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Analytical Adjustment of Large Blocks

The normal equation matrix is “collapsed” and
a Block Successive Over Relaxation Method is
applied to yield a practical and rigorous solution

for very large photogrammetric nets.

(Abstract on next page)

INTRODUCTION

SINCE THE ADVENT of large-scale high-speed
digital electronic computers in the early
1950’s, considerable effort has been directed
toward applying numerical techniques to
solve the fundamental problems of photo-
grammetry. An early goal of these efforts was
the development of a practical, rigorous and
nonrestrictive technique which would permit
the simultaneous adjustment of the entire
store of observational material arising from a
general photogrammetric net. In 1958 Duane
Brown developed a least squares theory which
was sufficiently general and comprehensive
to effect such a solution. Application of this
theory has been highly successful in a variety
of applications wherein the normal equations
arising from the adjustment were of modest
order. Attempts, however, to apply this, and
other prominent theories, to the task of per-
forming aero-triangulation and control ex-
tension by simultaneously adjusting large
photogrammetric blocks have proven im-
practical or impossible. In all approaches re-
ported to date, direct solution of the normal
equations has been attempted by one or an-
other of the many variants of Gaussian elim-
ination. This has set a practical limit (on the
order of 25 photographs) to the size of the
photogrammetric net which can be handled,
for computational difficulties with Gaussian
elimination, due to roundoff and truncation,
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increase severely with an increasing number
of unknowns. In addition, the number of
computations required for the formation and
solution of the normal equations increase as
the square and cube respectively, of the num-
ber of unknowns.

Because of this, interest toward imple-
mentation of a rigorous analytical adjust-
ment of large photogrammetric blocks has
largely died out in favor of suboptimal solu-
tions which are compromises based solely on
computational considerations. These solu-
tions have largely consisted of piecewise ad-
justments ranging from extension by analy-
tical pairs, triplets or sub-blocks, with sub-
sequent adjustment of the model to absolute
control, to the adjustment of strips on blocks
of modest size (typically 25 photos or less).

Nonetheless, the theoretical merits of
simultaneous adjustment are conceded by al-
most all, and the military and commercial
needs for such an adjustment have con-
tinued to mount. Consequently, D. Brown
Associates, Inc., under the sponsorship of the
Rome Air Development Center (RADC),
began a study early in 1963 which sought to
evaluate an approach designed to overcome
the limitations which have precluded the suc-
cessful application of Brown’s solution (1958a,
1958b, 1959) to the simultaneous adjustment
of large photogrammetric blocks. This paper
briefly describes the rationale of this ap-
proach and outlines some of the results
achieved. A full and detailed treatment of
this study is to be found in Brown, Davis and
Johnson (1964).

RATIONALE OF APPROACH TO THE
PROBLEM

It was evident that if large blocks of pho-
tography were to be successfully adjusted as
organic units, an effective alternative to the
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reduction of the normal equations had to be
developed.

In an attempt to alleviate the undesirable
consequences arising from the round-off error
introduced by direct methods of normal
equation solution, attention was directed
toward recently developed matrix iterative
analysis techniques to accomplish this solu-
tion. The advantage of such methods is that
the original system of equations, or some
simple transformation thereof, remains un-
altered throughout all stages of calculation,
and thus a great stabilizing factor is con-
tributed to the process. Consideration was
also given to the fact that, for large blocks of
aerial photography possessing a fairly con-

cient matrix of the general normal equa-
tions in such a manner as to achieve a
highly diagonal form which could con-
ceivably be conducive to a more rapid
convergence of the iterative process.

The logic of generating only the nonzero
constituents of the normal equations is a
relatively simple and straight forward matter.
Similarly, the coefficient matrix of the gen-
eral normal equations can be “‘collapsed” to
the compact form indicated in Figure 2b and
an algorithm can be established by means of
which the elements of the collapsed matrix
can be related to their counterparts in the
original matrix. This permits the collapsed
system of equations to be formed directly,
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photogrammetric nets. Difficult problems are associated with the implementation
of the uncompromisingly rigorous analytical adjustment of large nets. A general
approach to the solution of these problems is utilized. The photogrammetric
theory essential to the approach includes an extended and refined version of an
earlier theory, as developed by Duane C. Brown. Several specific approaches,
within the framework of the general approach, are compared to determine the
particular variant of numerical and computational techniques that leads to the most
effective results. The method is completely general and nonrestrictive and will
accommodale any conceivable configuration of ground control data and combina-

tion of auxiliary sensors.

sistent pattern of forward and side overlap
and a consistent pattern of control or pass
points, such as the 4-by-5 block illustrated in
Figure 1, the coefficient matrix of the general
normal equations is both highly patterned
and consists predominantly of zero elements,
as shown in Figure 2a¢. This suggested the
possibility of:

1. Utilizing an appropriate indexing al-
gorithm to collapse the coefficient mat-
rix of this system of equations into a far
more compact matrix consisting of few
or no zero elements;

2. Computing this ‘collapsed system’ of
normal equations directly, and thus by-
passing the unnecessary computation of
zero elements;

3. Formulating a computing algorithm to
exploit the collapsed system of normal
equations to conceivably effect a prac-
tical solution by means of the afore-
mentioned iterative procedures which
are vast improvements over the classical
methods;

4. Employing a process, which was named
“intertwining,” to rearrange the coeffi-

and as a result, the total computational time
in setting up the system increases only
linearly with the number of photographs.

In Figure 2a, it is noted that considerable
seperation exists between submatrices asso-
ciated with elements of orientation and sub-
matrices associated with control points. This
raised questions as to the role of the internal
arrangement of the normal equations and
suggested the possibility of the existence of
some optimal internal arrangement which
might offer significant advantages. Consider-
able effort was expended to devise ‘inter-
twined’ normal equation arrangements which
were highly diagonal in character and which
also placed the coefficients of the unknowns
corresponding to a given control point as
close in the matrix as possible to the coeffi-
cient of those photos on which the point ap-
pears, Figure 3 illustrates one such inter-
twining arrangement as applied to the 3 by 5
block of photographs.

An analysis of the rapidly developing field
of iterative techniques for the solution of
simultaneous linear equations revealed three
methods which appeared to merit consider-
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F1G. 1. A uniform 4-by-5 block. The numbering of the control points and photographs
is according to the rows.

ation. While it was a relatively simple matter
to adapt these solutions to operate only on
the nonzero elements of the ‘“‘collapsed”
equations the pivotal question was whether
or not a prohibitive number of iterations
would be required for adequate convergence.
Unfortunately this question could not be
answered in advance on the basis of purely
theoretical considerations. The answer was
to be obtained only by actual trial through
numerical simulation of various realistic
situations.

NUMERICAL INVESTIGATION OF THE
APPROACH

Two variations (Point and Block) of each
of three iterative techniques (Gauss—Sidel,
Gauss—Sidel with Luisternick Acceleration
and Successive Over Relaxation), and four
different normal equation arrangements
(Figure 4-7) were selected for testing the
various combinations of these iterative
techniques, and arrangement of equations
were evaluated by actual reduction of simu-
lated strips of photography. Both economics
and logic dictated such a course of action for,
if an acceptable solution could not be found
tor a strip of photography, the possibility of
developing an acceptable solution for larger
blocks would be even more remote. A process
of elimination was carried out in order to de-

termine which specific combination of normal
equation arrangement and iterative method
would yield the highest rate of convergence.
This process began with the simulation and
solution of the basic two photograph problem
and proceeded, in successive stages, to six
photo strips and twenty-five photo strips
until a single iterative method and normal
equation arrangement were clearly demon-
strated superior to all others. A near minimal
control configuration (the four corner points
in the initial photo) was utilized in all of these
exploratory simulations.

Through this process it was established
that the basic Gauss-Sidel technique con-
verged too slowly to be considered practical
and that the Gauss-Sidel with Luisternick
acceleration was numerically unstable. The
Block Successive Over Relaxation method,
on the other hand, yielded results which were
about equivalent to noniterative techniques.
The “intertwined’” forms of the normal equa-
tions failed to provide the hoped for acceler-
ation to convergence of the iterative solutions
and were discarded in favor of one of the
more prosaic equation arrangements which
turned out to be superior in this regard.

DETAILS OF THE ADOPTED TECHNIQUE

Inasmuch as the iterative approach was
not expected to be computationally superior
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on small photogrammetric nets, the fact that
a satisfactory solution had been achieved at
all was considered to be encouraging enough
to warrant additional study of the technique.
Before proceeding with this however, it was
necessary to reprogram the computer reduc-
tion, for the programs utilized to support the
exploratory stages of the study, having ex-
perienced frequent and extensive modifica-
tion as the various approaches were tested,
were both inefficient and restrictive in char-
acter. This revised set of programs, were
coded for the CDC 1604-B computer which
is a part of the experimental facility at
RADC. They fully exploit the concept of the
direct formation of the collapsed form of the
normal equations arising from a general
photogrammetric block wherein the photos
and ground points are numbered in a colum-
wise manner, the technique of solution by the
Block Successive Over Relaxation iterative
technique and the statistical rigor, flexibility
and comprehensiveness characteristic of
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Brown’s theory. The development of the
normal equations is largely the same as
originally presented by Brown in 1958 and
1959, however, a number of refinements have
been added.

By treating every unknown parameter in
the adjustment as a correlated observation,
subject to error of varying (but specified) de-
gree, convenient and flexible provision is
made for implementing almost any conceiv-
able type of information or variation in the
basic measuring without requiring alteration
of the general adjustment program itself. In
particular, the solution can exploit the metric
output of external sensors in an altogether
rigorous manner. No restrictions are placed
on the type of distribution of control inform-
ation, on the exposure station parameters or
on the plate measurements. By allowing the
plate coordinates for a given point to be
correlated, a variety of possible plate mea-
suring techniques (e.g., goniometric, polar
coordinates) in addition to those which
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Figure 2a.

Figure 2b.

F16. 2. (a) Form of coefficient matrix generated by a uniform 4-by-5 block with points and photo-
graphs numbered as in Figure 1. The order of the full matrix is 308 by 308. (b) Collapsed form of the same
matrix.
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Figure 3a.

Figure 3b.

F16. 3. (a) One possible intertwined form of the general normal equations for a 3-by-5 block employed
in numerical simulations. (b) Collapsed form of the same matrix.

directly produce Cartesian coordinates are
admitted. This also admits the possibility of
employing cameras which do not have flat
fields (e.g., panoramic cameras, meteor
cameras, Baker Nunn Satellite Tracking
Cameras, CZR cameras), for here the plate
coordinates to be carried in the adjustment
would be those derived from the appropriate
transformation (usually from cylindrical to
plane coordinates) of the original film mea-
surements.

In addition to the simulation data gener-
ator program and the programs for generat-
ing and solving the normal equations, a num-
ber of programs for the preparation, correc-
tion and editing of actual data were coded
and logically linked together to form a com-
pletely operational system.

SIMULATION STUDIES

In order to effectively evaluate the solu-
tion, a carefully planned set of simulation
cases, employing 25 and 41 photograph strips
and 3-by-5 and 4-by-8 photograph blocks,

were processed through the rigorous simul-
taneous adjustment. Variations in control
distribution and accuracy, external exposure
station constraints, accuracy of initial para-
meter approximations, flying height, focal
length, plate format and plate measuring
accuracy were among the factors considered
in this evaluation. While detailed results of
these simulations are beyond the scope of this
paper, some of the more significant findings
indicate that:

1. The amount of distribution of absolute
control has a pronounced effect on the
rate of convergence of the Block Succes-
sive Over Relaxation iterative solution,
up to a certain critical level. A strip
having only the minimal absolute con-
trol required for determinacy (four
points) was found to converge appre-
ciably more slowly than one having a
moderate sprinkling of control through-
out the strip. With a 41-photo strip
generating a system of normal equations
of order 633, for instance, adequate con-
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F16. 4. (a) The 4 form of the coefficient matrix of the general normal equations arising from adjustment

of a 1-by-5 strip of photography. (b) Collapsed form of the same matrix.

vergence was obtained within 150 itera-
tions (seven minutes on an IBM 7094)
when a pair of fresh absolute control
points was introduced on about every
fifth photo. On the other hand, on the
order of 600 iterations were required
when the same strip was adjusted with
absolute control limited to the begin-
ning of the strip. Indications are that
the number of iterations required for
satisfactory convergence is roughly
equal to the order of the normal equa-
tions for the case of strips with minimal
absolute control; for strips having a
moderate level of well-distributed abso-
lute control, the number of iterations
may be as few as one fifth to one tenth
of the order of the normal equations.
There is even indication that once a
certain level of absolute control is at-
tained, the number of iterations for
satisfactory convergence may depend
only very weakly on the order (total
number) of the normal equations. From
this, the possibility emerges that the
simultaneous adjustment of a long strip
of aerial photography may entail no

more than the general order of compu-
tational effort as is required for the re-
construction of the strip by means of
analytic canti-lever extension operating
on pairs of photos.

The introduction of external constraints
imposed by auxiliary sensors serves to
accelerate the iterative process in a
manner similar to ground control.

The rate of convergence of the iterative
solution is several times faster for a
compact block than for a strip of com-
parable number of photographs and
level of control, thus the iterative ap-
proach is even more attractive for large
blocks than for long strips. For blocks of
moderately large dimensions the critical
level of control for extremely rapid con-
vergence appears to be the equivalent
of three non-colinear points in each
strip comprising the block.

For strips or blocks possessing very
poor initial approximations for orienta-
tion parameters and pass point coor-
dinates, a significant increase in con-
vergence is realized by relinearizing the
normal equations after every few (on




93

¢ BLOCKS

NT OF LARGI

ANALYTICAL ADJUSTME

Figure 5b.

Figure 5a.

general normal equations arising from the

-by-35 strip of photography. (b) Collapsed form of the same matrix.
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F16G. 6. (a) The D (intertwined) form of the coefficient matrix of the general normal equations arising

from the adjustment of a 1-by-5 strip of photography. (b) collapsed form of the same matrix.
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F16. 7. (a) The C (intertwined) form of the coefficient matrix of the general normal equations arising
from the adjustment of a 1-by-5 strip of photography. (b) Collapsed form of the same matrix.

the order of 25) iterations of the itera-
tive solution.

The overall potential of the solution may
best be appreciated by examining one specific
simulation: Raw data consisted of a postu-
lated 4-by-8 photograph block, possessing
609, foreward overlap and 209, side overlap,
acquired from 10,000 feet with a 6-inch focal
length camera with a 9-inch plate format. A
uniform nine-point pattern of ground points
was adopted, of which six were absolute con-
trol points. The ground points were assumed
to be 5,000 feet apart in both the X and V
coordinates. Normally distributed random
errors with a mean of zero and a standard
deviation of 10 microns were applied to all
plate measurements. Similar errors with a
sigma of 2.5 degrees were added to the “true”
values of the orientation angles to obtain ini-
tial approximations for these parameters,
and errors with a sigma of 1,000 feet were ap-
plied to the ‘“‘true’” exposure station and pass
point coordinates to obtain initial values for
these parameters. As a result of this process,
the initial values for orientation angles were
in error by as much as 5 degrees, and expo-
sure station locations were in error by as
much as 3,100 feet. Pass point coordinate ap-

proximations were as much as 2,500 feet. By
normal standards such approximations are
very course.

The normal equations to be generated and
solved for this 4-by-8 strip were of order 462.
An initial solution and two relinearizations
(each of which was iterated 25 times) were re-
quired to achieve satisfactory convergence
(the final plate residual mean error of 9.9
microns is consistent with the 10 microns
value applied to the plate measurements).
Total computational time on the CDC 1604-
B computer was 13.5 minutes (on the IBM
7094, this value would be decreased by a
of about three). This is at least an order of
magnitude better than the best non-iterative
techniques for solving a block of this size. The
results of this adjustment, which are con-
sistent with what is to be expected from the
assumed geometrical configuration and plate
measuring accuracies, are presented in Tables
1 and 2 along with the errors in the initial
values of each of the respective parameters.

CONCLUSIONS

Although the current programs are re-
stricted to systems involving 500 or less un-
knowns (this is the largest coefficient matrix
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TABLE 1
ERRORS IN EXPOSURE STATION PARAMETER INITIAL APPROXIMATIONS
Station Tip Tilt Swing XC yc zZC

No. (Deg.) (Deg.) (Deg.) ( Feet) (Feet) ( Feet)

1 0.729 —0.782 0.521 —1,085.585 —373.083 828.221
2 4.031 —1.639 2.561 1,226.168 262.065 558.018
3 —2.227 —2.906 —1.868 855.769 —2.846 —2,272.782
4 —3.333 —0.268 —1.264 —301.056 —1,916.048 —562.965
5 3.153 —1.722 —1.244 1,007.207 345.550 —1,938.194
6 1.145 —0.270 —0.164 463.821 —772.839 —2,098.873

7 ‘ 1.540 | —6.205 0.934 —421.937 620.424 —1,215.323
8 ; —2.362 | 4.559 —1.575 —10.225 500.820 57.649
9 | —1.570 | 4.260 2513 468.993 292 .452 790.042
10 —4.029 —2.619 0.414 —597.182 975.561 1,147.925
11 4.870 —4.236 —0.113 441.063 —0695.601 —872.473
12 0.377 1.571 —0.039 —50.782 1,518.592 216.739
13 3.452 1.099 —0.391 —87.654 96.087 987.012
14 0.339 1.254 4.823 387.735 —1,785.486 —93.142
15 —0.655 4.009 —3.982 —257.864 120.173 —1,956.353
16 —1.998 1.294 2.886 —871.260 —851.192 199.369
17 1.783 0.331 —1.514 —158.423 501.083 199.319
18 —3.020 —1.654 —4.528 —1,324.327 —514.815 —1,670.048
19 2.016 0.870 —2.241 1,484 .890 —431.914 —331.528
20 2.266 —2.027 2.298 —1,413.076 —113.311 23.640
21 2.424 —0.315 —1.312 —3,079.324 —2,282.232 561.096
22 —1.850 —2.779 —1.397 788.902 968.641 —639.835
23 —1.706 4.343 —1.377 462.476 —642.020 377.894
24 3.237 —0.690 —2.263 727.220 1,208.338 —1,431.626
25 2.257 —1.016 2.954 —533.238 —1,273.705 620.988
26 2.674 —1.786 —1.182 —1,538.741 727.787 1,204.974
27 4.898 3.387 —2.171 549.890 —16.392 —485.052
28 —2.550 2.362 2.183 —1,666.123 —1,686.995 132.602
29 —1.806 2.383 —1.125 1,545.494 2,153.811 1,232.270
30 4.630 1.352 —4.777 1,406.110 —081.360 —1,208.268
31 3.232 2.028 0.233 814.584 —517.474 —370.126
32 —4.407 0.636 0.175 185.823 —313.990 873.486

(Table 1 is continued at the top of the next page)

which, together with the iterative program,
can be stored in a 32K computer memory),
this by no means represents the limits for the
theoretical capability of the technique nor is
it a limit on the order of the normal equa-
tions which could be solved. The analysis
that has been performed reveals that through
the use of advanced programming, buffering
procedures, and auxiliary storage devices
(such as magnetic tapes, discs or drums), a
comprehensive reduction of blocks or strips
involving as many as 10,000 unknowns can
be accomplished on a computer with a 32K
main memory with extremely little loss in
efficiency.

As the result of this, a method is now avail-
able which overcomes the major obstacles

which have prevented the simultaneous ad-
justment of large nm-photo blocks: the #*
barrier to the formation of the normal equa-
tions, the #3 barrier to their solution and the
computational roundoff problem which has
seriously compromised other approaches.
Consequently the time is at hand when the
photogrammetrists need no longer be in-
timidated by the enormous system of equa-
tions arising from the uncompromisingly
rigorous adjustment of very large photogram-
metric nets.
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ERRORS REMAINING AFTER ADJUSTMENT
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TABLE 2

ERROR IN INITIAL APPROXIMATIONS

ERROR REMAINING AFTER ADJUSTMENT

Point AX AY AZ Point AX AY AZ

No. (ft.) () (ft.) No. (ft.) ) ()

1 801.5 —891.8 0.0 1 —0.38 —1.11 0.00

2 —140.9 —-712.2 0.0 2 0.77 —1.06 0.00

3 820.9 511.7 780.0 3 1.96 —0.20 2.26

4 1,023.7 —1,587.4 0.0 4 —=1.02 1.27 0.00

Column 1 5 1,424 .4 —550.0 —1,089.5 Column 1 N —1.78 —0.80 —2.13
6 —1,568.2 —438.1 0.0 6 1.06 —0.12 0.00

7 —381.3 —868.6 924.8 7 0.82 0.14 —0.62

8 862.0 1,495.7 0.0 8 0.72 1.30 0.00

9 —421.8 —2,441.8 0.0 9 2.07 1.74 0.00

10 797.5 —1,025.7 148.0 10 —0.03 =117 0.26

11 25.1 1,383.4 1,403.8 11 0.82 —1.30 1.63

12 905.5 —1,633:1 —198.3 12 0.86 —0.25 1.49

13 —316.1 1,782.2 735.9 13 —0.54 0.13 —0.79

Column 2 14 —281,1 —-=399.3 —357.3 Column 2 14 —0.08 —0.03 —0.48
15 1,380.3 132.8 —596.3 15 0.92 —0.48 0.71

16 1,030.3 —833.3 —1,744.8 16 0.70 0.13 —0.16

17 —367.4 234.6 —536.7 17 —0.46 0.90 —1.24

18 1,100.4 —833.6 827.1 18 0.24 0.28 —1.12

19 732.7 653.3 649 .4 19 0.20 —1.43 0.19

20 768.5 1,786.5 —1 1791 20 —0.40 —0.73 2.98

21 0.0 0.0 0.0 21 0.00 0.00 0.00

22 —408.8 —758.9 1,555.8 22 —0.20 0.52 1.29

Column 3 23 0.0 0.0 0.0 Column 3 23 0.00 0.00 0.00
24 -1,179.5 | —1,129.9 622.2 24 0.13 —0.83 0.34

25 0.0 0.0 0.0 25 0.00 0.00 0.00

26 114.6 | —1,211.4 275.7 26 0.00 0.43 1.37

27 1,019.2 434.2 2,075.8 27 —0.66 —0.57 0.85

28 716.1 302.3 =111..9 28 —1.07 1.04 —3.34

29 1,630.7 222.7 —1,101.6 29 -1.19 0.18 —1.44

30 1,039.2 —1,624.6 —1,151.2 30 0.05 0.47 —=0.53

31 1,697.3 579.8 933.8 31 —0.44 0.31 —0.60

Column 4 32 —1,049.5 —253.4 754.6 Column 4 32 0.19 0.17 —0.32
33 1,595.7 620.1 —=1,153.2 33 0.44 —0.20 —0.36

34 823.3 —1,029.0 1,437.1 34 0.37 —0.56 —0.98

35 —1,398.0 —1,100.0 1,111.6 35 —0.64 s W —0.71

36 479.9 150.6 —356.4 36 0.37 —2.32 ~2.16

37 —526.3 1,199.8 571.8 37 —0.92 0.84 =1.35

38 —35.5 —949 1 808.8 38 0.13 0.12 —1.92

39 —17.5 —710.7 —1,109.6 39 —0.47 0.04 0.20

40 —52.4 202.8 —2,437.4 40 —0.34 —0.14 0.39

Column § 41 —489.4 624.1 1,255 Column 5 41 0.28 0.22 —0.19
42 —485.4 1,028.0 —1757.1 42 0.17 —0.87 —0.12

43 —1,364.2 —765.8 674.4 43 —0.08 —0.50 0.23

44 —811.4 —396.8 473.9 44 0.15 —-0.21 ~1.00

45 1,074.4 —1,218.4 131.6 45 0.65 —0.21 —0.08

46 —1,011.3 1,268.0 —490.6 46 0.03 —0.53 1.29

47 1,497.8 —590.2 307.8 47 0.46 —0.75 0.02

48 127.4 437.0 —832.1 48 0.10 0.18 0.42

49 26.6 25.7 882.7 49 0.15 0.84 0.45

Column 6 50 —934.8 606.6 123.2 Column 6 50 0.12 —0.72 0.62
51 —298.7 62.2 —681.2 51 0.01 —0.44 0.54

52 380.5 1,459.8 389.4 52 —0.02 —0.05 0.32

53 —737.2 1,837.9 —1,140.9 53 0.40 —0.90 0.97

54 951.9 295.2 —886.8 54 0.61 0.25 0.62

55 1,063.0 —1,545.0 —934.0 55 0.14 0.29 0.61

56 —299.6 —1,298.5 —437.5 56 0.38 —0.29 —0.51

57 —179.6 —207.1 1.292.7 57 0.41 0.66 0.94

58 1,776.1 1,894.9 1,177.5 58 —0.07 0.19 1.85

Column 7 59 —691.6 1,115.9 735.8 Column 7 59 —0.48 0.08 —0.84
60 —2,038.1 —1,652.4 —618.4 60 0.38 —0.04 —1.26

61 —1,534.6 1,389.6 318.0 61 —0.13 0.07 0.43

62 —109.0 1,392.0 —218.7 62 —0.64 0.50 —0.54

63 115.1 —457.2 2,143.7 63 —021 1.12 0.79

64 —1,248.1 —0646.4 —2,484.5 64 —0.88 —1.10 1.04

65 —573.5 139.6 388.3 65 —0.16 —0.69 1.64

66 0.0 0.0 0.0 66 0.00 0.00 0.00

67 180.9 —86.1 | —1,203.8 67 —-0.19 0.28 1.08

Column 8 68 0.0 0.0 0.0 Column 8 68 0.00 0.00 0.00
69 1,972.7 —1,193.2 1,125.7 69 0.10 —0.32 0.39

70 0.0 0.0 0.0 70 0.00 0.00 0.00

71 1,896.7 1,095.2 —965.8 71 0.06 —0.16 —0.47

72 —350.9 —1,855.8 —220.5 72 0.65 —0.51 —0.43

73 —751.3 —1,014.2 647.0 73 —0.68 —1.05 3.98

74 —9.0 905.3 —1,080.7 74 —1.18 —0.19 2.18

75 —276.2 745.6 —-1;377.2 75 —0.54 —1.15 1.36

76 1,156.9 962.7 1,693.7 76 —1.38 —0.54 0.69

Column 9 77 —342.2 —432.0 —59.5 Column 9 77 —0.28 —0.35 0.40
78 —1,153.8 759.9 271.5 78 0.00 0.01 0.25

79 1,342.8 1,985.9 =111.1 79 —0.83 —=0.17 0.53

80 —137.4 —672.2 963.4 80 —0.58 —0.07 1.40

81 140.6 383.0 361.1 81 —0.66 2.62 4.24

82 =2 1873 1,348.3 0.0 82 1.48 1.68 0.00

83 —115.0 —1,113.0 0.0 83 1.46 0.17 0.00

84 —573.3 1,327.9 —1,000.6 84 —1.68 0.67 2.50

85 —2,139.9 788.5 0.0 85 1.59 —1.54 0.00

Column 10 86 1,931.1 —954.9 —674.4 Column 10 86 —1.50 0.26 3.27
87 —1,492.2 741.6 0.0 87 1.60 —0.71 0.00

88 242.3 621.4 —1,043.0 88 —1.22 —0.01 2.98

89 268.3 688.5 0.0 89 0.60 —0.96 0.00

90 437.6 —411.5 0.0 90 —0.56 —0.29 0.00




