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more accurate assessment of the sources of
revenues for the government; this when chan
neled to the different development programs
of the country leads to more improved facil
ities and conditions of living for all citizens;
(2) the utilization of every available piece of
land to production which together with the
intense application of scientific methods in
agriculture will lead to a greater agricultural
production and thus, to national self-suffi
cIency.

PROPOSED LOI\G RANGE PROGRA:\{ OLe
PHOTOGRAMMETRIC SURVEY

As a result of our experience in the Bulacan
Pilot Photogrammetric CadastraL Project, our
Director of Lands has drawn up a long range
plan for a nationwide survey of the Philip
pines. He proposes a IS-year period within

which to finish the remaining two-thirds of
the country's area. Under this plan we hope
to achieve a unit cost of less than $6.00 per
hectare. To implement this program, we are
recommending to our Congress the passage
of a bill appropriating $25 million for this
purpose. \Ye are also looking forward to pos
sible aid from the UN Special Fund which we
are negotiating through the local UNTAB
represen tati ve.

Thus we have shown how we are utilizing
science and technology in our cadastral sur
veys. And in proposing to do it in a nation
wide scale we are striking at the heart of our
coun try's socio-economic program of alleviat
ing the living conditions of the masses of our
people and seCLu-ing continued prosperity for
them, their children and their children's
children.
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at the National Research Council of Canada*
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ABSTRACT: A description is given of recently developed programs for strip and
block adjustment. The strip adjustment consists in three-dimensional trans
formation of strip coordinates by means of various polynomials. Conformal
transformations are used systematically. Block adjustment consists in trans
formation of the coordinates of the individual strips by means of polynomials.
It is performed separately for horizontal coordinates and for heights. Use is
made of a direct solution of the complete system of normal equations for o.ll
strips. Results obtained with a block of RC9 super-wide angle photography are
shown.

AT THE National Research Council, the use
1"1.. of analytical methods in photogram
metry has been a subject of research since
19S3.

First, a method of analytical aerial tri
angulation was developed and programmed
for electronic compu tation. In addition, a
three-dimensional strip transformation was
programmed for the conversion of strip co
ordinates to a geodetic coordinate system.

This transformation did not incl ude correc
tions for strip deformation. Subsequently,
methods were developed for the adjustment
of the horizontal coordinates of single strips
and of blocks of overlapping strips. Here,
stri p deformation was corrected by means of
conformal transformations. Reports about
these methods were pu blished in PHOTO
GRAMMETRIC ENGINEERING and in The Cana
dian Surveyor [1, 2, 3] in 1960 and 1961.

* Presented at 1953 Semi-Annual Meeting of the Society.
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The present paper is a report on the work
that has been done since then, and on plans
for the near future. This work concerns a
method for three-dimensional adjustment of
single strips with corrections for various types
of strip deformation, and furthcr de\"e!op
ments in block adjustment.

CONFORMAL TRANSFORMATIONS

1. For the adjustment of strip coordinates
with an electronic computcr, it is rather con
venient to use transformation formulas that
give the transformed coordinates as poly
nomials with respect to the stt-ip coordinates.

Restricting ourselves for the moment to
the adjustment of horizontal coordinates, it
is found that various types of polynomial
transformations are used. Of these, the for
mulas for conformal transformation are the
most sui table since these transform any
small area in the strip coordinate system
without deformation. From this property, the
transformation derives its name.

Because of the importance of the conformal
transformation, a somewhat detailed de
scription of it is given in this papeL In terms
of complex numbers, this transformation can
be written:

(X" + iY,,) = (al + ia2) + (a3 + ia4) (X + iy)

+ (a5 + ia6) (X + iY)2

+ (a7 + ias) (X + i Y)3 + . . . (1)

Separating real and imaginary terms one
obtains:

X" = a, + a3X - a4 Y + a5()(2 _ Y2)

- a62X Y + a7(X3 - 3X Y2)

- as(3X2Y _ Y3) + ...
Y" = a2 + a4X + a3 Y + a6(X2 - Y2)

+ a52XY + a,(X3 - 3Xy2)

+ a7(3X2Y - ya) + . . . (2)

The effect of small changes in the strip
coordinates X and Y upon the transformed
coordinates X" and Y" is found by differen
tiation:

ax ax,
dX,,=--"dX+--' dY

ax aY
aY" aY"

dY =-dX+-dY (3)"ax (lY

For the conformal transformation, one
finds that for any value of X and Yand for
any degree of the equations

and

Therefore, Formulas (3) are of the same type
as the linear parts of Formulas (2), which are
the \\"ell-knoll"n formulas for transformation
without deformation" This proves that For
mulas (2) transform any small area lI"ithout
deformation" Consequcn tly, any two Ii nes
that intersect cach other at right angles be
fore transformation will do the same after
transformation. Also, the change in scale that
a small area incurs through transformation
is the same in any direction.

No other polynomial transformation is
possible that has this property. If, for in
stance, the terms with Y' are omitted in the
second-degree transformation, the trans
formation is not any more conformal. As a
result, when the conformal transformation is
not used, care must be taken that the strip
coordinates are in a region of the X, Y coor
dinate system where the transformation
changes the angle between any two lines by
a negligible amount" For instance, if in Equa
tions (2) the terms with Y' are omitted, the
strip axis should either coincide with or be
close to the X-axis.

THREE-DIME:\SlO:-IAL STlHP ADJusTME:\T

2. For three-dimensional strip adjustment
by means of polynomials, one can attempt to
develop formulas for conformal transforma
tion as follows:

x" = a,o + >.(a"X + a 12 Y + a13Z) + .
Y" = a20 + >.(a2tX + a"Y + a23Z) + .
Z" = a30 + >.(a31X + a32Y + a33Z) + . .. (4)

The linear terms in Formulas (4) produce
a linear conformal transformation (change of
scale, rotation, and shift) if and only if, dis
regarding the factor A, the matrix of coef
ficients of X, Y, and Z has the properties
that the sum of squares of the elements in
each column is equal to 1 and that the sum of
products of corresponding elements in each
two columns is equal to zero. A matrix that
has these properties is called orthogonal.

If one includes in (4) terms of higher than
the first degree \\"ith respect to X, Y, and Z,
and differentiates X", Y,,, and Z", with re
spect to X, Y, and Z, the coefficients of
dX, dY, and dZ are the nine partial deriva
tives. The differentiated formulas give the ef
fect of small changes in X, Y, and Z upon the
transformed coordinates, as do Equations (3)
for the two-dimensional transformation.
Therefore, they define the character of the
transformation of a small area.
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[n order thal the transformation be con
formal it is necessary that any small area be
transformed withou t deformation. Conse
quently, disregarding a scale factor, the ma
trix of the nine differential quotients must be
orthogonal for any values of X, Y, and Z.
This leads to a number of conditions which
the coefficients in Formulas (4) must satisfy.

Unfortunately, it turns out that the condi
tions can be satisfied only if the coefficien ts
of all terms that are of higher than the first
degree with respect to X, Y, and Z are equal
to zero. This proves that a conformal trans
formation in three dimensions which includes
strip deformation is not possible by means of
polynomials.

3. The above discussion can be summarized
in two statements:

a) For three-dimensional strip adjust
ment, it is rather convenient to use
formulas that give the transformed co
ordinates as polynomials with respect
to the strip coordinates.

b) Of the different types of polynomial
transfonllations, conformal transfurma
tions are the most sui table. However,
these are possible in two dimensions but
not in three dimensions.

These statemen ts lead directly to the fol
lowing specifications for transformation for
mulas:

I. The adjustment must be done in steps,
in each of which a suitable section
through the strip is subjected to a two
dimensional conformal transformation.

11. In each step where the conformal trans
formation includes an appreciable
change of scale in the area of the strip,
the third dimension must receive the
corresponding scale correction.

In this way, each step can correct for one
type of strip deformation, such as vertical
curvature in the strip direction, torsion along
the strip axis, vertical curvature across the
strip, and gradual changes in scale and
azimuth. The resulting three-dimensional
transformation cannot be exactly conformal
bu tit will be very close to it.

4. An alternative solution can he found in a
geometric approach.

One of the requiremen ts of a three-di men
sional strip adjustment is that the strip must
be corrected for tilt and for vertical curva-

ture. DUl'ing this correction, differences in
terrain elevation must be taken into account.
For this purpose, it is possible to com pu te a
reference surface in the strip coordinate
system which after adjustment shall be a
horizontal plane. Differences in terrain ele
vation can be taken in to accoun t by specify
ing that any perpendicular on the reference
surface must after transformation be per
pendicular to the horizon tal plane.

Recently, papers have been published by
Ackermann and Perks which describe meth
ods based upon this principle [7, 5). In both
methods vertical sections through the stri p
are made, one along the strip axis and one
across the strip. In these sections, the line of
in tersection wi th the reference surface and
the perpendicular from a point on the line of
intersection are drawn. The adjusted coor
dinates are computed as distances measured
along the line of intersection and along the
perpendicular.

Ackermann, in a method employed at the
International Training Centre, uses a torus
as reference surface: the strip is assumed to
have constant CUl'vature in the strip dil'ection
as well as across the strip. The method in
cludes leveling of the strip and is intended as
the first step in a more comprehensive stl'ip
or block adjustment.

Perks, in a method used at the Surveys and
Mapping Branch of Bdtish Columbia, de
fines the reference surface by means of a
polynomial with respect to the X- and Y
coordinates. Therefore, the lines of intersec
tion with the reference surface are poly
nomials of a specified degree.

In Ackermann's procedure, the computa
tion of lengths in the strip coordinate system
requires the use of trigonometric functions,
In Perks' procedure, the length along the
line of in tersection in the longi tudinal section
was computed first as an integral, later as a
su m of chords.

\\'hen these methods are programmed for
electronic computation, one will replace the
abo\'e functions by their series development
with respect to the strip coordinates. Since
at any point in a strip the radius of curvature
is very large compared wi th the length of the
strip, this series developmen t will require
only a few terms. Thus both methods end up
with a fOl'mulation in which the adjusted
coordinates are expressed in polynomials with
respect to the stl'i p coordinates.

This raises the question "'hether it IS not
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simpler to define the adjusted coordinates di
rectly as such.

5. The approach of successive two-dimen
sional conformal transformations has been
followed in a three-dimensional strip adjust
ment developed at the National Research
Council and programmed for the IBM 1620.

The computation, which is performed in
one pass of the computer, contains the follow
ing steps:

The strip coordinates are first trans
formed to an axis-of-f1ight coordinate sys
tem (X, Y, Z) with origin in the centre of
the strip.

The strip is then brought to terrain scale
and leveled. At the present time, the level
ing does not include strip deformation but
a correction for vertical curvature in the
strip direction by means of a second-degree
conformal X, Z transformation can easily
be included.

Vertical curvature in the strip direction
and residual tip are corrected by means of
a conformal X, Z transformation of speci
fied degree.

Torsion and residual cross-tilt are cor
rected by means of a linear Y, Z transfor
mation which is a rotation abou t the
origin:

Y,,=qY-pZ

Z" = pY + qZ

The coefficient p is defined as a polynomial
of specified degree with respect to X. The
coefficient q is found as v'1-p2.

Vertical curvature across the strip is
corrected by means of a second-degree con
formal Y, Z transformation. The coefficient
of the second-degree terms may be com
puted either from a specified radius of
curvature or from the height control.

Finally, the horizontal coordinates are
adjusted by means of a conformal X, Y
transformation of specified degree.

The formulas are given in more detail in
reference [5].

6. In the three steps where a correction for
height deformation is applied, vertical cross
sections are subjected to conformal trans
formation. Therefore, a small area in a cross
section is rotated but not deformed. In this
way, the effects of tilt and height differences
upon the horizontal coordinates are auto
matically taken into account.

Further, in the case of height corrections,
those coefficien ts which do not con tribu te
a height correction if z=o are assumed to be
equal to zero. Thus, for instance, the correc
tion formulas for vertical curvature in the
strip direction are:

X .... = X - 2b 6 XZ - bs(3X 2Z - Z3) - ...

Z" = Z + b6(X2 - Z2) + bs(X3 - 3XZ2) + . .. (5)

Because, in addition, the remaining coef
ficients are computed from the Z equations
only, while the origin has been shifted to the
centre of the strip and the strip has first been
leveled, the height corrections leave the scale
practically unchanged. Therefore, no scale
correction of the third coordinate is neces
sary.

However, in the the case of the correction
for vertical curvature in the strip direction,
any variation in scale has a cumulative effect
upon the X coordinate. \\"hen the strip is 100
km long, has horizontal-control at both ends,
and a curvature equal in size to the earth
curvature, this curvature correction causes
largest X residuals of 0.2 meter. For longer
strips, the errors increase proportionally to
the third power of the strip length.

If one wishes to a void these errors, it is
necessary to re-introduce the terms that were
omitted in Equations (5) and to compute
their coefficients. One can now specify that
the curve which in the X, Z coordinate system
has the equation Ztr = 0 must be transformed
at true length. For this curve, the second of
the Equations (5) gives Z as an implicit func
tion of X. If Z is solved from this equation
and the obtained polynomial in X is sub
stituted into the first of the Equations (5),
X tr is obtained as a polynomial in X. If the
polynomial for Z is differentiated with re
spect to X, distances S along the curve can
be obtained from dS= v'dX2+dZ2 and can
be written as a polynomial in X. Since the
curve Ztr = 0 must be transformed at true
length, the polynomial for X tr and the poly
nomial for S must have identical coefficients.
In this way, the coefficients with odd-num
bered indices are found as functions of the
coefficients with even-numbered indices. In
the case of a second-degree correction,
b1 = -tb 6

2 ; in the case of a third-degree cor
rection, in addition bg = -ib6bs.

7. The scale cOlTection that is included in the
adjustment of horizontal coordinates should
be applied also to the Z-coordinate. For this
purpose, the scale factor can be computed for
each point with the help of Equations (3).
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The scaled Z-coordinates should be used
in the computation of the formulas for correc
tion of heigh t deformation. On the other
hand, the strip should be corrected for
heigh t deformation before the horizon tal ad
justment is performed.

These two contradictory requirements
seem to make necessary performing the ad
justment for height deformation and the
horizontal adjustment in turn, in an iterative
procedure. However, if this scaling of the Z
coordinate is omitted, one height adjustment
followed by one horizontal adjustment has
proved to be sufficient. Appreciable height
errors will then occur only in the case of
large variations in terrain height combined
with a poor scale propagation through the
strip. Because in this case the accuracy re
quirements can be less strict, it has not been
found worthwhile to make the adjustment
an iterative procedureo

BLOCK ADJUSTME:\,T, 1962

8. In a block adjustment of strips, each in
dividual strip is adjusted so as to agree as
fully as possible with the existing ground con
trol and with the other strips.

This computation can be performed in
steps. First, each strip can be approximately
leveled and positioned with respect to the
geodetic coordinate system. As a rule, su ffi
cient height-control will be available to in
clude here a second-degree correction for
vertical curvature in the strip direction. For
practical purposes, this makes the effects of
residual tilt and of height differences upon
the horizontal coordinates negligible. After
this, therefore, the adjustment can be sub
divided in an adjustment of horizontal co
ordinates and an adjustment of heights.

9. The program for three-dimensional strip
transformation is used for the approximate
leveling and positioning. It provides the
possibili ty of storing the transformed coor
dinates of tie-points of a strip in memory
and of using these coordinates as addi tional
control for a following strip. This feature
makes possible transforming all stri ps of a
block in one pass on the compu tel', eyen if
only one strip has sufficient ground-control
for independent positioning. Also, if one strip
has sufficient control for second-degree trans
formation of horizontal coordinates or
heights, all strips can be transformed in this
way.

For horizontal block adjustment, an IBM
650 program in which second-degree con
formal transformations of individual strips
were used in an itera ti \'e proced ure gave very
favorable resul ts. This was a reason to re-code
this program wi thou t modification for the
IBM 1620.

A program for block adjustment of heights
was coded also, using the same iterative pro
cedure. Here, the heights are adjusted by
means of polynomials with respect to the
strip coordinates.

These two programs were coded by Topo
graphical Survey of the Department of Mines
and Technical Surveys and by the Army
Survey Establishment in close cooperation
with the National Research Council.

REMARKS ON PROGRAMMING

10. \Vhen the program for analytical aerial
triangulation was first coded for the Feru t
electronic computer, everything that was
reasonably possible \\'as done in order to re
duce the computation time to a minimum
without relinquishing accuracy, A simple set
of formulas was derived, fixed-point arith
metic \\'as used throughou t the compu ta
tions rather than floating-point subroutines,
and the shortest possible formulation in terms
of computer instructions was sought. \\'hen
the program had to be re-coded for the IBM
650, the same policy \\'as adopted in the ex
pectation that this computer would be avail
able for a long time to come. That made the
expenditure of the necessary time and etTort
worthwhile.

The results of this policy became visible in
an investigation by GIMRADA, reported on
by Matos [6], who stated that the NRC
method of analytical triangulation proved
to be about 5 to 10 times faster than the other
methods tested.

However, two years after completion of
the program, an IBM 1620 was installed at
the N.R.C. laboratories. A year later, the last
of the IBM 650 to which N.R,C. had access
was withdrawn from the Ottawa area. At
about the same time, N,R.C.'s IBl\1 1620 was
provided \\'ith the optional floating-point
hardware. Also, the ever increasing demand
for computer time has raised the question
whether this com pu ter will not sooner or
later be replaced by a faster one. These cir
cumstances and the continuing actiyity in the
field of computer development give rise to
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the speculation that it may become necessary
to re-code our programs periodically.

In view of this situation, it does not seem
worthwhile anymore to spend an appreciable
amount of time on the writing of programs
in fixed-point arithmetic and on looking for
other economies in terms of computer time.
At the present time, the best policy appears
to be to use floating-point arithmetic, to
spend the necessary time on writing an eco
nomical set of general purpose computational
subroutines for the current computer, and
to spend a minimum of time on the frame
work of instructions that surrounds the actual
computations. In this way, a better balance
between programming time and computation
time will be reached. As a result, the pro
grams may become considerably slower than
they could be, but they can become opera
tional before the compu ter for which they
were written is modified or even withdrawn.

BLOCK ADJusTMEKT, 1963

11. Having accepted the regular use of
floating-point arithmetic, a new approach to
block adjustment becomes possible.

An adjustment requires the solution of a
system of normal equations with as many un
knowns as there are coefficients in the trans
formation formulas that must be solved
for simultaneously. The iterative adjustment
was adopted partly because a fixed-point pro
gram for single strips had been written al
ready and could be used as a subroutine in
an iterative block adjustment; partly be
cause it was felt that with fixed-point arith
metic it might not be possible to solve a
great number of normal equations with suf
ficient accuracy. The use of floating-point
arithmetic makes it feasible to solve large sys
tems of linear equations and therefore to at
tempt a direct solution of the complete sys
tem of normal equations for all strips of a
block.

In the case of block adjustment by strips,
the solution is facilitated by the fact that the
matrix of coefficients in the normal equations
contains a relatively large number of zeros.

If in this matrix the unknowns, which are
the coefficients in the transformation for
mulas, are grouped according to the strips,
each ground-control poin t provides contribu
tions only to one sub-matrix on the main
diagonal. To each strip corresponds one such
sub-matrix. If one type of transformation
formula is used for all strips, these sub-

matrices are all of the same order. They can
be used as a starting point for subdividing
the matrix into square sub-matrices of the
same order.

Each tie point between two strips provides
contributions to the two corresponding sub
matrices on the main diagonal and to the two
off-diagonal sub-matrices that lie with the
diagonal ones on the corners of a square.

Therefore, in the case of a block of parallel
and uninterrupted strips contributions are
made only to the sub-matrices on the main
diagonal and to those immediately adjoining
it. All others are equal to zero.

If, instead of with sub-matrices, one had to
do with real numbers, the solution of these
normal equations through successive elimina
tion and back substitution would be very
simple. In the case of matrices, exactly the
same procedure can be used. It is only neces
sary to replace each operation with real
numbers by the analogous operation in
matrix algebra.

12. As a check on the feasibility of the direct
solution, a program for horizontal block ad
justment of parallel and uninterrupted strips
has been coded following this procedure. The
formulas for second-degree conformal trans
formation have been used.

The computations are performed in float
ing-point arithmetic with 10-digit mantissas.
I n order to reduce the requiremen ts on the
number of significant digits in the computa
tions, the origin of the coordinate system is
temporarily shifted to a point inside the
block, and the transformation formulas are
set up to give, primarily, corrections to ap
proximate coordinates.

Since the transformations are conformal,
all computations can be performed with com
plex numbers. In this case, the sub-matrices
are of order three and have complex elements.
In the case of real numbers, the matrix of
coefficients in the normal equations is sym
metric. Here, this matrix and the sub
matrices on the main diagonal are hermitian.
These properties have been used to economize
on storage space for the normal equations
and on computation time.

Rather than storing the ground-con trol
points and tie-points in memory, the com
pu tation has been made a two-pass process.
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During the first pass of the dala, the normal
equations are computed and solved, and the
transformation equations are stored. During
the second pass, all points are transformed,
and transformed coordinates, residuals on
ground-control points, and half-differences
in tie-points are punched. In this way, suf
ficien t storage space for the normal equations
is available to adjust 60 strips simultaneously,
and an unlimited number of ground-control
points and tie-points can be used.

The data deck con tains one card for each
point with the input coordinates. The cards
are sorted in groups according to strip and to
type of point, and each group is preceded by
a card that gives strip number, type of points,
and their weight in the adjustment. No fur
ther preparations are required.

A test of the program with a theoretical ex
ample of 20 strips with the minimum of three
ground-control points and three tie-points in
each overlap, and covering an area of 200 by
200 km, gave an exact fit on ground-control
points and tie-points. Two computations with
opposite sequence of the strips in the forma
tion of the normal equations gave results that
differed by at the most 1 cm. The computa
tion time for this adjustment, including pro
gram read-in, was 8 minutes.

13. Because of the excellent internal accuracy
and speed of this program and its simplicity
of operation, its usefulness has been increased
by introducing a modification which allows
the adjustment of blocks of strips with breaks
in the triangulation. J ow, each strip may
have tie-points in common with the strips
with the three next lower strip numbers and
the strips with the three next higher strip
numbers.

This affects the storage space lhat is needed
for the normal equations. Space has been pro
vided for the off-diagonal sub-matrices that
are one, two, and three places removed from
the main diagonal. As a resul t, not more than
28 strips can be adjusted simultaneously.

\'Vhen an off-diagonal matrix has non-zero
elemen ts as a resul t of a tie-poi n l condi tion,
the elimination procedure that is used during
the solution of the normal equations may pro
duce non-zero elements in other off-diagonal
sub-matrices down the same column, until
the main diagonal. The resulting increase in
the amount of computation, compared with
the case of uninterrupted strips, makes the
accuracy req uiremen ts more critical. For

instance, in an extreme case of three parallel
strips with lWo cross strips on one side of the
block and a distribution of tie-points and
ground-control points that was designed to
lax the capabilities of the program, slightly
inaccurale results were obtained if during the
computation the origin of the coordinate
system was shifted to the centre of the block.
For centimeter accuracy, the origin had to be
nearer the centroid of the control points and
tie-points.

14. A similar program for vertical block as
justment is planned also. Here, a complica
tion is caused by the fact that one type of
polynomial cannot be used for the adjust
ment of all blocks, and possibly not always
for the adjustment of all strips in one block.

The program for analytical aerial triangu
lation has not been re-coded for the IBM
1620. Instead, the IBM 650 program is used
with a simulator on the IBM 1620. This
makes the program 4 or 5 times slower than
it was on the 650. Although this is rather un
satisfactory, lhe limited use that is as yet
made of the program does not warran t the
effort of re-coding.

AN ApPLICATION

The programs for strip and block adjust
ment were used in the adjustment of a block
of aerial photography taken with an RC9
camera over an area in Southern Rhodesia.
The block contains 5 strips with 22 photo
graphs each and measures 140 X 65 km. The
focal-length of the camera is 88.48 m m, the
photograph-scale is abou t 1: 80,000, and the
average forward-overlap is 63%. Ilford HRA
fil m was used.

The distribution of ground control points
and of tie points between strips is shown in
Figure 1. The ground-con trol points were not
targetted.

The pholographs were measured by the
Rhodesian Departmen t of Trigonometrical
and Aerial Surveys in a Nistri TA3 stereo
comparator and the obtained coordinates
were correcled by that Departmen t for fil m
distortion, asymmetric and symmetric lens
distortion, refraction, and earth curvature.
The correction for fil m distortion was based
upon measurements of the four corner
fiducials, and was performed with a second
degree non-conformal polynomial transfor
mation. For relative orientation and scale
transfer, eight points were measured per
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FIG. 1

model: six points in the usual POSl tlOns and
two near the centres of the two squares
formed by the first six points.

The analytical triangulations gave satis
factory results except for one model in strip 1
which showed exceptionally large residual
parallaxes and height deformation. The mean
square value of the residual parallaxes in
the points used for relative orientation is 4.8
micron at photograph scale.

The strips were first transformed inde
pendently, using second-degree transforma
tions in order to correct vertical curvature in
the strip direction, scale, and azimuth.
Figure 2 shows the discrepancies in tie points
after these transformations. They give a clear
indication of third-degree deformation in X
and Z. The strips had little or no torsion.

Subsequent third-degree transformations
showed systematic height errors of a few
meters in ground-control points and sys
tematic discrepancies on tie-points of the
same size which could be reduced by a fourth
degree correction of vertical curvature.
Finally, therefore, strips 4 with the most con
trol, and strips S, 3, and 2 were transformed
in this sequence by means of third-degree
X, Y transformations and fourth-degree Z
transformations. For the latter three strips,
a few tie-points with an already transformed
strip were used as additional control. Strip 1
was adjusted in two parts by means of second-

degree transformations. This procedure made
a subsequent block adjustment unnecessary.

Because in this block the third-degree X, Y

RC 9 BLOCK Coordlnale differences oller second degree Irons forma !Ion

0- X

FIG. 2
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transformations give significantly better re
sults than the second-degree transformations,
and the horizontal block adjustment applies
second-degree transformations only, it is of
interest to see what can be achieved with
this block adjustment. For that purpose, each
strip has been divided into two parts of about
equal length and a block adjustment has
been performed using the same ground-con
trol points and tie-points as in the final strip
transformations. In order to obtai n a strong
connection between strip halves, two "wing
points" at the break were used as tie-points
and given a ten times greater weight than the
tie-points between strips and the ground
control points.

The results of both adjustments are listed
in Table 1. The largest value in the table, 2.1
m, equals 26J.L at photograph scale. Evidently,
the result of the block adjustments is some
what better than that of the strip adjust
ments. Both are quite satisfactory for the re
quired mapping at scale 1 :50,000.

TABLE 1

MEAN SQUAllE VALUES OF RESIDUALS IN GROUND
CONTROL POINTS, AND HALF-DIFFER~;NCES

IN TIE POINTS, IN METERS

Strip Block
transformations adjustment

117 X my 111Z mx 111]'

All ground control 1.9 2.1 1.9 1.6 2. t
..-\11 tie points 1.4 1.2 1.7 1.0 1.2

The ti me required for analytical triangula
tion, using the program to simulate the IBM
650 on the IBM 1620, was between 55' and 60'
per strip. The final strip adjustments took
altogether about 30' with the latest program
which employs the floating-point hardware.
The block adjustment required 20'. The
times for these two adjustments include the
transformation not only of the used control
poi n ts bu t also of abou t a thousand addi tional
points. These points are the eight points used
for relative orientation in each model, the
projection centres, one of each two ground
control points that occurred in pairs, and
unused tie points.

REFEREKCES

[I] G. H. Schut, "Experiences with Analytical
Methods in Photogrammetry." PHOTOG RAM
METRIC ENGINEERING, September 1960.

[2] ---, "A Method of Block Adjustment for
Horizontal Coordinates." The Canadian Sttr
veyor, March 1961.

[3] ---, "Transformation et Adjustement des
Coordollnces d'une Bande par Calcul Elec
tronique." The Canadian Surveyor, ="!O\'"ember
1961.

[4] M. Perks, "A ='IumeriCc"ll Adjustment Procedure
for Aerotriangulation Programmed for IBM 650
Computer." The Canadian Surveyor, May 1962.

[5] G. H. Schut, "The Use of Polynomials in the
Three-Dimensional Adjustment of Triangu
lated Strips." The Canadian Surveyor, May
1962.

[6] R. A. Matos, "Analytic Triangulation with
Small or Large Computers." PHOTOGRAM
METRIC ENGII\EERING, March 1963.

[7] F. Ackermann, "Zur 'Entkrlimmung' von
Stereomodellen und Triangulationsstreifen."
Bild1llessung und Luftbildwesen, June 1963.

ANNOUNCEMENT
TENTH CONGRESS OF THE

INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY

LISBON, PORTUGAL

Headquarters at:

SEPTEMBER 7-19, 1964

Feis das Industriak de Portugal

For information write to

M r. Rupert B. Southard, Jr., 229 Burke Road, Fairfax, Va.


