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(1.1)

INTRODUCTION

THIS ~APER extracts major items of infor-
matIOn from RCA Data Reduction TR­

63-1, Photogrammetric Data Reduction Anal­
ysis-Calibration of Comparators for Bal­
listic Camera Data, by Ralph Gugel, Decem­
ber, 1963. The paper is a sequel to the pre­
vious. paper published by Rosenfield (2), in
that It presents the statistical analysis neces­
sary to validate the results obtained from
Rosenfield's mathematical model.

The au thor wishes to express his appreci­
ation to Dr. L. Lasman and Mr. George H.
Rosenfield for their assistance in preparing
this report, and to Mr. James Duncan who
programmed the calibrations for an auto­
matic computer reduction. Also, he wishes to
acknowledge the efforts of the film readers
who contributed to the calibration of the
comparators described in the appendices.

NONPERPENDICULARITY OF AXES

. Rosenfield (2) describes non perpendicular­
Ity as "the correction angle e through which
the secondary guide way must be rotated to
be perpendicular to the principle guide way."
The development presented below is based on
the method of inversion so that a calibrated
standard is not necessary. This method makes
use of the principle that, in the absence of
nonperpendicularity error, the X-coordinates
relative to a fixed coordinate system on the
plate will be equal in magnitude but opposite
in sign when the plate is inverted about the
Y-axis of the comparator.

Two points whose X-coordinates are widely
separated are selected as reference points to
establish the grid coordinate system. These
poin ts are used to align the plate with the
X-(principle) axis of the comparator. It is
suggested that a minimum of five vertical
lines of 11 poin ts each equally spaced over the

majority of the comparator measuring format
should be selected to read as calibration
points to give suf-ficient redundancy and
strength to the solution. A minimum of two
independent sets of observations are made on
each grid point, including the reference points,
in order to determine the setting error. The
plate is then inverted about the secondary
(Y) axis, realigned and the readings repeated.

Each set of readings is corrected for tem­
perature fluctuations and the comparator
errors previously calibrated. The average
value of the observations and the setting error
are computed independently for the direct
and inverted positions. The average values of
the observations in each position are then
translated to the grid origin by the equations

x.' = 2x - x,. - Xl
, 2

y.' _ 2y - Yr - y,
,- 2

RALPH A. GUGEL

853



854 PHOTOGRAMMETRIC E GINEERING

in which

X," = x' cos{3 - Y' sin {3

V," = - x' sin /3 + y' cos{3. (1.2)

FIG.!. Relationship between comparator co­
ordinates (X, V), unrotated grid coordinates
(X', V'), and rotated grid coordinates (X", V').

The coordinates for each point are then ro­
tated to a rectangular system paral1el to the
comparator X-axis by the equations (Figure
1)

(1.8)

(1.6)

(1.5)0% = an + alY.

v" = X" + Y" sin.
Vy = y" cos.

n

'LXi17i
i_I

a, = sine. = - ---

The value for cos e may then be computed
by

when the angle e is very small.
If the method of calibrating a comparator

using a grid as given by Hal1ert (5), is reduced
to only the portion concerning perpendicular­
ity, it can be seen that it is equivalent to the
method described above. I t has been found
from experience that either of these two meth­
ods provides better results than the method
previously used at AMR. The previous
method is described by Rosenfield (2) and was
derived from a method developed by lug (3).
This method, as employed at AMR, had two
basic weaknesses. Firstly the computation of
the angle of non perpendicularity is not based
upon a least squares adjustment of the obser­
vations on al1 the data points, but instead is
based upon an averaging technique using a
number of individually computed angles of
nonperpendicularity. Secondly, the error
propagation is weak since the reading vari­
ance is automatical1y increased by the double
differencing method of the analysis. This
earlier method has therefore been replaced by

cos. = [1 - sin' .J'/'. (1. 7)

With the values for sine e and cos e computed,
the coordinates of the calibration points cor­
rected for nonperpendicularity error may be
computed by

The constan t term represen ts the average
error in the uncorrected data. The linear
coefficien t represen ts the sine of the correction
angle e through which the secondary guide
way must be rotated to be perpendicular to
the principle guide way. Actually the linear
coefficient represents the tangent of the cor­
rection angle e, but for the smal1 angles asso­
ciated with nonperpendicularity of axes it
may be assumed that tan e equals sine e equals
e in radians.

The coefficien ts of the error model may be
computed using a least squares adjustment 011

al1 the poin ts read by

tx.
\_1

Go = --­
n

(1.4)
- Yli" + Y2/'
Yi =-----
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where Xi represents the error due to non per­
pendicularity of the measuring axes of the
comparator at a distance 17i from the center of
the plate. (See Figure 2.)

The errors may then be fitted to an error
model of the form

. yr - Yl
Sill {3 = -;c----=---=-----,---

[(Xr - Xl)' + (Yr - Yl)'J1/'

cos/3 = [1 - sin'{3J 1/' (1.3)

It is obvious that, in the absence of non­
perpendicularity error, the rectangular coor­
dinates X", Y" for the image i wil1 be un­
altered by the inversion of the plate about the
Y-axis except for the sign of the X"-coordi­
nate. The average of the X"-coordinates of a
point for the direct and inverted positions
should then be zero for each poin t. An y devia­
tion from zero is due to non perpendicularity
of the measuring axes of the comparator. If
the comparator coordinates in the direct
position are denoted by Xli", Yli" and the
coordinates in the inverted position are de­
noted by X 2i", Y,." then

X "+X"X,=_h_'_~

2
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the method described above to calibrate the
comparators at AMR.

METHODS OF ANALYZING THE RESULTS

The quali ty of the data used to determine
the coefficien ts of the error models is deter­
mined by the precision of the readings and the
quality of the standards used. The quality of
calibrations cannot be expected to be any
better than the quality of the data fitted to
the error models. Therefore, a satisfactory
calibration has been achieved when there is no
significant difference between the variance of
the data fitted to the error model and the
variance of the residuals remaining after the
adjustment. An F-test can be used to deter­
mine whether a satisfactory calibration has
been achieved.

Some of the error models used for the cali­
brations are capable of producing zero resid­
uals. If the adjustment is allowed to proceed
beyond the poin t where the two variances are
approximately equal, then the error model
could be correcting for errors that are due only
to reading error. This could actually introduce
errors in the corrected coordinates. AI though
the magnitude of these errors would not ex­
ceed the standard error of the data fitted to
the error model, it definitely is not desirable
to introduce them. Consequently, it is advis­
able to check the variance ratio prior to the
adjustment, and during each step in the ad­
justment, so that this undesirable overadjust­
ment does not occur.

The F-test to determine the proper stop­
ping poin t is constructed as shown below. The
following notation is introduced:

Sl = the variance of the residuals.
Sr2 = the variance of the data fitted to the

error model.

If (S.2/Sr 5) > F(a,iJ)(0.95) , one continues with
adjustment; otherwise he stops the adjust­
ment.

F(a,iJ)(0.95) is a tabular value from the
statistical F distribution and is a function of
the degrees of freedom associated with the
variance of the residuals (a), the variance of
the data fi tted to the error model (m, and the
probability level (0.95). The degrees of free­
dom associated with these variances are a
function of the error model, the number of
points involved, the number of sets of read­
ings, and the operations performed on the
readings to provide the data fitted to the error
models. The following sections provide the
details on computing the necessary values for
the F-test for each type of calibration.

----l..-----It-----~-x"

FIG. 2. Determination of Nonperpendicularity.

PERIODIC LEADSCREW ERROR

The data to be fttted to (-he error model are
the differences between the average measured
coordinates of points in the initial position
and their respective average measured coordi­
nates in the reset position. If there were no
error in the measurements or the leadscrew,
these differences would be a constant equal to
the distance the scale had been moved for the
readings in the reset position. In the calibra­
tion procedure it is first necessary to deter­
mine whether the variance of these differences
from a constan t reflect anything other than
reading error. The computations for this
analysis are as follows.

The variances of the readings in each posi­
tion are gi ven by

L: L: (d2ik)2
j k

(TX22 = ----- . (2.1)
n(N 2 - 1)

where the subscript 1 denotes the initial posi­
tion, the subscript 2 denotes the reset posi­
tion, d is the deviation of each reading from its
respective average coordinate,

i=I,2,' " n; it is the number of points
read,

j = 1,2,' " Nt; N l is the number of sets of
readings on each point in the initial
position, and

k = 1,2, ... , N 2 ; N 2 is the number of sets of
readings on each point in the reset
position.
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(2.3)

(2.2)

where 8S, is the standard error of the scale
calibration.

The constant error in the measured co­
ordinates is computed by

(2.6)

(2.5)Ux
2 = ----'---

n(N - 1)

where d is the deviation of each measured
coordinate from the average measured co­
ordinate for'each poin t,

i = 1 2, . .. n; n is the number of points read and

= 1 2, . .. N; N is the number of sets of readings.

The variance of the data fitted to the error
model is then

t (l5 - D i )2
i-I

5,u2 =-----
n - 1

where D is the difference between the average
coordinate in the reset and initial position for
each of the n points and D is the average
difference between points.

If

(5,0'/5T') > F{ (n - 1), [n(N! + N. - 2) Jl (0.95),

UXJ 2 UX2
2

5 T
2 = --+--.

N, N2

To determine whether any error other than
reading error is reflected in the uncorrected
differences compute

The variance of the differences in the aver­
age coordinates is

then the data reflect period leadscrew error
over and above the reading error and the data
should be fi tted to the error model. If the
ratio of the two variances is not greater than
the F value then no significant periodic error
is presen tin the leadscrew and the adj ust­
ment is not necessary.

If the data are fitted to the sine wave error
model the variance of the residuals becomes

(2.7)

where D is the deviation of the average mea­
sured coordinate from the given calibrated
coordinate for each scale graduation.

The variance of the data about the con­
stant error is then

t Vx i 2

SJlI2=~,
n-3

(2.4)
(2.8)

(2.9)

where Vxi represents the residual for each
point resulting from the least squares adjust­
ment and the F-test becomes

(5.1
2/5;) > F{<n - 3) [n(N! + N 2 - 2) Jl (0.95).

The residuals should be tested after each
iteration during the least squares adjustment.

SCALE ERROR AND SECULAR LEADSCREW

ERROR

The data to be fitted to the error model are
the deviations of the average measured
coordinates of the scale graduations from the
gi ven calibra ted coordinates of the scale. If
there were no errors in the measuremen ts, the
leadscrew, or the given coordinates of the
scale graduations, these deviations would all
be zero. In the calibration procedure it is first
necessary to determine whether the variance
of these deviations reflects anything other
than reading error and error in the given
coordinates of the scale graduations. The
computations necessary for this analysis are
as follows.

The variance of the readings is computed
by

where V" is the difference between the aver­
age measured coordinate for each point and
the constan terror A o.

If

(SU0 2/ST2) > F{ (n - 1), [n(N - 1) Jl (0.95)

then the residuals reflect scale error and/or
secular leadscrew error and the data should be
fi tted to a polynomial. If the ratio of the two
variances is not greater than the tabular F­
value then no significant error other than
reading error and error in the calibrated scale
is present in the data and the adj ustmen t is
not necessary.

If the data are fitted to the polynomial the
variance of the residuals becomes

n

LV:ri2

SV12=~
n-p

where p is the number of coefficients com­
puted for the polynomial and V" is the
residual for each point resulting from the
least squares adj ustmen t.

The F-test for the polynomial fit becomes

(S.N5;) > F{ (n - p), [n(N - 1)]J (0.95).

L
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The degree of the polynomial to which the
data are fitted should be increased by steps of
one and the residuals tested as above after
each step until the F-test indicates no sig­
nificant errors remain or until a second degree
polynomial has been fitted. Experience has
shown that the higher order terms of the poly­
nomial do not significantly reduce the errors.
If significant errors still remain after the data
have been fitted to a second degree poly­
nomial, the data should then be subjected to a
harmonic analysis to correct the remaining
errors.

When the data are subjected to the harmonic

If there was no error in the readings, the
standard, or the comparator ways, the direct
and inverted readings could both be expected
to produce means of zero. Since these errors
do exist, the direct and inverted readings will
produce different means and it is necessary to
compu te the reading variance independen tly
for the direct and inverted readings. The
variance of the deviations fi tted to the error
model is then a function of the variances of
the two subgroups.

In the calibration procedure it is first of all
necessary to determine whether the variance
of the data to be fitted to the error model

ABSTRACT: The procedures jor calibrating a prect~wn leadscrew type com­
parator are described and the results oj the calibration of the ballistic plate com­
parators in use at the A tlantic ~Missile Range are given. The errors to be cali­
brated are: (1) periodic leadscrew error, (2) scale error and secular leadscrew
error, (3) weave and curvature oj the ways and (4) nonperpendicularity of axes.
The standard error oj the plate coordinates obtained jrom N[ann comparators
422C66 and 422D49 and Wild/Stereo Comparator STK-l were reduced from
2.2, 4.9 and 5.2 microns to 1.2, 1.2 and 1.9 microns respectively as a result oj the
calibrations. Each calibration is described in detail giving the reading pro­
cedures, calibrated standards necessary, error models fit and methods oj analyz­
ing the results.

(2.10)

analysis it is necessary to start the adj ustmen t
using the first two harmonics because only the
cosine coefficient of the last harmonic is used.

For the harmonic analysis the variance of
the residuals becomes

n-!

L Vx i 2

5
1
''2.2 = i"""l

n - p - 2q + 1

where q is the number of harmonics used in
correcting the data.

The F-test becomes

(5,,2'15;) > F[(n - P - 2q + 1), n(N - 1)](0.95).

Again, the harmonic analysis should be
applied by adding one harmonic at a step and
the residuals tested after each step to deter­
mine when to stop the adj ustment.

WEAVE AND CURVATUlm OF THE WAYS

The da ta to be fi tted to the error model are
the deviations of the average measured co­
ordinates from a straight line. Since the
calibration does not use a calibrated standard
the proced ures used employ direct and in­
verted measurements to remove errors in the
standard. The data fitted to the error model
are the result of averaging the readings in the
direct and inverted positions.

reflects anything other than reading error.
The compu tations necessary for this analysis
are as follows,

The variances of the readings in each posi­
tion are computed by

L L (d'i})2

UX12 =
n(N, - 1)

L L (d2i/.)2

UX22 =
k (2.11)

n(N2 - 1)

where the subscript 1 denotes the direct
posi tion, the su bscript 2 denotes the inverted
position, d is the deviation of each reading
from the average coordinate for that point,

i= 1,2, ... ,n; n is the number of points
read,

j = 1,2, .. ',N,; N l is the number of sets of
readings on each point in the direct
posi tion

k = 1,2, "', N 2; N 2 is the number of sets of
readings on each point in the inverted
position.

The variance of the data to be fitted to the
error model is then
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where X is the average measured coordinate
for each point.

The variance of the da ta abou tAo is then

use a calibrated standard, the procedures used
employ direct and inverted measurements to
remove errors in the standard. The data
fitted to the error model are the result of
averaging the readings in the direct and
inverted positions.

Since the individual means of the direct and
inverted readings for a point are opposite in
sign, it is necessary to compute the reading
variance independen tly for the direct and
inverted readings. The variance of the devia­
tions fi tted to the error model is then a func­
tion of the variance of the two su bgrou ps.

In the calibration procedure it is first of all
necessary to determine whether the variance
of the data to be fitted to the error model
reflects anything other than reading error.
The compu tations necessary for this analysis
are as follows.

The variances of the readings in each posi­
tion are computed by

(2.14)

(2.13)

(2.12)

tXi
Ao=~

n

i_I
Svc 2 = ----

n - 1

To determine if the variance of the data
reflects anything other than reading error
compute the ratio of the two variances.

If

(S,02/S,') > 1'1 (11- 1), [1I(N1+ N 2 - 2)]j (0.95)

1 (UX,2 UX22)S; =- --+-- .
4 N 1 N 2

Compute the constant error in the data to
be fi tted to the error model by

(2.15)

(2.16)

then the residuals reflect error due to weave
and curvature of the ways and the data
should be subjected to the harmonic analysis.
If the ratio of the two variances is not greater
than the tabular F-value then no significant
error other than reading error is present in the
data and no adjustment is necessary.

When the data are subjected to the har­
monic analysis the variance of the residuals
becomes

tV.l:i2

S.,2 = _;_-1 _

n - 2q + 1

where V" represents the residual for each
point resulting from the adjustment and q is
the number of harmonics used in correcting
the data.

The F-test for the harmonic analysis be­
comes

(S,.I'/s;»FI (1I-2q+l), [n(N,+N2-2)]j (0.95).

UX,2 = ----'---
n(NI - 1)

L L (d2ik)2
; k

UX 22 = -----
n(N2 - 1)

where the subscript 1 denotes the direct posi­
tion, the subscript 2 denotes the inverted
position, d is the deviation of each reading
from the average coordinate for that point,

i=1,2, "', n; n is the number of points
read,

j = 1,2, .. ',N,; N 1 is the number of sets of
readings on each point in the direct
position,

k = 1,2, "',N 2 ; N 2 is the number of sets of
readings on each point in the inverted
position.

The variance of the data due to reading is
then

The total variance in the data to be fi tted
to the error model is then

where 5p
2

, 5.2 and 5w
2 are the standard errors

of the periodic error, secular error and weave
of the ways calibrations respectively.

The error in the comparator coordinates
due to non perpendicularity of the measuring
axes is the average of the direct and inverted
X-coordinates for each point. These errors
are computed by

If this F-test shows significant errors over
and above the reading error then the data
should be subject to the harmonic analysis.

Again, the analysis should be started by
evaluating the first two harmonics in the first
step and adding one harmonic at a time until
the F-test indicates a satisfactory calibration
has been achieved.

NONPERPENDlCULARLTY OF AXES

The data to be fitted to the error model are
the deviations of the average measured X -co­
ordinates from a straight line perpendicular
to the X-axis. Since the calibration does not

. 1 (UX,2 UX22)
S,"2 = - --+-- .

4 Nt N 2

SrI2=Sr02+Sp2+S.2+SW 2

(2.17)

(2.18
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(5v02/5rI2) > F[n, n(N, + N2 - 2»)(0.95)

(SvN5rI 2) > F[(n - 2), n(N, + N 2 - 2»)(0.95).

(2.22)

S MMARY

The calibration proced ures and the statis­
tical analysis presented here wil1 produce
calibration coefficien ts for correcting readings
made on any leadscrew type comparator. Al­
though some better methods may exist, these
methods wil1 produce calibrations whose
quality is limited only by the mechanical
limits of the comparator, the reading precis­
ion, and the standard error of the calibrated
scale, with a minimum of expense required for
calibrated standards. The number of sets of
readings to be made depends on the setting
precision that can be achieved and the de­
sired quality of the calibration.

The methods described have been used at
the Atlantic Missile Range to reduce com­
parator errors to one micron in each axis of
our ballistic plate comparators.

REFERENCES

1. Bennet, J. M., "Method for Determining Com­
parator Screw Errors with Precision," Journal
of the Optical Society of America, Volume 51, No.
10, October 1961, pp. 1133-1138.

2. Rosenfield, G. H., "Calibration of a Precision
Coordinate Comparator," PHOTOGRAMMETRIC
ENGINEERING, Volume 29, No. I, January 1963,
pp.161-174.

3. Zug, R. 5., "High Altitude Range Bombing by
the Aberdeen Bombing Mission, Using Ballistic
Cameras," Research Services Division,Report
No.1, Ordnance Research and Development
Center, Aberdeen, Md., 10 December 1945, pp.
112-117.

4. Collen, F. c., Appendix A, "Calibration of a
Precision Coordinate Comparator," PHOTO­
GRAMMETlUC ENGINEERING, Volume 29, No. I,
January 1963, pp. 161-174.

5. Hallert, Bertil, P., "Determination of the Geo­
metrical Quality of Comparators for Image Co­
ordinate Measurement," GIMRADA Research
Note No.3, 1 August 1962. Geodesy, Intelli­
gence, and Mapping, Research and Develop­
ment Agency, U. S. Army, Corps of Engineers,
Fort Belvoir, Virginia.

(2.19)

(2.20)

(2.21)

2

tXi
2

i=l
Sl'02= __-.

n

XIiI+X2i"
Xi =

where X/' is the average coordinate in the
direct position and X 2" is the average co­
ordinate in the inverted position for each
point.

The variance of the uncorrected errors is
then

where Vx represents the residual for each
point resulting from the adjustment.

The F-test for the error model fit becomes

To determine if the variance of the uncor­
rected data reflects anything other than read­
ing error compute the ratio of the two vari­
ances.

If

If this F-test shows significant errors over
and above the reading error then the calibra­
tion is unsatisfactory and must be repeated.

The standard error of the correction angle
f is then

then the residuals reflect error due to non per­
pendicularityof the axes and the data should
be fi tted to the error model. If the ra tio of the
two variances is not greater than the tabular
F-value then no significant error other than
reading error is present in the data and no
adj ustment is necessary.

When the data are subjected to the rotation
to correct for nonperpendiculari ty error the
variance of the residuals becomes


