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Adjustment of a Strip
Using Orthogonal Polynomials

ABSTRACT: In problems dealing with fitting of surfaces representable by poly-
nomials to observations taken at points which form a uniform grid, it is often
convenient to use tabulated values of orthogonal polynomials. The method
offers considerable numerical advantages and simplicity in the statistical
analysis of results. This article describes the method and gives an example of
its application in a x-, y- and z-adjustment of a strip consisting of twelve grid

plate models used as a part of a bridging test with the A-§ plotter.

INTRODUCTION

More than a century ago, orthogonal
polynomials were used in fitting of poly-
nomials to data according to the principle of
least squares by the Russian mathematician,
Chebyshev. Since then this topic has been
frequently discussed by others in statistical
and related literature. The theory of the
method is described in most texts on statis-
tics. However, the examples usually employed
to illustrate it deal with the one-dimensional
case of fitting a curve. An illustration of this
method in the two-dimensional case, i.e. in
fitting a surface, based upon the use of tabu-
lated values of orthogonal polynomials, is
given in [2] and will be described in the fol-
lowing. In this case the method can be used
to advantage in photogrammetry where the
problem of estimating surfaces occurs very
frequently.

DESCRIPTION OF THE METHOD

Let us suppose that we wish to fit a surface
to observed values of a dependent variable z
and that the z-values are observed at points
which are distributed in the xy-plane in such
a way that they form a rectangular grid,
ie. xip1i—x;=dy and yia—yi=d for all 7 and
4. This situation arises in photogrammetry,
for example, in the studies of lens distortions,
film shrinkage, model deformations, etc.. and
the arrangement ought to be used whenever
the experimentor has the choice of positions
of the independent variables. Let us suppose
that the surface to be fitted is a general
polynomial in two variables given by Equa-
tion (1):

Z = agp + a10x + aoy + a0 + anxy
+any’+ - - ¢y

in which the &'s will be estimated from the
data using the principle of least squares.

If we are interested only in the nature of
the surface or if we want to evaluate the sur-
face only at the given points, a model (2)
equivalent to (1) can be conveniently fitted
in terms of the tabulated values of orthogonal
polynomials. These polynomials are worked
out for integer values 0, 1, 2 - - - of the in-
dependent variable, an arrangement which is
possible to achieve with any other equally
spaced values by a change of scale and origin.

In terms of these orthogonal polynomials,
Equation (1) is rewritten as:

Z = booko (2) &' (v) + brokr ()& (3)
+ boige ()& () + Daoke’ ()& ()
4 bug @E () + bosk ()& (W) + - -+ (2)

where the b's are the new coefficient and the
£’s are the orthogonal polynomials, of ap-
propriate dimension and degree, given in the
usual notation. The polynomials may either
be calculated or they are available in various
sources in tabulated form (see References).

Let z; be an observed value at a point in
the 7th row and the jth column of a rectangu-
lar grid, i=1,2, - -+ m,j=1,2--+ mn, and
let there be an equal number of observations
at each point. In the case of one observation
(several observations are reduced to one by
taking their mean), a typical observation
equation, written explicitly in terms of
orthogonal polynomials, will have the form:
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zi; = bookd’G — 1, m)&/(j — 1, n)
G bk G — 1, m)&(j— 1, n)
+ bk (G — 1, m)&' (5 — 1, n)
A boots' (6 — L,m)Ed (G— 1,m) 4+ - -+ (3)

where e.g. &1 (j—1, m) is the (j—1)th element
of the polynomial of 1st degree and dimen-
sion m.

Under the usual assumptions about the z's
which underlie the use of the principle of
least squares, the m X n observation equations
of tvpe (3) give rise to a set of normal equa-
tions:

ATAb = A7z (4)

where .1 is the matrix of the coefficients of the
b's, AT its transpose and b and z are the
column vectors of the b's and the z’s respec-
tively.

So far, nothing has been said about the
surface which is being fitted and this ques-
tion will not be settled until the end of this
discussion. In the meantime, it is assumed
that we are determining a surface which
passes through all the points.

Solution of equation (4) is immediate,
since, as a consequence of orthogonality, all
the off-diagonal elements in the ATA matrix
vanish and the diagonal terms become prod-
ucts of the sum of squares of the appropriate
orthogonal polynomials which also are given
in the tables. A compact solution of the prob-
lem that lends itself to matrix treatment is
presented in [2] and will be described in the
practical example that follows.

ADJUSTMENT OF AN A-8 STRIP

Before describing the calculations, a few
words should be said about the data. These
form a part of the tests carried out at the
Topographical Survey, Department of Mines
and Technical Surveysin Ottawa to determine
the vertical bridging capability of the A-8
plotter. Grid plates were used in this par-
ticular test. The bridging procedure used
with the A-8 was as follows: the first grid
plate model was oriented relatively and ab-
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solutely. All the subsequent models were then
individually oriented in the usual way for the
A-8 by employing a cross level in the transfer
of tilts. No attempt was made to control the
scale accurately. x, ¥, z-coordinates of six
symmetrically located grid points were re-
corded in each model. Assuming that the tilts
were accurately transferred, the ‘bridge’ at
this stage consisted of disconnected, variable
scale models, each having generally a dif-
ferent swing, because of the absence of the
b,-motion in the A-8.

The connecting of the models to form a
continuous bridge was accomplished analyti-
cally on the computer with the aid of trans-
formation (5) which gives the relation be-
tween the coordinates of two consecutive

models (7, 14+1):
Xip1 b[ bg 0 Xy
Vipr | =4 —b2 by 0 Vi
Zit1 0 0 b2+b2d Lz
C1
+ c)-l

2 (3
] .

The b's were computed using lateral pass-
points and the ¢'s were determined in such a
way that the models matched exactly at the
center pass-points. The resulting discrep-
ancies between the z-coordinates and their
true values expressed in units of 0.01 mm at
model scale are displayed in Table 1. Al-
though, because of the build-up of systematic
errors, the distribution of the points in the
xy-plane is not strictly uniform, the resulting
effect on the z-values is negligible.

The z-values are entered in Table 1 in
pairs, the top number giving the value in the
previous model and the lower in the following
model respectively. The three single values at
the beginning and at the end of the strip
were taken twice in order to maintain
orthogonality.

For computation, the two values are re-
placed by their mean or their sum (whichever
is more convenient for computation) and the

TABLE 1
0 1 2 9 22 33 33 78 105 128 167 198 238
0 -2 5 13 23 40 58 79 100 135 163 200 238
0 0 0 4 11 3 40 58 78 102 136 169 206
0 0 0 4 11 2 40 58 78 106 136 169 206
0 —2 -7 -5 —4 10 21 37 54 78 106 139 170
0 —6 -7 -5 3 8 25 36 57 79 110 140 170




USE OF ORTHOGONAL POLYNOMIALS

365

TABLE 2
314769.55% 318348.01% 38364.31*% 0.08 3.24 0.67 14.04 0.08 6.21 4.44  2.06 .57 0.22
14858.48%  6028.88* 3.16 4.91 1.46 2.82 10.59 0.00 0.01 0.26 1.62 1.88 1.10
6.16 0.92 1.55 4.02 0.08 4.59 0.13 0.45 0.48 0.10 2.15 82  0.28

resulting table may be viewed as a 3X13
matrix. Let it be denoted by Z. We now
compute:

G = P, ZP," (6)

where Py is a 3 X3 matrix which has the £-
polynomials as rows:

1 1 1
P=1-1 0 1
1 =2 1

Similarly, Py’ is a 13 X 13 matrix of the £'-
polynomials, only this time the different de-
gree polynomials are written down in
columns. Product (6) yields a matrix G of
g-values:

oo Lo1r * * * fo.12

G= Bio Lix°* * fraz

820 821 * * £2.12

A typical element of G is:
3 13
8rs = Z Z zﬁsfl(i - 1) 3)5-‘?,(]. - 1: 13):

=1 j=1
r=20,1, 2,

§=0,1,2---12. )

To evaluate the b's, each entry in matrix
G is divided by the appropriate product of
the squares of the polynomials, i.e.:

&rs

13 - ({r&
£~ 1,3) 162G - 1,13)
1 =1

Grs

brs

3
(=

To organize the computational work, it is
convenient to arrange the d-divisors into a
matrix, say D, which can be written as:

D = Q,JQ: )

where J is a 3X13 matrix in which all the
entries are ones and Q; and Q. are both
diagonal matrices of order 3 and 13 whose
diagonal elements are the sums of squares of
the successive degree polynomials of dimen-
sion 3 and 13 respectively. Denoting by B the
matrix of the b’s, we can also write with the
aid of (9)

B = Q'P,ZP.,7Q, ! (10)

For the purpose of computation it is best
to form the product P,ZP,T first and then
divide each element by the corresponding
element in D.

Some statistical results are now presented:
If the z's form a set of observations and if
the errors which we associated with these ob-
servations are uncorrelated and have a con-
stant variance, o2 then the quantities

Srs =
— = br\/drs,

'\/’drs
r=0,1,2,

$=0,1,2---12,

Wrs

(11

are also uncorrelated, with variance ¢ This
important result is a consequence of the fact
that the set of equations (11) represents an
orthogonal transformation of the z's.

In matrix notation, the orthogonal trans-
formation is:

W = RI*IPXZP‘_,TRZ—l

where the elements in the R-matrices are the
square roots of the elements in the Q-matrices
Because of the orthogonal transformation,
the w's possess the same statistical properties
as the z's except that they have different
means. Also, in view of the geometric inter-
pretation of an orthogonal transformation as
a rotation of axes, which leaves the lengths
invariant, the following relation exists:
2 —

§ : Urs

2 1
U
r=0 s=0 =1

©

zii% (12)

The w?-values, in view of (11), are inter-
preted to represent the individual contribu-
tions to the total sum of squares of the corre-
sponding b’s. These values are displayed in
Table 2. ‘

With the aid of Table 2 we can now readily
assess the nature of the best-fitting surface.
It is quite obvious, by inspection, that the
five entries marked with an asterisk in the
top left corner of Table 2 represent the major
contributions to the total sum of squares. By
comparison, the remaining components, be-
side being significantly smaller in magnitude,
do not appear to exhibit any definite pattern
and can be said to behave randomly.

We thus conclude that all the systematic
variation in the data is accounted for by the
five large squares and that the remaining
squares correspond to the b’s whose means
are zero and, therefore, can be considered to
exhibit only the contributions to the error
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TABLE 3. ANALYSIS OF VARIANCE

D Mean Square at Standard Error at
Sum of Squares (SS) agrees of Model Scale Diap. Scale
Freedom ; :
(0.01 mm unats) (microns)
Total SS 692609 .00 78
SS Mean 314769.55
SS Linear x 318348.01
SS Linear y 14858.48
SS Quadratic x 38364 .31
S.S Interaction xy 6028 .88
S(z—2Z)? 239.77 7 3.2845 +9.1u
S (z—2)? 158.50 39 4.0641 +10.1 p
S(E—-2)7 81.27 34 2.3903 +7.8 1

sum of squares. Thus the nature of the best-
fitting surface is:

Z = agp + a10x + aay + asx? + anxy.

The purpose of this study was to appraise
the performance of the bridging method and
to assess its precision. The precision is de-
rived from the residual sum of squares. It is
customary to arrange the results in an
Analysis of Variance Table (Table 3): The
column denoted ‘“‘Degrees of Freedom’ gives
the divisors for the calculation of that par-
ticular mean square. Since there were two
observations at each point, the sum of
squares of the deviations from the fitted
surface: S(z—Z%)? was further decomposed
into the sum of squares of the deviations of
the observations from their means: S(z—2)?
and the sum of squares of the deviations of
the means from the surface: S(z—Z2)% The
former part, which is calculated directly from
the data, forms an independent estimate of
error while the latter measures the closeness
of fit of the surface to the data.

The quantity: S(z—Z2)2=81.27 should be
equal to the sum of the components allocated
to error in Table 2.

The w?-arrays resulting from fitting poly-
nomials to the x- and y-discrepancies in the
same strip are presented in Tables 4 and 5
respectively.

While, in the previous example, the divi-
sion of the w?-components into those repre-
senting systematic variation in the data and
those reflecting error posed no difficulties,
these examples are less clear-cut in this re-
spect. Here the transition between the two
groups of components is less abrupt and no
definite boundary is readily apparent. Even
in situations like these there is no great
danger of misinterpretation of the results if
the decision is made just on the basis of visual
inspection of the magnitude and the spread
of the w?components. For instance, the com-
ponent w;;2=9.97 in Table 4 might be inter-
preted to represent systematic variation
rather than error. While this may well be so,
the decision to the contrary is going to make
very little difference in the results.

In some situations, assistance in reaching a
decision can be obtained from statistical tests
which deal with testing the homogeneity of a
group of variances. Some of these tests are
listed in [2]. This requires, however, that we
are prepared to make an additional assump-
tion about the errors—the assumption being
that the errors are distributed normally.

As in the case of the z-adjustment, the
residual sums of squares were obtained for the
x- and y-adjustments yielding the following
standard errors of the residuals at the scale
of the diapositives:

TABLE 4
74,277.55% 78,625.23* 7,083.10% 326.77% 33.61* 0.81 3.16 5.03 6.26 2.95 1.03 0.12  2.87
11,550.48%  2.730.91% 26.424  9.97 1.02 1.20 0.67 0.13 0.11 1.90 1.05 0.18  3.76
0.01 4.40 0.07 0.00 0.23 1.22 0.77 3.77 0.43 0.93 2.20 0.14  0.09
TABLE 5

362851.28*% 235018.68*% 10,383.30* 34.08% 0.22 53.55 14.45 8.84 0.92 11.52 7.16 2.66 0.00
2464.69* 997 .12% 226.91% 10.10 0.14 2.25 0.01 7.8 0.43 1.68 2.07 0.03 1.75
43.10% 4.22 6.40 151 0.38 0.00 0.37 0.96 0.13 1.99  0.92 1.92 0.36
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Si=+81p
S, = + 1484
NoTES

In conclusion it should be remarked that,
if the original polynomial form is desired, i.e.,
if the a-coefficients, which refer to the orig-
inal values of x and y, are needed, then they
can be obtained from the b's by replacing the
&-polynomials by their equivalent poly-
nomial functions (see e.g. [1]).

Another point, worth mentioning, is the
fact that, while the existing tables of orthog-
onal polynomials apply to uniformly spaced
values of the independent variables, the
method is general and can be advantageously
applied in some instances to non-uniform
data. In the latter case, the orthogonal poly-
nomials would have to be calculated but,
once found, they can be used with different
sets of observations. Such a situation exists,
for example, in test areas where the same set
of control points is repeatedly used for dif-
ferent tests.
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Lastly, the method can readily be extended
to the case of three and more independent
variables.
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GRrAVITY MAP OF

A gravity map of the United States (exclu-
sive of Alaska and Hawaii), the first of its
kind, and described as a significant contribu-
tion to the growth of basic scientific knowl-
edge about the earth, has just been published
by the Department of the Interior's Geologi-
cal Survey.

The comprehensive,

2-sheet, wall-sized

UNITED STATES

map, two decades in the making, is at a scale
of 1:2,500,000 (about 40 miles to the inch).
On the map varying measurements of the
force of gravity are shown by contour lines.

It will be of particular interest to scientists
studying the structure of the earth’s crust and
upper Mantle, and to those studying re-
gional geologic problems.

WHITE PrAINS FirMm
Si6Ns CONTRACT WITH PANAMA

International Resources and Geotechnics,
Inc. of White Plains, New York, announced
today that it had signed a contract with the
Government of Panama to undertake a 4.2
million dollar survey of Panamanian natural
resources, property ownership and land valu-
ation.

The survey will cover some 40,000 square
kilometers, or approximately 63 percent of
Panama.

Financing was provided with the help of a
2.4 million dollar loan from the United States
Agency for International Development. To
this, the Panamanian Government will add
1.8 million dollars from its internal budget
to cover the costs of supplies, materials,
transport, equipment, and Panamanian per-
sonnel.

The contract, signed in Panama before

United States and Panamanian officials, is an
important element of newly elected President
Marco A. Robles’ program for Panama's
economic development. Most of the country’s
lands are occupied but unowned, unregistered
and untaxed. The survey will identify all
lands being used and determine whether they
are owned or merely occupied. Land capabil-
ities, based upon natural resources charac-
teristics, will be mapped. Tenure and owner-
ship will be mapped. Valuation of lands will
be based upon land capabilities. Taxes will be
levied and collected upon the basis of valua-
tions. It is expected that the resultant in-
crease in taxation revenue will increase Pan--
ama’s internal revenue by several times. Mr.
D. R. Lueder, President of IRG, said today
that this is one of the most diverse and ambi-
tious programs of this nature ever attempted.




