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ABSTRACT: The position and velocity of clouds or other objects moving through
the upper atmosphere are often determined from a study of simultaneous photo
graphs taken from two or more observing stations against a darkened sky with a
background of stars. With correction for atmospheric refraction supplied by
tables, the star background is utilized to increase the accuracy of camera orien
tation by correcting errors inherent in the camera system produced by: (1) film
shrinkage, (2) light refraction in the glass fiduciat grid piette, and (3) tilt of the
camera with respect to the local horizontal. Techniques and empirical formulae
are developed for use in analytic data processing with it digital computer to the
order of a thousandth of a centimeter. The final procedure can produce angular
position determinations of 0.3 milliradian. A method for accurately determin
ing camera focal tengths is also presented.

INTRODUCTION

GENERAL

T HE general problem was that of determining the position (and time rate of change
of position) of artificial clouds injected into the upper atmosphere at approxi

mately 100 km. altitude. To accomplish this, several observing stations were set up
approximately 100-200 km. apart and photographic data were taken. From these
data the cloud position at any time was determined by triangulation techniques. The
clouds were injected at times when the background sky was sufficiently dark that the
stars in the field of view were photographable with exposure times on the order of a
few seconds. This star background was used to determine the orientation in space of
each of the several cameras involved in a triangulation study.

The purpose of this work was to develop a system of correction procedures
designed to increase the accuracy with which camera orientation and object position
in space may be determined. These procedures are especially suited for use with the
K-24 camera system, but are also easily adaptable to other similar cameras.

THE K-24 CAMERA AND ITS FlLM COORDlNATE SYSTEM

The K-24 is a camera equipped with a multielement, 7 inch focal-length, f/2.5
lens. It has a quarter-inch glass plate near the focal plane on which a fiducial grid of
fine lines has been accurately ruled 1.270 Clll. apart. During exposure, the film is
pressed against the rear surface of the fiducial plate, and a brief illumination records
the grid lines on the film.

This grid system recorded on the film forms a natural x-y coordinate system in
which measurements of the location of images on the film may be made.. The center
grid cross, near the intersection of the optical axis and the plane of the film, is taken
as the origin of this system. Positive x and yare in the general directions of increasing
azimuth and elevation, respectively. The origin of this system is referred to as the
"center of frame."

594
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TERRESTRIAL AND CELESTIAL COORDINATE S¥STEMS

From each of the observing stations the orientation of the cameras is determined
in the azimuth-elevation, or az-el, coordinate system. Azimuth is measured east from
north, and elevation is measured from the plane perpendicular to the earth radius
passing through the site.

The location of stars is known in the celestial coordinate system, illustrated sche
matically in Figure 1. The right ascension, a, is measured eastward from 'Y, the
vernal equinox (also called the first point of Aries). The declination, 0, is measured
from the celestial equator.

The azimuth and elevation of a star from a given observation station are com
pletely determined by knowing the righ t ascension and declination of the star, the
time, and the latitude and longitude of the observing station. With these quantities
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FIG. 1. Coordinates on the celestial sphere.
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FIG. 2. Typical star image pair for determining
focal length.

known, the azimuth and elevation of a star can be found by transformation of
coordinates (Albritton et aI., 1962). In the following work it will be assumed that all
of this information is known and that the necessary star azimuths and elevations have
been determined.

CAMERA FOCAL-LENGTH DETERMINATION FRO:\i THE STARS

In order to utilize measurements of image position on the film, the focal-length of
the camera lens must be accurately known. The focal-length of a camera lens may be
determined from two star images appearing on the film. A typical pair of images, A
and B, are shown in Figure 2. They are located at radial distances ·Ra and Rb from
the center of frame, 0, and are separated from each other by a distance D.R. Angle
A DB is called Q.

Figure 3 shows the same pair of stars (now labeled A' and B') as they appear on
the az-el sphere. They form a spherical triangle A'B'Z wi th the zeni tho Sides Ca and
Cb of this spherical triangle are the complements of the elevations of A' and B', respec
tively. The difference in the azimuths of the two stars is angle D.A. The sides of the
spherical triangle formed by the two stars and the projection of the center of frame
onto the az-el sphere are q, a, and b, as shown. Angle A 'O'B' is called Q'.
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FIG. 3. Star pair used to determine focal length
as they appear on the az-el sphere.

From the spherical triangle A'B'Z:

cos (q) = cos (ca) cos (Cb) + sin (ca) sin (Cb) cos (i1A) (1)

Since all quantities on the right of (1) are known, cos (q) is known. The angles a and
bare given by

a = ARCTAN (Ra/F) and b = ARCTAN (Rb/F), (2)

where F is the focal-length of the lens (yet to be determined).
Since the center of frame may be considered to be on the optical axis, and since

Q' is measured in a plane perpendicular to this axis

Q' = Q.

Employing the law of cosines on the plane triangle AOB provides a relation for
cos (Q)

(3)

thus determining cos (Q) in terms of known quantities.
Applying the "law of cosines" for spherical trigonometry to the spherical triangle

A'O'B':

cos (q) = cos (a) cos (b) + sin (a) sin (b) cos (Q) (4)

By employing Equations (1) through (4) and simplifying, one arrives at the
relation

where

F=
v ± (V2 - 4UW) 1/2

2U
(5)

U = COS2 (q) - 1

V = (Ra2+ Rb2) COS2 (q) - 2RaRbcos (Q)

W = COS2 (q) - COS2 (Q)Ra2Rb2

(6)

(7)

(8)

Equation (5) gives two values for F because of the ± in the relation. In practice
both positive and negative roots may be considered and the value of F with the
minimum deviation from the nominal focal length taken as the correct value.
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CORRECTIONS FOR THE K-24 OR SIMILAR CAMERA SYSTEM

FILM SHRINKAGE

The film was found to shrink during the time between its exposure and analysis;
consequently, this shrinkage must be taken into consideration when measurements
taken from the film are used in calculations. Analytic correction is precluded because
the shrinkage is not consistent between successive exposures on the same roll of
film, nor does the shrinkage occur in any regular fashion over each individual expo
sure.

The fiducial grid superimposed on each exposure, besides its primary purpose of
providing a film coordinate system, serves the secondary purpose of permitting the
film shrinkage to be calculated and correction made.

Image displacement is assessed by counting 1.270 cm. increments, the nominal
distance between fiducial grids, then measuring distances to the nearest fiducial lines
in both x and y directions. If the procedure is carried no further, the effects of shrink
age will be confined to one fiducial square. Further reduction of the effects of film
shrinkage may be obtained by measuring the dimensions of the fiducial square in
which the image is located and by using a linear interpolation process to correct for
the image location within the fiducial square.

To check the accuracy of the spacing of the ruled lines on the plates severalmeas
urements of their separation were made. The mean distance between fiducial lines
was found to be 1.2697 ±0.0004 (rms) em.

Several measurements of the film shrinkage between consecutive fiducial lines
showed a mean shrinkage of 0.003 em., with a maximum of about 0.006 em. and a
minimum of zero. For the K-24 camera system 0.001 em. amounts to 0.055 milli
radian, which corresponds to 8 meters at 150 km. range.

LIGHT REFRACTIO IN THE FIDUCIAL PLATE

Although the glass fiducial plate allows for the elimination of errors caused by
film shrinkage, it introduces another error into the measurements taken from the
film: light refraction in the glass plate. Unlike film shrinkage, this error can be evalu
ated analytically.

Figure 4 shows a light ray entering the camera with an angle of incidence {3
measured from the optical axis. If the plate were not present the ray would strike the
film (which is pressed against the back of the plate) a distance p from the optical
axis. Since the light ray is refracted in the plate, it actually strikes the film at a dis
tance r from the optical axis. The angle of refraction is X, shown in the expanded view
of Figure 5, andc/>=IJ-X. The focal-length, F, is the distance from the nodal point of
the lens to the rear of the fiducial plate, t is the thickness of the glass plate, and n is
the index of refraction in the glass plate. The refraction correction, C, would be given
by C=p-r.

By Snell's law

n sin (A) sin ({3) (9)

From inspection of Figure 4

(11)

(10)
p

sin ({3)
(p2 + F2) 1{2

tan ({3) = p/F

Substituting (9) into (10) yields

sin (A)
p

(12)
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FIG. 4. The path of a light ray through the camera.

Noting that

FIG. S. Expanded view of the path of the light
ray through the fiducial plate.

r - t tan (A)
---- = tan ((3)

F - t

and employing Equation (9) through (13), one can arrive at

tp(1 )r- +- -1
- p F ,n(1 +f2p2)1/2

where

(13)

(14)

(15)

Expanding the radical in (14) into a power series and making use of the method of
reversion of series (d. eRe Standard Mathematical Tables) one gets a power series
expansion for p in terms of r

(16)

where

(17)

(18)

(19)
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and

al = 1 - ~ (1 - ~)
F n

t
a3 = 1/2-J2

Fn

3/
a5=---J4

8Fn

5 /
a7 = - - __ J6

16 Fn

(20)

(21)

(22)

(23)

The A coefficients depend only on n, t, and F. The index of refraction and thickness
for each glass plate may be measured and used separately. However, measurements
of n for several plates yielded a value of 1.524 indicating that this may be used as the
value for all plates. The thickness of the plates was found to vary by about 10 per
cent from plate to plate, so that separate plate thickness values are used. If the

FIG. 6. Actual and corrected location of
an image on the film.

accurate focal-length has been determined by the method previously described, it
may be used in the formulas for determining the A coefficients. However, since these
formulas do not vary rapidly with F, if the focal-length is known to within about
± 2 mm. (for the K-24, 7 inch lens) the A coefficients determined from such a value
will still be quite adequate. For example, if r = 6 cm., the refraction correction C
would be altered about one per cent for a 2 nun. change in the focal-length value used
in the calculations.

Figure 6 illustrates an image as it appears on the film and its corrected location,
at which it would appear if there were no plate refraction.

To find the corrected values of x and y(xr and Yr) the relations

xrlx = plr and Yr!Y = plr

are used. Therefore

xr = x(plr)

and similarly,

YT = y(plr)

If Equation (16) is substituted into Equation (24) and (25)

(24)

(25)

xT = x(A l + A 3r2 + A 5r4 + A;r6 +
YT = y(A l + A 3r2 + A 5r4 + A;r6 +

. )

. ) (26)
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Equations (26) are not exactly correct if the center of frame does not coincide with
the intersection of the optical axis and the plane of the film. If the displacement of
the center of frame from the optical axis is known, a new film coordinate system may
be set up with the origin on the optical axis, and the values of x and y converted
into the new system by translation. Equations (26) would then be correct with the
values of x and y so altered. However, if the displacement of the center of frame from
the optical axis is of the order of 2 mm., as indicated in the K-24 instruction manual
(Vitro, 1954), the error caused by neglecting this coordinate translation is on the
order of 0.001 cm. for the K-24 system. This assumes that the only error introduced
by neglecting the translation is the error in evaluating the refraction C. That is, for a
deviation, 8, of the center of frame from the optical axis C(r+ 8) - C(r) is about
0.002 cm. for 8 = 2 mm.

Although no direct measurements of the deviation of the center of frame from
the optical axis have been made, tests have been made which show that no observable
systematic radial error is still present after the plate refraction corrections have been
applied, but without correcting for displacement of the center of frame from the opti
cal axis.

Equations (26) may also be reduced in terms to give any desired degree of
accuracy. In fact, if the terms in r 4 and higher powers of r are neglected, giving the
simple formulas

X r = x(A l + A 3r2)

Yr = y(A l + A 3r2
) (27)

the corrected coordinates obtained from these formulas will be accurate to about
0.001 cm. at r = 9 cm.

CAMERA TILT

Referring to Figure 3, it is apparent that a line 0'Z, connecting the zenith with the
projection of the center of frame onto the az-el sphere, should correspond to the posi
tive y axis when projected onto the film. However, due to several causes which are
either impossible or impractical to compensate for, this projection of 0'Z may not
correspond to the y axis on the film. In such a case a new x'-y' film coordinate sys
tem, shown in Figure 7, could be formed by a rotation of the x-y coordinates through
an angle 8, so that the projection of 0'Z would correspond to the y' axis.

I t is advantageous to know the angle 8, called the camera tilt angle, so that the
calculations of line of sight to the cloud or object being photographed may be carried
out in the x'-y' coordinates. Note, however, that the camera tilt angle does not affect
calculations which depend only on the radial distance from the center of frame, such
as the fiducial plate refraction corrections and the focal-length calculations.

The camera tilt angle may be calculated by considering a pair of stars, A and B
shown in Figure 8, as their images appear on the film. The images of A and Bare
located at radial distances R a and Rb from the center of frame, 0; they are separated
by a distance t:.R. Point M is the intersection of t:.R and the y' axis. The angle be
tween AM and the y' axis is 7]a, and the angle between BM and the y' axis is 7]b.

If the coordinates in the x-y system of stars A and Bare x a, Ya and Xb, Yb then
the x'-y' coordinates of A and Bare xa', ya' and Xb', Yb' given by

xa' = Xa cos (8) + Ya sin (8)

Xb' = Xb cos (8) + Yb sin (8)

Ya' = Ya cos (8) - Xasin (8)

Yb' = Yb cos (8) - Xb sin (8)
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FIG. 7. The x'-y' axes and the camera tilt angle.
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FIG. 8. Star pair used to calculate camera tilt
angle, as they appear on the film.

flx' = flx cos (0) + fly sin (0)

fly' = fly cos (IJ) - flx sin (0) (28)

where flX=Xa-Xb and flY=Ya-Yb.
The slope, yx', of the line joining A and B on the film is fly'/flx' in the x'-y'

coordinates. Therefore, using the values of flx' and fly' in (28), one obtains

fly cos (0) - flx sin (0)
Yx' = ---------

flx cos (0) + fly sin (0)

which, when solved for e, yields

Yx' [flx cos (IJ) + fly sin (0)] = fly cos (0) - flx sin (0)

sin (O)lflx + fly(yx')] = cos (IJ)[fly - flx(yx')]

o = ARCTAN (flY - flX(Yx')).
flx + fly(yx')

(29)

Relation (29) provides a determination of the camera tilt angle if yx' is known.
The slope yx' is determined by the value of the angles Y/a or Y/b by the relations

if xa' < 0 yx' = tan (7/a - 7r/2)

if xa' > 0 Yx' = tan (7r/2 - 7/a) (30)

or

if Xb' < 0 yx' = tan (7/b - 7r/2)

if Xb' > 0 yx' = tan (7r/2 - 7/b)

To determine the values of Y/a and Y/b, consider the stars A and B as seen on the
az-el sphere, shown in Figure 9 as A' and B'. The coelevations of A' and B' are Ca

and Cb. The coelevation of the projection of the center of frame onto the az-el sphere,
0', is co. Point M' and the sides q, a, and b of the spherical triangle A'B'O' are the
projections onto the az-el sphere of M, flR, R a , and R b , respectively, from Figure 8.
Several angles of the spherical triangles formed are also shown. Note that Y/a' and
'11h' correspond to, but are not equal to, Y/a and Y/b.
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FIG. 9. Star pair used to determine camera tilt angle, as they appear on the az-el sphere.

Considering the spherical triangle A 'B'Z, sides q, a, and b are given by formulas
(1) and (2), previously employed. The various angles shown in Figure 9 may be
solved for by spherical trigonometry.

From spherical triangle A'B'Z

cos (Cb) - cos (q) cos (ca )

cos (va) =
sin (q) sin (ca )

From spherical triangle A'B'0'

cos (b) - cos (a) cos (q)
cos (~a) = -------

sin (q) sin (a)

From Figure 9 the relation of cos o/a is

cos o/a = cos (va + ~a)

(31)

(32)

(33)

In other cases the right side of Equation (33) should be replaced by cos (va - ~a)'

These cases can be determined from the geometry of the arrangement of the star
images on the film.

With the value of cos t/;a determined, the spherical triangle A'Z'O' may be solved
for side Co and angle ra'

cos (co) = cos (ca) cos (a) + sin (ca) sin (a) cos (o/a)

cos (a) - cos (co) cos (ca)
cos (Sa) = --------

sin (co) sin (ca)

(34)

(35)
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From spherical triangle ZA' J11'

cos (TJa') = - cos (va') cos (ta) + sin (va') sin (ta) cos (ca)

where va' is angle ZA' JVI'. Angle Va is ZA 'B' so that in the case of Figure 9,

(36)

(37)

in other arrangements the right side of (37) must be replaced by 7r-~'a' Geometrical
considerations again allow the proper choice of the relations for va'.

Side ZM' of the spherical triangle ZA ' M', called d in Figure 9 may be focmd.

. sin (ca ) sin (va')
Sin (d) = ----

sin (TJa')
(38)

The angle w between the lines from the observing site to ~M' and to 0' (side
0' A1' of the spherical triangle 0'M' A') is given by

w = Co - d (39)

This angle w relates the angle TJa' on the az-el sphere to the angle TJa on the film
through the relation

tan (TJa) = tan (71,,') cos (w) (40)

which can be derived from geometrical considerations.
Equation (40) determines TJa, so that the slope yx' is now determined by Equation

(30) and the camera tilt angle e is given by Equation (29).
Relations (31) through (40) have been a method of evaluating TJa from the spher

ical triangles and angles associated with star A in Figure 9. A similar procedure for
evaluating TJb may be carried out with the spherical triangles and angles associated
with star B', by substituting the appropriate counterpart angles and sides of spher
ical triangles into Equations (31) through (40).

With the camera tilt angle determined, coordinates x and y may be converted to
x' and y' by the relations

x' = x cos (e) + y sin (e)

y' = y cos (e) - x sin (e) (41)

CORRECTIONS FOR ATMOSPHERIC REFRACTION

CORRECTIONS OF STAR POSITION

The path of a light ray passing from free space to the surface of the earth is devi
ated from a straight line because of the index of refraction of the atmosphere. Because
this refractive index varies not only with height above the earth but with tempera
ture and pressure at the surface of the earth, this deviation is not a simply derived
quantity.

If the assumption is made that the atmosphere has a spherically stratified index
of refraction, the deviation will depend on the elevation of the line of sight to the
light source (or equivalently on the zenith angle, z, the complement of the elevation),
but will not depend on the azimuth. Figure 10 shows schematically the effects of
atmospheric refraction on the path of a light ray coming from a star considered to be
at infinity. Here z is the apparent zenith angle, r is the true zenith angle, and r is
the angular change in the apparent position of the star due to atmospheric refraction.

Bessel's refraction table (Chauvenet, 1960) provides numerical evaluation of r
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FIG. 10. Schematic representation of the effects of atmospheric refraction on a light ray from a star.

for various temperatures, pressures, and zenith angles. This table is based on
the formula

r(z) = a{3A"X tan (z)

(3 = BT

(42)

and gives the values of a, B, T, A, "I and A. The quantities a, A and A are functions
of z; T and "I are functions of temperature; B is a function of pressure.

If the apparent zenith angle is known and one wishes to obtain the true zenith
angle,

t = z + r(z) (44)

is used. If the true zenith angle is known it is more convenient to know r as a function
of r so that the relation

z = t - r(.\)

may be used. Based on the formula

r(t) = a'{3A'"X' tan m

(45)

(46)

Bessel's table also gives values for a', A', and A' as functions of r.
Bessel's table is in a convenient form for hand calculations of the effects of

atmospheric refraction. But for the handling of large quantities of data, expressions
for the various factors in terms of fairly simple functions which could be put into a
computer program would be advantageous.

A least squares polynomial fit of the data from Bessel's table gave for "I, B, and T:

" = 1.10553 - 2.3904 X 100 + 4.987 X 100 - 7.55 X 100

B = 00.337874p

T = 1.00288 - 8.944 X 10-5 0

(47)

(48)

(49)

where 0 is the temperature in degrees Fahrenheit and p is the atmospheric pressure
at the surface of the earth in inches of mercury.

The form K 1 and K 2 tan" (z) was assumed for a, A and A, where K 1 and K 2 are
constant and n is a function of z (or a constant). This assumption, and trial and error
procedures to determine the constants and exponent, led to

a = 57.751 - 0.07 [tan (z)] 1.96

A = 1 + 2.15 X 1O-4 [tan (z)] 1.7

A "'" 1 + 0.0018 tan (z) (1-0.821 sin' (9z/7.4)]

(50)

(51)

(52)
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The assumption of the form K 1+K2 tann (n for a', A', and A', led to

a ' = 57.734 - 0.0084[tan cnP·97
A' = 1 - 2.15 X 1O-4[tan (.\)]1.7

A' = 1 + 0.0013{ tan en} [1+0.4520(8+18Il]

where S is

. (9(t - 45»)
Sin .

2.9

(53)

(54)

(55)

Using the factors as given above in (42) or (46) gives r in seconds of arc. The ex
pressions (47) through (55) reproduce the values in Bessel's refraction table over the
range O°:S;:z < 75° to within an accuracy of about 0.01 second of arc. In the range
75°:S;:z<80° the accuracy is good to about 0.5 second of arc.

For stars it is the true zenith angle r which is known. But the stars are seen, and
show up on the film at their apparent zenith angle z. Therefore (46) and (45) are used
to correct for star position.

For bodies such as the artificial clouds mentioned in the introduction, the appar
ent elevation is known. However, for triangulation purposes one needs to know the
true elevation, or zenith angle. Equations (42) and (44) are used for this, as will be
explained more fully in the following section.

CORRECTIONS OF CLOUD POSiTrON

The formulas of the previous section apply to stars or other bodies which can be
considered at an infinite distance from the observing site. The corrections for the
effects of atmospheric refraction on the apparent zenith angle of an object close to
the earth are actually dependent on the height of the body above the earth's surface.

Figure 11 shows that an object, such as the artificial cloud mentioned in the Intro
duction, which has the same apparent elevation as a star, would not have the same
true elevation as the star.

The angle p shown in Figure 11 is the difference in the true zenith angles of the
body and the star. The true zenith angle, rb, of the body can be found from the appar
ent zenith angle, Zb, by the relation

tb = Zb + r(z) - p(z) (56)

The function r(z) is the correction found previously by relation (42) and its associated
Equations (47) through (52).

Tabulated values (Jones, 1961) of p(z) for various heights above the earth were
found. These values are based on the same assumption as that for the star correc
tions, namely a spherically stratified index of refraction in the atmosphere. Also, it is
assumed that the index of refraction between the body and the stars is unity. A

ZENITH

EARTH
CLOUD

TO CLOUt>
LINE of SIG\rr

LIGHT PATH

TO STAR

LINE OF SIGHT TO STAR

FIG. 11. Difference in true elevations for a star and a body at a finite altitude.
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(57)

nominal value is assumed for the index of refraction of air at sea level and for the
radius of the earth.

It is also desirable to have equations for the function p(z) instead of the tabulated
values. An approximation for finding p(z) for any height h was found to be

105.4
p(z) = -- PIOO(Z)

h

where PlOO(Z) is the P function evaluated at a height of 100 km.
The assumption of the form A tan (z) +1(z) for PIOU and trial and error evaluation

of the constant A and the values of the function f(z) led to the relation

(
(z - 36)2)

PIOO(Z) = 5.59 tan (z) + 4.23 1 - + t,(z)
1296

where
t,(Z) = - 0.29 sin (3z)

(

z - 60)2.87
t,(Z) = 0.28 --

10
600 < Z ~ 8l?

(58)

(59)

(60)

All of these constants are in the necessary dimensions to calculate p(z) in seconds
of arc. Formulas (58) through (60) will reproduce the values of p(z) in the tables to
within 0.03 second for h = 100 km. Formula (57) coupled with these formulas will
reproduce the values for p(z) at h=200 km. to within about 0.1 second OO~z<80°.

RESULTS AND CONCLUSIONS

As an example of the accuracy obtainable by the analysis techniques discussed,
the following sample results are given.

Data on rocket "Peggy," 1960 Project Firefly series, center of frame azimuth and
elevation for the station at Fort \i\1alton Beach, Florida, from the time of release
of the cloud to release plus five minutes.

azimuth 152.925 ± 0.007 (rms) degrees

elevation 60.945 ± 0.009 (rms) degrees

tilt angle -0.29 ± 0.01 (rms) degree

The root mean square deviations in azimuth and elevation correspond to 0.12 and
0.16 milliradian respectively. Taking the square root of the sums of the squares of
these deviations yields a total angular rms deviation of ±0.011 degree or 0.2 milli
radian.

The release position of "Peggy" was determined to be

height (km.) 102.93 ± 0.03 (rms)

latitude (deg.) 30.0277 ± 0.0003 (rms) or +0.03 km.

. west longitude (deg.) 86.5213 ± 0.0002 (rms) or ±0.02 km.

Thus, the total rms error in position is ±0.05 km. Since the cloud is at an average
distance of 154 km. from the observing stations, this amounts to an angular error of
0.3 milliradian, which corresponds to an error in position of the image on the film of
about 0.005 cm. This order of accuracy is typical for cloud points which are suffi
ciently sharp and well defined so that point identification does not produce appreci
able error.
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The Optical Specification of

Photographic Viewers

MILTON D. ROSENAU, JR., Senior Physicist,
The Perkin-Elmer Corp.,

Norwalk, Conn.

ABSTRACT: The modulation transfer function of optical instruments to view or
enlarge photographic transparencies are determinable from a knowledge of lhe
eye's modulation requirement and the amounl of modulation and granularity
on the transparency. Two hypothetical cases illustrate the specification of the re
quired performance of a viewer or enlarger. It is concluded lhat the modulation
transfer function of viewers and enlargers should be very high al all the spatial
frequencies up to the limiting resolulion contained in lhe lransparency.

INTRODUCTION

F OR photography which is viewed by means
of an optical system or is optically en

larged, it is desirable to have a rational ap
proach to specify the required optical per
formance. Any text on optics gives the basis
on which magnification and field of view can
be specified, but the resolution performance is
not covered. In this discussion, it is shown
how the modulation transfer function anal
ysis commonly applied to the photographic
acquisition process can be extended to
viewers. I- 3 The benefit of this approach is
that it is based on the physical processes in
volved, that it has been proven accurate for
cameras, and that it is easy to apply to the
viewing of any particular photography.

I n what follows, the method will be ex
plained and illustrated with hypothetical ex
amples. While these are meant to be phys
ically reasonable cases, other workers are
cautioned to extrapolate with care, or pref
erably to apply the method exactly to any
photography for which they wish to specify
the performance of viewers.

ApPROACH TO PROBLEM

GENERAL

Aerial photographs are obtained by cam
eras which, in airborne operation, have mod
ulation transfer functions, T(k), similar to
that shown in Figure 1; these functions us
ually decrease steadily as the spatial fre
quency, k, increases. Such cameras will
photograph objects, for which the Fourier
components will have all possible modula
tions (contrasts), Mo, from high to very low.
Consequently, the corresponding modulation
in the exposure (aerial) image which im
pinges on the emulsion, AlIA, will range from
high to very low since

M A = T(k)Mo

Even for high-contrast objects, for which
M o= 1, AlIA, decreases to very low values at
high spatial frequencies because T(k), de
creases.

For the image of the Fourier component of
an object to be resolvable on the film, MA

must equal or exceed a modulation detect
ability limit, MD.4- 6 In general, MD is a


