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Mathematical Photogrammetry

ABSTRACT: Extension of the analytic photogrammetry procedures used on small
areas to the solution of photogrammetric problems involving extremely large areas
is not simply a matter of scaling upward. As the size increases, the twin problems
arise of properly handling the increased connectivity between variables and of
keeping the problem within the solving ability of available computers. Fortu­
nately, the increase in size allows a large variety of problems which are difFerent
in the small to be treated in a common manner. The basic mathematical formulas
common to problems in the large are given in their most general form, and the
treatment and methods of solution are described. ]V[any parts of the general
problem are explored inadequately even yet, and some of these are discussed.

T HE WORD Photogrammetry c.overs activ­
ities in a diversity of fields. Because

all of these activities involve the measure­
ment of photographs, a discipline exists
which is common to all these fields. If the
measurements are of positions on the photo­
graphs, the discipline can be further particu­
larized by a statement in mathematical
terms. In the following set of three studies,
the mathematical basis common to terrestrial
photogrammetry in the large, establishment
of lunar control (in its present form), and the
determination of star posi tions is set down.
The basis could be extended even farther into
satelli te tracking, nuclear particle tracking,
mapping by radar, etc; the three specific
su bj ects here considered were selected by the
wri ter because they have been and are being
worked on.

A t their present stages, all three fields are
using essentially the same mathematical
technique. In each, we have given a set of
photographs on which are identifiable image
points; these points have associated with
them measured coordinate pairs (xl, x2). The
image points are mapped into a set of points
in object space; these points have coordinates
(Xl, X2, X3), not necessarily cartesian and not
necessarily in 3-space. Some of these coordi­
nates are known, either from direct measure­
ment or by computation from auxiliary data.
In addition, there are given conditions which
must be satisfied by the object space coordi­
nates. The mapping
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(x', x2) ---> ---> (X', X2, X3) (1)

is considered defined by a number of param­
eters

(PI, p, ... Pn)

and these parameters, related by condi tion
equations, must also be found.

SINCE the mapping (xi )--->---> (Xi) is non-
linear, the first step is to reduce the problem

to a linear form. This "linearization" is also
advantageous in that the total number of
equations available exceeds the number of
unknowns so that a statistical adjustment is
needed; such an adj ustment is easier to make
if the relationships are linear. In its linear
form, the problem is stated in terms of correc­
tions to the variables involved, rather than in
terms of the variables themselves. After
linearizing the problem and separating the
new variables into "known" and "unknown"
sets, the transformations which consti tu te
most of photogrammetry-the mapping of
2-space or 3-space in to a set of 3-space--are
described mathematically by the equations

l~x] = lA][~X] + [B][~p] + [Cl[k] (2)
[0] = [D][~X] (3)
[0] = rE][~p]. (4)

These relate the corrections [.6.X] to the
"causative" variables with the corrections
[.6.p] to the mapping parameters through the
observation equations in the observables
[.6.x] and the condition equations (and Lagran­
gian multipliers k). The entire problem can be
now comprehended in the equation
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where the reciprocal of the observation
matrix is to be understood in the sense of
Bjerhammer1. The covariance matrix of the
unknowns is then,

where the vector on the left is the discrepancy
or residual vector, and the vector on the right
is the correction vector containing all the
unknowns, including Lagrangian multipliers,
etc. (Weights are assumed already introduced
into the matrix and are not noted explicitly.)

The solution is then obtained by the usual
process

(5)

(6)

l t1x] = [A ][t1X]

[2:'(t1X)] = lA]-l[2:'(M)][A]-l' (7)

where [~'(f1x)l is the covariance matrix of the
observations.

As will be men tioned again in the discus­
sion of star positions, a slightly different ap­
proach to the problem is possible by consider­
ing all equations as condition equations'
rather than dividing them into two sets:
observation equations and condition equa­
tions. In the linear case, the two approaches
are equivalent; in the non-linear cases they
are not, and the implication for non-linear
cases are being studied.

In the formulation of the problem, the
work of setting up Equation 5 becomes diffi­
cult if the number of different categories of
residuals and unknowns is considerable.
Simplification is achieved by using the multi­
dimensional matrix (tensor) calculus of
G. Kron,3 but since Kron's calculus was set up
excluding non-(hyper)-cube matrices as well
as reciprocals, modification is needed. Just as
the inverse of a non-square can be defined
usefully,' so can operations on rectangular
matrices in hyper-space. Transposition, addi­
tion, and multiplication are definable if
attention is paid to the order in which the
operations along the various axes are taken.
Inversion is much more difficult to define.
Fortunately, only the inversion of hyper-cube
matrices need be considered and this opera­
tion always can be accomplished in practice
by first mapping the matrix in to a two­
dimensional form and then inverting.

IT IS WORTHWHILE giving special attention to
the fact that the theory here presented

assumes for the stochastic variables a Gaus­
sian distribu tion, so that the most probable
values of the unknowns are found by min­
imizing the sum of the squares of the devia­
tions. If the distribu tion is non-Gaussian, the
least-squares c.riterion, in general, will not be

FIG. 1

valid, as can be shown easily. That the dis­
tribution is not Gaussian is fairly certain; a
recent paper by Stearn6 shows a non-Gaus­
sian distribution for angles measured with a
theodolite and a similar situation can be
expected to hold for angles measured by a
camera. Stearn also shows that in his experi­
ments the difference between the Pearson
curve actually fitted and a Gaussian curve is
too small to cause trouble; this need not hold
true in photogrammetric problems. If the
true distribution can be identified, the solu­
tion is obvious if not necessarily simple;
otherwise, real difficulties arise. A non-Gaus­
sian distribution, if it does not differ too
much from the Gaussian, can be introduced
as a perturbation on the Gaussian. An al terna­
tive, in those cases where the deviation is
large, is to introduce a weighting function
which will let the least-squares procedures be
used.

In a series of papers to follow, the applica­
tion of the above mathematical formalism to
specific problems will be considered.

T HE FIRST problem is an extended concept
of terrestrial analytic photogrammetry.

Here both image space and object space lie in
the same atmosphere, with a global, or at
least, multiply-connected, coverage of the ob­
ject space by the image space (Figure 1).

The second problem is that of establishing
"control" points on the moon using earth­
based photography. In this problem only the
image space lies within an atmosphere, and
the object space coverage is only semi-global
but simply connected (Figure 2).

The third and last problem is that of fincl­
ing the coordinates (exclusive of distance) of
all stars brighter than a certain magnitude,
again using earth-based photography. As in
the second problem, only image space is
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where the y's denote sets of 3 X3 matrices.
Absence of points in particular sections of
image space does not effect the general form
(8); it merely thins out the sub-matrices of
form (9). If carried too far, however, it may

Each row represen ts a mapping of a particu­
lar group of object space points onto a partic­
ular image-set (photograph); each x repre­
sents a rectangular matrix. Each rectangular
sub-matrix x is itself made up of 3X3 (or
smaller size) sub-matrices scattered irregu­
larly along the length of the larger sub­
matrix. The degree of irregularity and
amount of scattering depends on organiza­
tion of the object-space matrix; in most cases
the form will be somewhat as

tion in its hyper-dimensional form, and this
can be transformed into the two or one dimen­
sional form, as the special problem may
dictate.

I N A GLOBAL PROBLEM where the mapping of
object space into image space is only par­

tial for a particular set of images (i.e., only a
part of object space is mapped onto a partic­
ular photograph), the form of the expanded
[AJ matrix is

FIG. 2

OB)EC!

SPACe

N ei ther of these di fficul ties can be considered
solved as yet. In special cases,4 very rapid
computing methods can be found and even
demonstrated to be optimum. Vvhether Eq ua­
tions 5 and 7 can be made to fit into these
broad cases, or whether the special cases can
be broadened to cover the equations above is
not yet known for certain, but studies so far
show that the two difficulties can be brought
down to a reasonable size.

Because all three problems have a similar
topological structure, it can be shown that
the matrices [Aj will have the same form for
all three problems, and this form is one which
allows the non-zero elements to be grouped in
a symmetric fashion about the main diagonal.

THE FORM of the [Aj matrix in Equation 2
depends on the form and arrangement of

the ltlXJ matrix. If the Kron formalism is
used, the [Aj matrix has small, completely
filled blocks of matrices along the main
diagonal. If this matrix is peeled apart and
rearranged to give the familiar two-dimen­
sional matrix, the blocks along the main
diagonal are separated and re-distributed to
give a much more open matrix (in the sense of
having zero matrices interspersed among the
basic 3X3 matrices). A useful viewpoint is to
think of the image space as a covering of a
projection of the object space. The mapping
matrix then is a good picture of the projec-

within the atmosphere, but now the coverage
is again global. Image space now lies com­
pletely inside object space instead of com­
pletely outside, and the two spaces are ex­
tremely far apart instead of very close to­
gether (Figure 3).

Investigation of the mathematical basis
common to the three examples mentioned
shows that two major and related mathe­
matical difficulties are to be expected:

1. Organization of the observation matrix [A J
into such a form that [A]-l can be most easily
computed; and

2. Creation of algorithms which will permit nu­
merical solution of photogrammetric prob­
lems within a reasonable interval of time.
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FIG.4

result in a lack of overlap between rows, in
which case the matrix would separate in to
independen t su b-ma trices.

The parameter matrix [BJ in Equation 2,
has the form

As the mapping of image space into object
space approaches completeness for one or
more subsets of image space, the sub-matrices
become longer, so that when each photog­
raphy covers the entire object, the matrix (8)
fllis up:

rlx x x . ~.] l
lx x x . J

l l.' ~; X x.r J I'
lx .1: X . xj J

SOLUTION of the Equation S is not as easy as
a cursory glance "'oldd indicate. First, the

matrices are very much larger than are met
within problems "in the small." The [L1x]­
matrix, for instance, may be of the order of

1000 X 10,000 X 2 X 10;

the [L1XJ matrix of the order of

1,000,000 X 3 X 2;

r[x [xxXXx:r:~ x] II
I [xxxx]

[x x xJ
[x x x ~:] (10)

Ix x x x]
[x x x]

[x x] J
a [x]

where the individual sub-matrices [x] have the
dimensions "number of images in photo­
graph" by "number of parameters per photo­
graph."

It has been pointed out2 that the configura­
tions of matrices [A] and [Ii] are not indepen­
dent, and that the arrangemen t adopted for
the [L1x] matrix should perhaps be such as to
optimize the computation of the quantities
sought.

\\Then the coverage is not global, but is
still connected, the [A] matrix, Equation 3, is
truncated:

rx

.r

I

l
x

x

x

l
I

J

and the [AI matrix correspondingly huge. /\
straight-forward inversion process is, of
course, ou t of the question, and even a Gauss­
Seidel iterative process applied directly
would be unallowably long. Furthermore, the
variance matrix [~2 (6.X)] must be computed,
as well as the confidence limits for the ele­
ments of the variance matrix (v.i.). The very
first step, therefore, must be the multiplica­
tion of Equation S by a permutation matrix
chosen to make the solution easier. I nvestiga­
tion thus far 4 shows that a permutation ma­
trix can be found which rearranges [AJ so that
the non-zero elements occur in bands sym­
metrically placed abou t a diagonal; schemat­
ically, somewhat as shown in Figure 4.

If this matrix is manipulated, by transposi­
tion and inversion, the tendency will be for
the bands to "fold over" on to each other and
thus to limit the spread of the non-zero ele­
ments. For each particular problem, the per­
mutation matrix to be used will be different,
and the search for the proper matrix is a
major part of the problem.

o NeE the question of the matrix topology
has been settled, solution for [L1X] becomes

a computational problem involving itera­
tive relaxation procedures. In order to pre­
serve storage space and to keep the computing
time per iteration from growing beyond
bounds, significance intervals must be estab­
lished for all elements of [L1x] and [L1X]. The
center of each significance interval is then
shifted downward (i.e., toward zero) with
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each iteration in such a manner that the
number of significant figures involved in each
iteration is kept approximately constant, or
at any rate does not grow beyond the ma­
chine's capacity before the pre-set and of the
compution.

After computation of [boX], the next step is
the computation of confidence intervals (or
their equivalent) for the [boX]. This involves
finding the variance matrix [2:;2 (boX)] from
Equation 7. The [2:;2 (boX)] can either be used
directly or combined with the P-function

• (N - 1) ,
Pea) = --- P·/'p.N-p(a)

N-P
where F is Snedecor's non-central F-function
with p and N-p degrees of freedom, to define
an ellipsoid

pea) :::::N([~X]-[~X])T[S2]-1([~X]- [~X]) (11)

This is the equation of an ellipsoid whose size
is determined by the significance level param­
eter a and whose shape is determined by
[52], the sample variance.

If the variance matrix [2:;2 (boX)] is com­
pletely diagonal, then confidence limits for
the elements of [5'] can be set up in terms of
the x2-function, since

(N - 1)52

has a X2-distribution with N-l degrees of
freedom. In the multivariate case, however,
the covariances will in general not be zero.
If the X2-distribution is to be applicable, a
rotation to principle axes7 can be tried, but
such a rotation will not be possible if the
[boX] units are inhomogeneous.

The Wishert distribution function IS de­
fined by

known, and an estimate of the probable range
of variation of 2:;2 is wanted.

Properly, the c.d.f. W(2:;2,N) of w(52, 2:;2,N)
should be differentiated with respect to
[2:;2(boX)] to get the probability function
associated with that matrix, and to derive
from that the fiducial limits,

[2:2]1 and [2: 2 ]z

such that

For all practical purposes, a set of fiducial
limits on [2:;2 (boX)] can be gotten from the
c.d.f. by solving the equations

(1 - tal = W([2: 2L, N)

(!a) = W([2:2]2, N)

for [2:;2[1 and [2:;2]" and then assigni ng the
probability (i-a) to the bracket

{[2:2]2::; [2: 2] ::; [2: 2],1.

This does not mean that there is a probability
(i-a) of [2:;2] lying between the limits shown,
but the difference between this interpetation
and the true interpretation is not important
for the problems here discussed.

A CAREFUL note should be made that these
procedures and criteria are not necessarily

correct if the observation population is non­
Gaussian. The non-Gaussian character of the
observation is almost certain, but it is also
reasonable to assume that the original depar­
ture from the Gaussian is small enough that
no serious effect occurs. Emphasis is put on
original, because weighting of observations
almost certainly will change the nature of the
distribution, and such change can be quite

• [ A Il/2(N-rr-2) I ~21-J/2(N-1) exp {-! tr ~-2A}
w(A, 2:-, N) == '---'------'---'------P--'--(-'-N----"-.-

2
'
/2 (N-J)p7l'p(p-1)/4 II r ----=-.3:)

,~l 2

(12)

and is the probability density function for the
elements aij of the matrix

[A] == (N - 1)[52(~X)].

The matrix [5'] is the sample (maximum
likelihood estimate of the population vari­
ance matrix [2:;2 (boX)] with dimensions pXp.
The cumulative distribution function (c.d.f.)
for aij is obtained by integrating over the
space of [A] between 0 and aij, or between
-aij and +aij for i,cj. In the photogram­
metric problem, the value of [A] will be

severe without being detectable. The effects
usually will be to bring [2:;2(boX)] closer to [0]
and to bring [2:;2h and [2:;2J, closer together. A
sense of euphoria is induced without a cor­
responding improvement in the basic health
of the data.

It is, of course, impossible to solve the
equation
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in one step on any computing machine in
existence, and an iterative procedure must
be used. Of the various iterati ve procedures
that have been investigated, the over-relaxa­
tion process' appears to be the most useful.
The size of the step from one iteration to the
next is controlled by a relaxation factor w

which is related to the maximum eigenvalue
of [A]T[A]. Forw = 1, the familiar Gauss-Seidel
process results; for w>1, the over-relaxation
process. I t can be shown that the over-relaxa­
tion process converges asymptotically more
rapidly than does the Gauss-Seidel. A process
known as the semi-i terative process achieves
faster convergence by using an estimation
[bo Y]m for [boX] at the m-th step which is
based on the two preceding estimations
[bo Y]m-l and [bo Y]",-2. Of course, the more
rapid convergence must be paid for by the
need for storage of [bo Y]m-2 as well as
[bo Y]"'_I at each step. Furthermore, it is
easy to see that for m> > I, the rate of con­
vergence approaches that of the over-relaxa­
tion method. so that the initial advantage is
lost.

BESIDES. the use of automatic, iterative,
relaxatIOn procedures, there are several

other techniques \\'hich must be used if the
extended photogrammetric problem is to be
solvable. One already mentioned is that of
estimating at each step m the number a(m) of
significant figures which must be carried along
in [A] and the associated matrices, and of
arranging the mechanical computation so as
to make use of the space that the dropped
significan t figures make available.

It is characteristic of and a major advan­
tage of the iterative method that the number
of significant figures that must be carried
along in the compu tations can usually be
kept constant from one iteration to the next.
The amount of use one can make of this
characteristic depends among other things on
the eigenvalue spectra encountered, and
particularly (e.g., ref. 6) on the ratio A mini
Amax where Amin and Amax are the least and
the largest eigenvalues. The process may be
thought of as setting up a mathematical comb
filter whose width is a function of the number
of operations to be performed at each step
and whose center is a function of this step.
From step to step, the filter moves along the
real axis to cut out more significant figures
and include less significant figures. Elimina­
tion of steps in the iteration procedure is also
possible by including second order terms or

higher in the Taylor series expansion of [boX],
i.e., wri ting

[tu:] = [A M:-.x] + [A MAx]2 + .. '.
Very little has been done in this field; the
computation of [Aj., which is the Jacobian

is complicated, and the additional storage
space required is a serious drawback. The
semi-iterative procedure mentioned earlier is
equivalent to the inclusion of the second­
order terms, in the same sense that the
method of steepest descent is equivalent to
the method of least-squares, and may be used
instead.

A third technique which looks very promis­
ing is that of first solving for a selected subset
[boX]s C [boX], the subset chosen being the
maximum that can be handled by the com­
puter available. Successive subsets [boXj.+n,

{{[6xll - {[6X].}}

are then added to {[box].} and the sequence of
equations

[M]. = [A].[6X].

[61']'+1 = [A].+1[6X]Hl

solved. Since

and since [boX],+n->->->O as s+n->->->N at
the same time that [bo2X].+n.m approaches zero
with m->oo, the matrices [A]s+n can be kept
simple.

When all data are already at hand, a par­
titioning technique may be found which
better fits the given distribution of data.
When only a part of the eventually complete
set of data is available (and this is particu­
larly true of terrestrial photogrammetry and
within a few years will be true of extra­
terrestrial photogrammetry), the sequential
approach will be the most efficient.

IN SUMMARY one can say that a very great
variety of photogrammetric problems is

solvable by essentially the same set of mathe­
matical equations which are of fairly simple
form. The only real difficulties are those im­
posed by the limited means of computation
available, and these may be diminished by
looking for a mathematical basis which ex-
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tends into other fields where similar difficul­
ties have been found and surmounted.
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