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ABstrRACT: The position and velocity of clouds or other objects moving through
the upper atmosphere are often determined from a study of simultaneous photo-
graphs taken from two or more observing stations against a darkened sky with a
background of stars. With correction for atmospheric refraction supplied by
tables, the star background is utilized to increase the accuracy of camera orien-
tation by correcting errors inherent in the camera system produced by: (1) film
shrinkage, (2) light refraction in the glass fiducial grid plate, and (3) tilt of the
camera with respect to the local horizontal. Techniques and empirical formulae
are developed for use in analytic data processing with o digital computer to the
order of a thousandth of a centimeter. The final procedure can produce angular
position determinations of 0.3 milliradian. A method for accurately determin-
ing camera focal lengths is also presented.

INTRODUCTION
GENERAL

THE general problem was that of determining the position (and time rate of change
of position) of artificial clouds injected into the upper atmosphere at approxi-
mately 100 km. altitude. To accomplish this, several observing stations were set up
approximately 100-200 km. apart and photographic data were taken. From these
data the cloud position at any time was determined by triangulation techniques. The
clouds were injected at times when the background sky was sufficiently dark that the
stars in the field of view were photographable with exposure times on the order of a
few seconds. This star background was used to determine the orientation in space of
each of the several cameras involved in a triangulation study.

The purpose of this work was to develop a system of correction procedures
designed to increase the accuracy with which camera orientation and object position
in space may be determined. These procedures are especially suited for use with the
K-24 camera system, but are also easily adaptable to other similar cameras.

THE K-24 CAMERA AND ITS FILM COORDINATE SYSTEM

The K-24 is a camera equipped with a multielement, 7 inch focal-length, {/2.5
lens. It has a quarter-inch glass plate near the focal plane on which a fiducial grid of
fine lines has been accurately ruled 1.270 cm. apart. During exposure, the film is
pressed against the rear surface of the fiducial plate, and a brief illumination records
the grid lines on the film.

This grid system recorded on the film forms a natural x-y coordinate system in
which measurements of the location of images on the film may be made. The center
grid cross, near the intersection of the optical axis and the plane of the film, is taken
as the origin of this system. Positive x and y are in the general directions of increasing
azimuth and elevation, respectively. The origin of this system is referred to as the
“center of frame.”
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TERRESTRIAL AND CELESTIAL COORDINATE SYSTEMS

From each of the observing stations the orientation of the cameras is determined
in the azimuth-elevation, or az-¢/, coordinate system. Azimuth is measured east from
north, and elevation is measured from the plane perpendicular to the earth radius
passing through the site.

The location of stars is known in the celestial coordinate system, illustrated sche-
matically in Figure 1. The right ascension, «, is measured eastward from 7, the
vernal equinox (also called the first point of Aries). The declination, 8, is measured
from the celestial equator.

The azimuth and elevation of a star from a given observation station are com-
pletely determined by knowing the right ascension and declination of the star, the
time, and the latitude and longitude of the observing station. With these quantities
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F1G. 2. Typical star image pair for determining
focal length.

Fi1G. 1. Coordinates on the celestial sphere.

known, the azimuth and elevation of a star can be found by transformation of
coordinates (Albritton et al., 1962). In the following work it will be assumed that all
of this information is known and that the necessary star azimuths and elevations have
been determined.

CAMERA FOCAL-LENGTH DETERMINATION FROM THE STARS

In order to utilize measurements of image position on the film, the focal-length of
the camera lens must be accurately known. The focal-length of a camera lens may be
determined from two star images appearing on the film. A typical pair of images, 4
and B, are shown in Figure 2. They are located at radial distances &, and R, from
the center of frame, O, and are separated from each other by a distance AR. Angle
AOB is called Q.

Figure 3 shows the same pair of stars (now labeled 4’ and B’) as they appear on
the az-el sphere. They form a spherical triangle 4'B’Z with the zenith. Sides ¢, and
¢y of this spherical triangle are the complements of the elevations of 4" and B’, respec-
tively. The difference in the azimuths of the two stars is angle A4. The sides of the
spherical triangle formed by the two stars and the projection of the center of frame
onto the az-el sphere are ¢, a, and b, as shown. Angle 4’0'B’ is called Q’.
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F16. 3. Star pair used to determine focal length
as they appear on the asz-el sphere.

From the spherical triangle 4’'B'Z:
cos (g) = cos (ca) cos () + sin (c,) sin (cs) cos (A4) (1)

Since all quantities on the right of (1) are known, cos (¢) is known. The angles ¢ and
b are given by

a = ARCTAN (R,/F) and b= ARCTAN (Ry/F), (2)
where F is the focal-length of the lens (yet to be determined).

Since the center of frame may be considered to be on the optical axis, and since
Q' is measured in a plane perpendicular to this axis

Q=0
Employing the law of cosines on the plane triangle 40B provides a relation for
cos (Q)
R.2 4+ Ry2 — (AR)?

cos (Q) = TR 3)

thus determining cos (Q) in terms of known quantities.
Applying the “law of cosines’ for spherical trigonometry to the spherical triangle
A’O'B’:

cos (q) = cos (a) cos (b) + sin (a) sin (b) cos (Q) (4)

By employing Equations (1) through (4) and simplifying, one arrives at the
relation

Vot (V2 — 4UW)

== 2U )
where
U=cos?(qg) —1 (6)
V = (R.2 4+ Ry?) cos? (¢) — 2R.Rs cos (Q) (7)
W = cos? (q) — cos? (Q)R.*Rs* (8)

Equation (5) gives two values for F because of the + in the relation. In practice
both positive and negative roots may be considered and the value of F with the
minimum deviation from the nominal focal length taken as the correct value.
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CORRECTIONS FOR THE K-24 or SIMILAR CAMERA SYSTEM
FILM SHRINKAGE

The film was found to shrink during the time between its exposure and analysis;
consequently, this shrinkage must be taken into consideration when measurements
taken from the film are used in calculations. Analytic correction is precluded because
the shrinkage is not consistent between successive exposures on the same roll of
film, nor does the shrinkage occur in any regular fashion over each individual expo-
sure.

The fiducial grid superimposed on each exposure, besides its primary purpose of
providing a film coordinate system, serves the secondary purpose of permitting the
film shrinkage to be calculated and correction made.

Image displacement is assessed by counting 1.270 cm. increments, the nominal
distance between fiducial grids, then measuring distances to the nearest fiducial lines
in both x and y directions. If the procedure is carried no further, the effects of shrink-
age will be confined to one fiducial square. Further reduction of the effects of film
shrinkage may be obtained by measuring the dimensions of the fiducial square in
which the image is located and by using a linear interpolation process to correct for
the image location within the fiducial square.

To check the accuracy of the spacing of the ruled lines on the plates several meas-
urements of their separation were made. The mean distance between fiducial lines
was found to be 1.2697 +0.0004 (rms) cm.

Several measurements of the film shrinkage between consecutive fiducial lines
showed a mean shrinkage of 0.003 cm., with a maximum of about 0.006 cm. and a
minimum of zero. For the K-24 camera system 0.001 cm. amounts to 0.055 milli-
radian, which corresponds to 8 meters at 150 km. range.

LIGHT REFRACTION IN THE FIDUCIAL PLATE

Although the glass fiducial plate allows for the elimination of errors caused by
film shrinkage, it introduces another error into the measurements taken from the
film: light refraction in the glass plate. Unlike film shrinkage, this error can be evalu-
ated analytically.

Figure 4 shows a light ray entering the camera with an angle of incidence 3
measured from the optical axis. If the plate were not present the ray would strike the
film (which is pressed against the back of the plate) a distance p from the optical
axis. Since the light ray is refracted in the plate, it actually strikes the film at a dis-
tance r from the optical axis. The angle of refraction is X, shown in the expanded view
of Figure 5, and ¢ =8 —N\. The focal-length, F, is the distance from the nodal point of
the lens to the rear of the fiducial plate, ¢ is the thickness of the glass plate, and # is
the index of refraction in the glass plate. The refraction correction, C, would be given
by C=p—r.

By Snell’s law

n sin (\) = sin (B) 9
From inspection of Figure 4
. P
Sin (B) = m (10)
tan (8) = p/F (11)
Substituting (9) into (10) yields
sin (\) = .. S (12)

n(p2 + F?)l/z
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F1G. 4. The path of a light ray through the camera. F16. 5. Expanded view of the path of the light
ray through the fiducial plate.

e O -

Noting that
r — ¢ tan (\)

g (8) (13)

and employing Equation (9) through (13), one can arrive at

ip 1
=t Ty ) -
where
J2 = ul __1 (15)
#niF?

Expanding the radical in (14) into a power series and making use of the method of
reversion of series (cf. CRC Standard Mathematical Tables) one gets a power series
expansion for p in terms of 7

p=Aw+ Ap*+ Ag®+ Ar" 4+ - - - (16)
where
as
Ar=1/a1 Ay = —— (17)
(1141
;'15 = (3033 — (1105) r/llllo <18)

A7 = (8(110305 — aila; — 12033)/0110 (19)
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{ 1
a=1-— *<1 — —> (20)
F n

and

12
az = 12 ‘*Jll (21)
Fn
3t
g = — —— J4 (22)
8 Fn
5
p = — —— —— JG (23)
16 I'n

The 4 coefficients depend only on #, ¢, and F. The index of refraction and thickness
for each glass plate may be measured and used separately. However, measurements
of n for several plates yielded a value of 1.524 indicating that this may be used as the
value for all plates. The thickness of the plates was found to vary by about 10 per
cent from plate to plate, so that separate plate thickness values are used. If the

F1G. 6. Actual and corrected location of \Yr
an image on the film. l .)’

~— X,

accurate focal-length has been determined by the method previously described, it
may be used in the formulas for determining the 4 coefficients. However, since these
formulas do not vary rapidly with F, if the focal-length is known to within about
+2 mm. (for the K-24, 7 inch lens) the A coefficients determined from such a value
will still be quite adequate. For example, if =6 cm., the refraction correction C
would be altered about one per cent for a 2 mm. change in the focal-length value used
in the calculations.

Figure 6 illustrates an image as it appears on the film and its corrected location,
at which it would appear if there were no plate refraction.

To find the corrected values of x and y(x, and y,) the relations

x./x = p/r and y./y = p/r
are used. Therefore
x, = x(p/7) (24)
and similarly,
yr = y(p/7) (25)
If Equation (16) is substituted into Equation (24) and (25)
w, = 2(Ay+ A+ Agrt + ApS 4+ - - -)
yr = y(A1+ Ag? + At + Aar®+ - - ) (26)
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Equations (26) are not exactly correct if the center of frame does not coincide with
the intersection of the optical axis and the plane of the film. If the displacement of
the center of frame from the optical axis is known, a new film coordinate system may
be set up with the origin on the optical axis, and the values of ¥ and y converted
into the new system by translation. Equations (26) would then be correct with the
values of x and y so altered. However, if the displacement of the center of frame from
the optical axis is of the order of 2 mm., as indicated in the K-24 instruction manual
(Vitro, 1954), the error caused by neglecting this coordinate translation is on the
order of 0.001 cm. for the K-24 system. This assumes that the only error introduced
by neglecting the translation is the error in evaluating the refraction C. That is, for a
deviation, &, of the center of frame from the optical axis C(»+6)— C(r) is about
0.002 cm. for §=2 mm.

Although no direct measurements of the deviation of the center of frame from
the optical axis have been made, tests have been made which show that no observable
systematic radial error is still present after the plate refraction corrections have been
applied, but without correcting for displacement of the center of frame from the opti-
cal axis.

Equations (26) may also be reduced in terms to give any desired degree of
accuracy. In fact, if the terms in »* and higher powers of » are neglected, giving the
simple formulas

ity

x(Al “I— Ang)
yr = y(A1+ Asr?) (27)

the corrected coordinates obtained from these formulas will be accurate to about
0.001 cm. at r=9 cm.

CAMERA TILT

Referring to Figure 3, it is apparent that a line O’Z, connecting the zenith with the
projection of the center of frame onto the az-e/ sphere, should correspond to the posi-
tive v axis when projected onto the film. However, due to several causes which are
either impossible or impractical to compensate for, this projection of O’Z may not
correspond to the y axis on the film. In such a case a new x’-y’ film coordinate sys-
tem, shown in Figure 7, could be formed by a rotation of the x-y coordinates through
an angle 6, so that the projection of O’Z would correspond to the y’ axis.

It is advantageous to know the angle 8, called the camera tilt angle, so that the
calculations of line of sight to the cloud or object being photographed may be carried
out in the x’-y’ coordinates. Note, however, that the camera tilt angle does not affect
calculations which depend only on the radial distance from the center of frame, such
as the fiducial plate refraction corrections and the focal-length calculations.

The camera tilt angle may be calculated by considering a pair of stars, 4 and B
shown in Figure 8, as their images appear on the film. The images of 4 and B are
located at radial distances R, and R, from the center of frame, O; they are separated
by a distance AR. Point M is the intersection of AR and the y’ axis. The angle be-
tween 4 M and the y’ axis is 7,4, and the angle between BM and the y’ axis is 7.

If the coordinates in the x-y system of stars 4 and B are x,, v, and x3, ¥, then
the x’-y’ coordinates of 4 and B are x,’, y,” and x’, ¥ given by

xd = %, cos (0) + y, sin (6)
xy’ = a3 cos (0) + ypsin (6)
!

Va' = ¥q cos (0) — x, sin (0)
v = vy cos () — xysin (0)
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F16. 7. The x’-y" axes and the camera tilt angle. F1G. 8. Star pair used to calculate camera tilt

angle, as they appear on the film.

Letting Ax'=x,"—x," and Ay’ =v,"— ' one has
Ax cos (6) + Ay sin (0)
Ay cos (0) — Ax sin (0)

Ax' =
Ay = (28)

where Ax =x,—x, and Ay=y,— .
The slope, y.’, of the line joining 4 and B on the film is Ay’/Ax" in the x'-y’
coordinates. Therefore, using the values of Ax” and Ay’ in (28), one obtains
. Aycos(f) — Awxsin (f)
> Ax cos (8) + Ay sin () ,

which, when solved for 0, yields

y.'[Ax cos (8) + Ay sin (6)] = Ay cos () — Awxsin (6)

I

sin (0)|Ax + Ay(y.))]

0

The slope y,’ is determined by the value

7

ARCTAN (

cos (0)[Ay — Ax(y.)]
Ay — Ay
Ax + Ay(yx/)

Relation (29) provides a determination of the camera tilt angle if y.” is known.
of the angles 5, or n, by the relations

(29)

ifa, <O v, = tan (9. — 7/2)
if x>0 v, = tan (/2 — 1) (30)
if a) <0 v, = tan (g — 7/2)
ifay >0 v, = tan (r/2 — D)

To determine the values of 7, and n, consider the stars 4 and B as seen on the
az-el sphere, shown in Figure 9 as 4’ and B’. The coelevations of 4’ and B’ are ¢,
and ¢,. The coelevation of the projection of the center of frame onto the az-el sphere,
0’, is ¢o. Point M’ and the sides ¢, @, and b of the spherical triangle 4’B’0" are the
projections onto the az-el sphere of M, AR, R,, and R, respectively, from Figure 8.
Several angles of the spherical triangles formed are also shown. Note that 7," and
m’ correspond to, but are not equal to, 1, and 7.

o



602 PHOTOGRAMMETRIC ENGINEERING

F16. 9. Star pair used to determine camera tilt angle, as they appear on the az-el sphere.

Considering the spherical triangle A’'B’Z, sides ¢, @, and b are given by formulas
(1) and (2), previously employed. The various angles shown in Figure 9 may be
solved for by spherical trigonometry.

From spherical triangle 4’B'Z

_cos (cy) — cos (¢) cos (c,)
98 ) = sin (g) sin (ca) 31)

From spherical triangle 4'B’0’

‘ _ cos (b) — cos (a) cos (g)
Ccos (Ea) - sin (q) sin (d) <32)

From Figure 9 the relation of cos ¢, is
cos Y, = cos (vy + &) (33)

In other cases the right side of Equation (33) should be replaced by cos (v,— &,).
These cases can be determined from the geometry of the arrangement of the star
images on the film.

With the value of cos ¢, determined, the spherical triangle 4’Z’'0O’ may be solved
for side ¢o and angle (..

cos (co) = cos (¢a) cos (a) + sin (¢,) sin (@) cos (Ya) (34)
cos (a) — cos (co) cos (cq)

cos (g‘a) = (35)

sin (¢q) sin (ca)
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From spherical triangle ZA'M’
cos (5) = — cos (v') cos (¢a) + sin (v) sin (£.) cos (ca) (36)
where »,’ is angle ZA'M’. Angle v, is ZA'B’ so that in the case of Figure 9,
vy = v, (37)

in other arrangements the right side of (37) must be replaced by = —».. Geometrical
considerations again allow the proper choice of the relations for v,’.
Side ZM’ of the spherical triangle ZA’M’, called d in Figure 9 may be found.

sin (c,) sin ()

sin (d) = (38)

sin (n.")

The angle w between the lines from the observing site to M’ and to O’ (side
O'M’ of the spherical triangle O’'M’A4") is given by

w=c —d (39)

This angle w relates the angle 7, on the az-¢/ sphere to the angle 7, on the film
through the relation

tan (.) = tan (3.") cos (w) (40)

which can be derived from geometrical considerations.

Equation (40) determines 7,, so that the slope y." is now determined by Equation
(30) and the camera tilt angle 6 is given by Equation (29).

Relations (31) through (40) have been a method of evaluating 7, from the spher-
ical triangles and angles associated with star A in Figure 9. A similar procedure for
evaluating 7, may be carried out with the spherical triangles and angles associated
with star B’, by substituting the appropriate counterpart angles and sides of spher-
ical triangles into Equations (31) through (40).

With the camera tilt angle determined, coordinates x and y may be converted to
x’ and y’ by the relations

¥ = x cos (0) + vy sin ()
y' =y cos (§) — « sin (6) (41)

CORRECTIONS FOR ATMOSPHERIC REFRACTION
CORRECTIONS OF STAR POSITION

The path of a light ray passing from free space to the surface of the earth is devi-
ated from a straight line because of the index of refraction of the atmosphere. Because
this refractive index varies not only with height above the earth but with tempera-
ture and pressure at the surface of the earth, this deviation is not a simply derived
quantity.

If the assumption is made that the atmosphere has a spherically stratified index
of refraction, the deviation will depend on the elevation of the line of sight to the
light source (or equivalently on the zenith angle, z, the complement of the elevation),
but will not depend on the azimuth. Figure 10 shows schematically the effects of
atmospheric refraction on the path of a light ray coming from a star considered to be
at infinity. Here z is the apparent zenith angle, { is the true zenith angle, and 7 is
the angular change in the apparent position of the star due to atmospheric refraction.

Bessel’s refraction table (Chauvenet, 1960) provides numerical evaluation of 7
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F1G. 10. Schematic representation of the effects of atmospheric refraction on a light ray from a star.

for various temperatures, pressures, and zenith angles. This table is based on
the formula

r(z) = afy* tan (3) (42)

8 = BT

and gives the values of «, B, T, 4, v and \. The quantities «, 4 and \ are functions
of z; 7" and < are functions of temperature; B is a function of pressure.

If the apparent zenith angle is known and one wishes to obtain the true zenith
angle,

§=2+1(9) (44)

is used. If the true zenith angle is known it is more convenient to know 7 as a function
of { so that the relation

z={¢—r(@) (45)
may be used. Based on the formula
r({) = a8y tan ({) (46)

Bessel's table also gives values for &/, 4/, and N\’ as functions of {.

Bessel's table is in a convenient form for hand calculations of the effects of
atmospheric refraction. But for the handling of large quantities of data, expressions
for the various factors in terms of fairly simple functions which could be put into a
computer program would be advantageous.

A least squares polynomial fit of the data from Bessel’s table gave for v, B, and 7'

v = 1.10553 — 2.3904 X 109 4 4.987 X 10 — 7.55 X 108 (47)
B = 00.337874p (48)
T = 1.00288 — 8.944 X 1050 (49)

where 0 is the temperature in degrees Fahrenheit and p is the atmospheric pressure
at the surface of the earth in inches of mercury.

The form K; and K, tan” (z) was assumed for o, 4 and \, where K; and K, are
constant and # is a function of z (or a constant). This assumption, and trial and error
procedures to determine the constants and exponent, led to

a = 57.751 — 0.07 [tan (z)]-%¢ (50)
A4 =1+ 215 X 10~4[tan (3)]17 (51)
A = 1+ 0.0018 tan (3) 110521 sin? (92/7.4)] (52)
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The assumption of the form K,+ K, tan® ({) for a’, 47, and N\’, led to

o = 57.7134 — 0.0084[tan (()]1-97 (53)
A" =1— 215 X 10~4[tan (5)]"7 (54)
N =1+ 0.0013{tan (;)} [1+0.4525(S+|.S1)] (55)
where S is
. (9(5“ = 45))
smp{———1.
2.9

Using the factors as given above in (42) or (46) gives 7 in seconds of arc. The ex-
pressions (47) through (55) reproduce the values in Bessel's refraction table over the
range 0°<z2<75° to within an accuracy of about 0.01 second of arc. In the range
75° <2< 80° the accuracy is good to about 0.5 second of arc.

For stars it is the true zenith angle { which is known. But the stars are seen, and
show up on the film at their apparent zenith angle z. Therefore (46) and (45) are used
to correct for star position.

For bodies such as the artificial clouds mentioned in the introduction, the appar-
ent elevation is known. However, for triangulation purposes one needs to know the
true elevation, or zenith angle. Equations (42) and (44) are used for this, as will be
explained more fully in the following section.

CORRECTIONS OF CLOUD POSITION

The formulas of the previous section apply to stars or other bodies which can be
considered at an infinite distance from the observing site. The corrections for the
effects of atmospheric refraction on the apparent zenith angle of an object close to
the earth are actually dependent on the height of the body above the earth’s surface.

Figure 11 shows that an object, such as the artificial cloud mentioned in the Intro-
duction, which has the same apparent elevation as a star, would not have the same
true elevation as the star.

The angle p shown in Figure 11 is the difference in the true zenith angles of the
body and the star. The true zenith angle, {3, of the body can be found from the appar-
ent zenith angle, 2z, by the relation

& =2+ 7(z) — p(2) (56)

The function 7(2) is the correction found previously by relation (42) and its associated
Equations (47) through (52).

Tabulated values (Jones, 1961) of p(z) for various heights above the earth were
found. These values are based on the same assumption as that for the star correc-
tions, namely a spherically stratified index of refraction in the atmosphere. Also, it is
assumed that the index of refraction between the body and the stars is unity. A

ZENITH

LIGHT PATH
TO STAR

LINE OF SIGHT TO STAR
EARTH

F1G. 11. Difference in true elevations for a star and a body at a finite altitude.
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nominal value is assumed for the index of refraction of air at sea level and for the

radius of the earth.
It is also desirable to have equations for the function p(z) instead of the tabulated
values. An approximation for finding p(z) for any height 2 was found to be

105.4

p(z) = pwo(Z) (57)

where p1go(2) is the p function evaluated at a height of 100 km.
The assumption of the form 4 tan (z)+/f(2) for piy and trial and error evaluation
of the constant 4 and the values of the function f(z) led to the relation

(z — 36)?
PIOO(Z) = 5.59 tan (Z) + 4.23 <1 — 41—296 ) + A(Z) (58)
where
A(z) = — 0.29 sin (32) z < 60° (59)
o 2.87
A(z) = 0.28 <-F> 60° <z < 80° (60)

All of these constants are in the necessary dimensions to calculate p(z) in seconds
of arc. Formulas (58) through (60) will reproduce the values of p(z) in the tables to
within 0.03 second for =100 km. Formula (57) coupled with these formulas will
reproduce the values for p(z) at #=200 km. to within about 0.1 second 0° <z <80°.

REsuLTs AND CONCLUSIONS

As an example of the accuracy obtainable by the analysis techniques discussed,
the following sample results are given.

Data on rocket ‘‘Peggy,” 1960 Project Firefly series, center of frame azimuth and

elevation for the station at Fort Walton Beach, Florida, from the time of release

of the cloud to release plus five minutes.

azimuth 152.925 4 0.007 (rms) degrees
elevation 60.945 + 0.009 (rms) degrees
tilt angle —0.29 + 0.01 (rms) degree

The root mean square deviations in azimuth and elevation correspond to 0.12 and
0.16 milliradian respectively. Taking the square root of the sums of the squares of
these deviations yields a total angular rms deviation of +0.011 degree or 0.2 milli-
radian.

The release position of “‘Peggy’” was determined to be

height (km.) 102.93 + 0.03 (rms)
latitude (deg.) 30.0277 + 0.0003 (rms) or +0.03 km.
west longitude (deg.) 86.5213 + 0.0002 (rms) or +0.02 km.

Thus, the total rms error in position is +0.05 km. Since the cloud is at an average
distance of 154 km. from the observing stations, this amounts to an angular error of
0.3 milliradian, which corresponds to an error in position of the image on the film of
about 0.005 cm. This order of accuracy is typical for cloud points which are sufh-
ciently sharp and well defined so that point identification does not produce appreci-
able error.
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The Optical Specification of

Photographic Viewers
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The Perkin-Elmer Corp.,
Norwalk, Conn.

ABSTRACT: The modulation transfer function of optical instruments to view or
enlarge photographic transparencies are determinable from a knowledge of the
eye's modulation requirement and the amount of modulation and granularity
on the transparency. Two hypothetical cases illustrate the specification of the re-
quired performance of a viewer or enlarger. It is concluded that the modulation
transfer function of viewers and enlargers should be very high at all the spatial
frequencies up to the limiting resolution contained in the transparency.

INTRODUCTION

FOR photography which is viewed by means
of an optical system or is optically en-
larged, it is desirable to have a rational ap-
proach to specify the required optical per-
formance. Any text on optics gives the basis
on which magnification and field of view can
be specified, but the resolution performance is
not covered. In this discussion, it is shown
how the modulation transfer function anal-
ysis commonly applied to the photographic
acquisition process can be extended to
viewers."™® The benefit of this approach is
that it is based on the physical processes in-
volved, that it has been proven accurate for
cameras, and that it is easy to apply to the
viewing of any particular photography.

In what follows, the method will be ex-
plained and illustrated with hypothetical ex-
amples. While these are meant to be phys-
ically reasonable cases, other workers are
cautioned to extrapolate with care, or pref-
erably to apply the method exactly to any
photography for which they wish to specify
the performance of viewers.

APPROACH TO PROBLEM
GENERAL

Aerial photographs are obtained by cam-
eras which, in airborne operation, have mod-
ulation transfer functions, T'(k), similar to
that shown in Figure 1; these functions us-
ually decrease steadily as the spatial fre-
quency, k, increases. Such cameras will
photograph objects, for which the Fourier
components will have all possible modula-
tions (contrasts), Mo, from high to very low.
Consequently, the corresponding modulation
in the exposure (aerial) image which im-
pinges on the emulsion, My, will range from
high to very low since

My = T(k)M,

Even for high-contrast objects, for which
Mo=1, My, decreases to very low values at
high spatial frequencies because T'(k), de-
creases.

For the image of the Fourier component of
an object to be resolvable on the film, M4
must equal or exceed a modulation detect-
ability limit, Mp.*® In general, Mp is a




