed either instrumentally, or analytically. Therefore, the result
we are seeking now is to develop three-dimensional transformation equations of sec-
ond and higher degrees to account for such deformations.

Let us first consider the transformation equations that are conformal.

CONFORMAL THREE-DIMENSIONAL TRANSFORMATION OF HIGHER DEGREES

The three-dimensional transformation equations of the second degree can be writ-
ten in general form as follows:*

X = Ao+ Aix+ Aoy 4+ Asz + Ax® + Agy* + Aoz + Azxy + Asyz + Agzx
V= B() + le + Bgy + B;;Z + qug + B{,y2 + BGZ2 + B7.X’y + BgyZ + Bgzx
Z =Co+ Cix+ Coy + Ciz + Cax?® + Csy? + Cez> + Cixy + Csyz + Cozx (4)

In order that Equations (4) may represent conformal transformation, the following
condition must be satisfied:

[C9X 90X 09X
dx  dy 0z
Y aY aY .
—— —— —— | = orthogoral matrix (5)
dx  dy 0Oz
aZ 9z oZ
L dx dy 9z _|

Once the partial derivatives are performed and substituted in the matrix of (5),
the conditions of orthogonality can then be applied to obtain the relationships be-
tween the thirty coefficients of Equations (4) to make the transformation conformal.
However, since this derivative is quite complicated for second-degree and more so

* Second degree equations are considered only as an example, since Equations (4) can be easily
extended to include third, fourth and higher degree terms.
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for third and higher degree equations, it has not been attempted. Consequently, a
different approach is investigated next.

USE OF QUATERNIONS

Quaternion algebra can be used to develop the transformation equations sought,
in the same fashion the complex numbers are used to derive the two-dimensional
conformal Equations (1). A real quaternion is a hypercomplex number composed of
a quadruple of real numbers written in the definite order:

¢ = ay+ ai + asj + ask (6)

which shows that it is composed of the sum of a real number, @), and @ vector
(ari+asj+ask). The rules of addition, subtraction and multiplication by a scalar
for quaternions are the same as those applied in vector and matrix algebra. Multipli-
cation of quaternions, however, is performed in a manner similar to complex numbers
applying the following rules

1'2=j2=k2=—1
ij=—ji=k

jk=—kj=i

ki=—ik=j (7)

In applying quaternions to the problem at hand, one encounters the difficulty of
using a four-dimensional element (the quaternion) to obtain a three-dimensional rela-
tionship. To illustrate the use of quaternions, the following equation expresses the
conformal transformation between the four-dimensional systems (&, x, v, z) and
(H,X,Y, 2):

(H + X: + Yj + Zk) = (lln + ai + llzj + Gsk) + (bo + b + b‘.’j + bzk)
“(h 4+ xi + y7 + zk) + (co + cd + cof + c3k)
A ai by ekt A e s oo (8)

Equation (8) has two undetermined parameters 2 and /A which cannot be easily
interpreted in the present problem that encounters only transformation problems of
the third dimension. Therefore, in an attempt to adapt Equation (8) to our purpose,
the four-dimensional transformation system is projected onto a three-dimensional
system by enforcing the condition that

h=H=0 (9)
and hence Equation (8), after manipulating its right-hand side, becomes:
Xi+ Yj+ Zk = [ag — bix — boy — byz — co(a® + 2+ 22) + - - - |
+ [as 4+ box — byy + boz — (a2 + ¥+ 22) + - - - ]i
+ [ag—}- bsx + boy — b1z — co(x* + ¥+ 2% + - - - ]j
+ [as — box + by + boz — cs(x® + y2 + 22) + - - - |k (10)

Equating the coefficients of 1, j, and k, on both sides of Equation (10) and assembling
the results in matrix form, we get:

X b() —b3 b2 X C1 a1
14 by bo —bi ||l v |- @+ v+ )| |+ e (11)
Z —b2 bl bg Z C3 as.

I
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with the additional condition that
ap — b1x - bzy - b3Z - Co(x2 + y2 + Zz) =0 (12)

The result of this investigation shows clearly the following two disadvantages:

(a) Although the four-dimensional transformation of Equation (8) is in itself
conformal, when it is reduced to three-dimensional system it no longer
remains conformal as shown by the matrix of coefficients of Equation (11).

(b) The presence of an additional condition (Equation 12) with two more unde-
termined coefficients, a¢ and ¢y, poses a considerable complication on the
application of these equations, particularly when the method of least squares
is used in the solution.

It may seem, at this point, that the application of quaternion algebra is not very
useful. However, this mathematical technique still possesses an attractive advantage
of the great simplicity in manipulation as compared to the approach of partial
derivatives given above. Furthermore, this quaternion treatment casts a shadow of
doubt as to whether three-dimensional conformal transformations of second and
higher degrees even exist. This fact is left for future investigation to prove its definite
validity.

THREE-DIMENSIONAL TRANSFORMATION OF HIGHER DEGREES,
CONFORMAL IN THE THREE PROJECTION PLANES

If conformal transformation in two dimensions is defined as that which preserves
planar angles, the three-dimensional conformal transformation can physically be
defined as that which preserves solid angles. Since difficulty and complexity have
been encountered in developing conformal transformation, a new idea which yields
as nearly conformal transformation as possible, is introduced. The three-dimensional
model is transformed in such a manner that its projections on the three planes of the
system are transformed conformally. In other words, while the solid angles in the
model itself are not absolutely preserved in the transformation, the three projection
angles in the X-V, V-Z and Z-X planes are preserved. This condition is expressed by
the following relations as referred to the general Equations (4).

X 9V 9z

dx _6y— 0z

X oY
DT
v 4
F ™
9z 0X
s =

Applying the conditions given by (13) to Equations (4), we obtain the following
relations:

A1= B2= C3 =A
Ay = — B =B
Ay = —C =-C

By = —C, =D
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24, = — 245 = — 24 = B:= Cy=2E
A7 = 2By = — 2By = — 2B = (Cs=2F
4y = By = —2Cy = — 2C5 = 2C = 2G
As = By = Cy =0 (1h

Substituting the relations of (14) in the general Equations (4) we get the following
transformation equations:

X=Adog+ Ax+By—Cs+E( 2> —y*—z)+ 0 + 2Gzx+2Fxy + - - -
Y=By—Bx+ Ay + Dz + F(—x*+y*—2*) 4+ 2Gyz+ 0 +2Exy+ ---
Z=Co+Cax— Dy+ Az+ G(—x* — y*+ 2*) + 2Fyz2+ 2Fzx 4+ 0 + --- ()
which are the final form of the transformation equations sought.

APPLICATION AND CONCLUSION

Obviously, Equations (15) are not conformal and therefore should be used only
in cases where the rotation angles are small. This can easily be realized by the fact
that the three-dimensional linear conformal transformation Equation (3) normally
precedes the application of higher degree equations, to allow for large rotation angles.
Therefore, the scheme of the adjustment is simply composed of two steps:

(a) a simple linear transformation using Equation (3) to e'iminate large angles
between the two coordinate systems; and
(b) the final adjustment of the results obtained from (a) using Equations (15).

It should be emphasized that in order to obtain a high mathematical accuracy in the
computations, differences between coordinates, and not the coordinates themselves,
should be used in the solution.

The equations presented, to the best of my knowledge, are the first attempt for a
simultaneous three-dimensional transformation of higher degree. They were devel-
oped for almost an ideal situation of adjusting square sub-blocks by a relaxation pro-
cedure.®* However, the application of Equations (15) may not be limited to sub-
blocks and can be used for strip adjustment, either directly or after minor modifica-
tions. For example, when applied to strips, these equations allow for the correction
of : scale variation in the X-direction by the E-term, scale variation in the Y-direc-
tion and hence for X-azimuth by the F-term, and change of scale in the Z-coordinate
and therefore the X- and V-bends by the G-term.

In conclusion, it is hoped that the foregoing development may open a new direc-
tion in the adjustment of photogrammetric strips or blocks in which simultaneous
three-dimensional transformation is considered. The further development and/or
testing of the equations presented is therefore urged of those interested in the subject.
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