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Planetary Exploration
from Orbital Altitudes

Experience with sensing equipment on Earth and
Moon flights will help determine instrument
payloads for Mars, Venus, etc.

INTRODUCTION nity with some idea of the National Aeronau-
HE PURPOSE of this article is to provide tics and Space Administration’s plans for
I the scientific and technological commu- planetary exploration from orbital altitudes.
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FroNTISPIECE. View of the Northeast Coast of the United States from a
TIROS satellite. (See text page 256.)

* Presented at the Annual Convention of the American Society of Photogrammetry in Washington,
D. C., March 1965.
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PLANETARY EXPLORATION FROM ORBITAL ALTITUDES

The term “planetary’’ is used here to include
any body, except a comet or a meteor, that
revolves about the sun of our solar system.
Planetary exploration thus includes the study
of the earth from space.

This article concentrates mainly on explor-
ation of the earth and the moon using orbital
spacecraft, but the reader should realize that
the experience acquired on these earlier
vehicles is directly applicable to other later
planetary missions (Mars, Venus, etc.) also.
Orbital vehicles are expected to play a role in
planetary exploration analogous to aerial
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struments in terms of characteristic spectral
signatures and images. These signatures can
usually be correlated with known rock, soil,
crop, and other conditions. The relationship
to specific terrain features can be more closely
established by judiciously correlating a group
of diverse signatures, obtained simultaneously
by different remote sensors.

CHA[{AC'I‘ERISTICS or
ELECTROMAGNETIC SPECTRUM

Sensors which respond to energy in the
gamma ray, ultraviolet, visible, infrared, and

ABSTRACT: The National Aeronautics and Space Administration is engaged
currently in planning scientific payloads for future earth and planetary (Mars,
Venus, Moon) orbilal spacecraft. These vehicles are expecled to play a role in
planetary exploration analogous to aerial surveys in the natural resources field.
Some of the instruments which would make up the scientific payloads are
remote sensors, including detectors to measure infrared, microwave, X-ray and
gamma ray emittance; active radar systems, multiband photography; gravity,
magnetic, and other sensors. Because the scientific applicalions of remole sensors
are not well understood, the NASA is now engaged in a comprehensive aircraft
flight program over known ground sites to test these new and hopefully very

useful tools.

surveys for terrestrial exploration objectives.

The National Aeronautics and Space Ad-
ministration (NASA) is currently evaluating
a number of new and newly refined instru-
ments for use in exploring the earth and
planetary surfaces from orbiting spacecraft.
Among the instruments which would make
up the payloads for orbiting spacecraft are
“remote sensors,”” devices which are sensitive
to force fields, such as gravity gradient sys-
tems and devices that record the reflection or
emission of electromagnetic energy. Both
passive (those that rely on natural sources of
illumination, such as the sun) and active
(those that utilize an artificial source of
illumination) electromagnetic sensors are
under consideration.

Investigations relating to force field sensors
are also being undertaken but are not dis-
cussed in this paper.

Each type of surface material (e.g. soils,
rocks, vegetation and other forms of life, etc.)
absorbs and reflects solar energy in a charac-
teristic manner depending upon its atomic
and molecular structure. In addition, a cer-
tain amount of internal energy is emitted
which is partially independent of the solar
flux. The absorbed, reflected and emitted
energy can be detected by remote sensing in-

radio parts of the spectrum are being con-
sidered for use in the NASA exploration pro-
gram. Selection of the specific parts of the
electromagnetic spectrum to be utilized in
these investigations is governed largely by the
photon energy, frequency, and atmospheric
transmission characteristics of the spectrum
(Colwell et al. 1963). The exploration role
that sensors will be assigned on terrestrial or
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lunar surveys is similarly dictated by spec-
trum characteristics, principally atmospheric
transmission. Some of the remote sensors
responding to various parts of the spectrum
and their possible exploration applications are
illustrated (Figures 1 and 2).

Basic PREFLIGHT STUDIES UNDERWAY

Chemical composition, surface irregularity,
degree of consolidation and moisture content
are among the parameters that are known to
affect the records obtained by electromagnetic
remote sensing devices. Full interpretation of
sensor records requires, therefore, that these
effects be known and studied quantitatively.
A number of fundamental laboratory studies
concerned with these effects are underway.
Laboratory studies are being supplemented
by detailed studies of a number of test sites
in the United States and elsewhere. Detailed
ground study of these test areas, coupled with
preliminary remote sensing surveys from air-
craft, are being undertaken by various gov-
ernmental agencies, universities and com-
mercial organizations in cooperation with
NASA. An evaluation of the scientific appli-
cations of each type of promising remote
sensor is currently underway. These basic
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¥¢ Advance our knowledge of the funda-
mental effects of various terrain param-
eters on sensor records.

Provide a means of calibrating data
returned from earth-orbiting sensors
(the areas studied are of sufficient size to
be resolved from space).

Test the operation of the sensing equip-
ment for earth orbital flights as well as
for later planetary missions.

Enable us to refine our data handling
and interpretation techniques.
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REMOTE SENSOR AIRCRAFT FLIGHTS

The use of aircraft flights over known cali-
brated ground sites is a very important phase
of NASA's pre-spaceflight studies (Table 1).
A Dbasic requirement of the feasibility test
program is the simultaneous sensing of the
test sites by as many of the sensor systems as
possible. Therefore, it is highly desirable to
conduct as many experiments as possible with
the same aircraft.

To provide for simultaneous observations
in several parts of the spectrum a Convair
240 aircraft has been heavily instrumented by
NASA-MSC. This aircraft is now serving as a
test bed for a wide variety of electronic and

studies should serve to: electro-optical experiments. Basically, the
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AGRICULTURE/ GEOLOGY/ HYDROLOGY OCEANOGRAPHY GEOGRAPHY
EXPERIMENTAL FORESTRY PLANETOLOGY
TECHN 1 QUE
VISUAL DRAINAGE PATTERN! :E‘:)SSII')AJE\
PHOTOGRAPHY soILS 2 TURBIDITY CARTOGRAPHY
PLANTS HYDEOGRAPHY LAND USE
VIGOR SURTACE FEATURES. TANSORTATION
- DISEASE & VEGETATION
— MULTI-SPECTRAL SEA COLOR ORGANIZATION
5 PHOTOGRAPHY SOIL MOISTURE PRODUCTIVITY
E
= | 1R IMAGERY
o ENERGY
2| AnD specTRo- [ CoUPOSITION. | THERMAL ANOMALY: || anexs oF-coouNG S oy BT CURRENTS &
- SCOPY LAND USE
S AR
2 RAD SEA STATE LAND/ICE
2| ImAGERY & T Ao venNess e il ICE FLOW & ICE CARTOGRAPHY
7 SCATTEROMETRY soiL TSUNAMI WARNING GEODESY
oy CHARACTERISTICS
= ND/ICE
o R‘ F. SUB-SURFACE LAYERING SOIL ICE THICKNESS L
= REFLECTIVITY MINERALS RO ToRe SEA STATE {;‘E'é:aﬁ%N
&
PASSIVE
MICROWAVE THERMAL STATE SUB-SURFACE LAYERING |  SNOW SNOW & ICE
RADIOMETRY OETERs F
& IMAGERY
ABSORPTION
SPECTROSCOPY MINERAL DEPOSITS SUFERCE-FLORK
(REMOTE GEO- TRACE METALS
CHEMICAL el
SENSING)

NASA SM65-15136
REV. 10/18/65

F1G. 1. Remote sensor instruments being studied by NASA and some of their expected applications.
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TABLE 1

SEQUENTIAL RELATIONSHIP OF REMOTE SENSOR EQUIPPED AIRCRAFT FLIGHTS TO
SUBSEQUENT ORBITAL FLIGHTS

Current—1968

Remote sensor geologic mapping
capability:

Aerial overflight of Terrestrial
and oceanic sites to determine of
scientific significance of multi- tudes.
spectral responses

—plus—

Associated “ground truth” cali-

bration in laboratory and field.

aircraft instrumentation provides highly con-
trolled power for the experiments and full in-
flight monitoring and data recording of all
events. All flight parameters are continuously
displayed and recorded at one-second inter-
vals by the data-recording camera system.
All data from the various sensors are indexed
together by a time signal and frame number
of the master survey camera for ease of re-
trieval. Conventional photography for index-
ing and control of all sensor events with
ground-position information and general ter-
rain features is obtained with the master
survey camera on all daylight flights. Al-
though the NASA Convair 240A is well suited
for the initial phases of this remote sensor
program, a NASA Electra P3A is expected to
be brought into the program in 1966 for
higher altitude and overseas work.

Eventually the jump to spacecraft must
occur because aircraft platforms will not be
available in orbit about the Moon and other
planets. There is of course great merit in
viewing the Earth itself from orbital altitudes.
Many terrestrial features such as crops, water
resources, coastlines and oceanic phenomena
are transient in nature and therefore require
repeated observations. These may be more
readily available in the future via operational
spacecraft than by repeated aircraft coverage.
Most aerial surveys are one-time flights and
do not provide periodic or continuous cover-
age of transient features. The entire battery
of remote sensors designed for terrestrial and
planetary surface study constitutes a vast
data-gathering system. The applications of
this information present an exciting challenge
to all branches of earth science.

Use orF CALIBRATED TEST SITES

The use of calibrated ground test sites is an
important phase of the remote sensor evalua-

1968-1969

Earth orbital overflight of same
geological test sites:

Will permit additional calibration A.
sensors from

1968-1970

Manned lunar orbital scientific
survey carrying many of same
sensors used in earth orbit.

S. ground traverses pro-

additional “ground truth" cali-

bration.

orbital alti-

tion program being conducted by NASA.
Two types of test sites are being studied:
(1) fundamental sites and (2) extended sites.
Fundamental sites are commonly applicable
to a single user discipline, small in size, and
located in areas that have been previously
studied and mapped in detail. Fundamental
sites have been selected for studies in the
fields of geography, agriculture, forestry,
oceanography, and geology. Areas, thought to
be lunar analogs, are included in the geologic
sites. The extended sites are larger in size, also
quite well known insofar as ground data is
concerned, and contain a number of funda-
mental sites for various user disciplines.
Special guidelines were used for selection of
fundamental, extended, and lunar analog sites.
These are summarized in Table 2. Some of the
test sites already under study are shown in
Figure 3.

INITIAL RESULTS OF THE
REMOTE SENSOR PROGRAM

Initial surveys utilizing the NASA remote
sensing aircraft were undertaken in February
1965 by the U. S. Geological Survey at Pisgah
Crater, San Bernardino County, California
(Figure 4). Sensors aboard the aircraft util-
ized in these surveys included a Reconofax 4
infrared scanner, operating in the 8-13u part
of the spectrum, and a AAS-5 scanner, filtered
so as to record energy in the 4.5-5u part of the
spectrum. The principal objectives of the
initial surveys were testing the air-borne and
related field monitoring equipment under
operational conditions and developing field
methods for describing the surface of various
rock units in a statistically valid manner and
in terms meaningful to the interpretation of
the infrared records. Field measurements of
surface temperatures, microrelief, and labora-
tory measurements of reflectance were con-
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TABLE 2

w

GUIDELINES UsiD BY NASA FOR SELECTING TEST SITES

Fundamental test sites should be: Extended test sites should be:

Lunar analog sites should:

. Well known through detailed 1. Reasonably well known, exten-

conventional (ground and/or sive ground work is not neces-
aerial) studies/mapping sary

. Uniform with respect to fea- 2. Large enough for broad scale
tures being studied and res- test of remote sensors over
olution of instruments wide range of features or con-

ditions, yet small enough to be
conveniently studied

. Amenable to study by all or 3. Of interest to all or most user

most remote sensors areas
. Readily accessible 4. Accessible so that necessary
ground checks can easily be

made

. Small in area

Include several lunar rock types

Include segments of the terrain
that are uniform chemically ard
physically

. Be free from vegetation

. Be relatively flat, uniform ele-

vations

. Be at lower altitudes, favorable

climate for all year study pur-
poses

. Represent lunar analog geologic

situations (volcanic cones, lava
flows, large impact areas, ejecta
blankets, etc.)

STATUS CATEGORY TYPE
UNDER STUDY
| 1. PISGAH CRATERS LUNAR ANALOGUE-GEOLOGIC FUNDAMENTAL
2. MONO CRATERS LUNAR ANALOGUE-GEOLOGIC FUNDAMENTAL
| 3. SCRIPPS BEACH | OCEANOGRAPHIC FUNDAMENTAL
4. PURDUE FARMS “AGRICULTURAL FUNDAMENTAL _|
5. WILLCOX PLAYA RADAR - SPECIAL PURPOSE
6. WESTERN KANSAS | AGRICULTURAL-GEOGRAPHIC EXTENDED

F1G. 3. Index map showing location of Pisgah Crater Area and of Willcox Dry Lake.
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1000 feet

| NASA SM65-15238 .

3-26-65

F1G. 4. Aerial photograph of Pisgah Crater showing areas and lithologic units whose radiant
temperatures were measured during aircraft flights.

trasted with measurements of film density on
infrared images acquired at various times of
day.

Measurements of microrelief were also
contrasted with film densities of various mate-
rials imaged at increasingly oblique angles.
Contrast of these various functions suggests
that unconsolidated materials possess a lower
thermal inertia than consolidated materials
(Figure 5); that unconsolidated materials
emit larger quantities of infrared energy
(greater film density) than consolidated mate-
rials when both are subjected to similar quan-
tities of solar radiation (Figure 6); and that
the film densities with which objects are
recorded on infrared imagery differ with angle
of view; commonly the differences are greater
for rough surface than for smooth. These
studies also suggest that these relative quan-
tities and changes in relative quantities of
radiation may be observed from airborne plat-
forms,

Surveys with other NASA remote sensors
including radar, are underway and results will
soon be available. Some of the synoptic values
of radar imagery are apparent in Figure 7.
Although these images are well below the cur-
rent state-of-the-art they still yield a great
deal of geologic information. Contrast these
pictures with those taken from TIROS
(Frontispiece) whose prime objective was to
recover data for the meteorologist. Some of the
advantages of radar data returns are shown in
Table 3. Those scientists who have studied
photographs from TIROS, NIMBUS, MER-
CURY and GEMINI will be particularly
appreciative of the all-weather capability of
radar.

The simultaneous sensing of planetary sur-
faces with a variety of remote sensor instru-
ments, at resolutions sufficient to provide
useful data for the earth scientist and planetol-
ogist, requires the availability of heavy pay-
load orbiting spacecraft. Some of the space-
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TABLE 3

RELATIONSHIP OF REMOTE SENSOR DEVEL-
OPMENTS TO POTENTIAL MANNED
SCIENTIFIC MISSIONS OF THE FUTURE

Side-looking nature of radar permits detection
of structural fabric and morphological detail not
possible on conventional photographs of same
scale.

Range resolution is not necessarily a function of
orbital altitude. Broad area imagery of high
resolution can be obtained with the power
sources (1 kw =) available for radar on heavy
payload (5000 Ib. +) orbiters.

Radar is self-illuminating and can therefore
produce imagery on dark side of moon for in-
flight display system.

Radar has an all-weather capability in earth
orbit. In a similar way it will be suitable for
Venus missions.

Radar altimetry and surface profile information
is accurate enough for sea-slope, sea-state and
planetary roughness measurements.

New radar and radio frequency measurements
may permit depth penetrations of tens of feet.

data (courtesy of Wm. A. Fischer).
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expressed as film density as recorded on infrared
image produced at 14:10, February 13, 1965
(courtesy of Wm. A. Fischer).
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F1G. 7. Sample of radar imagery from aircraft. This imagery is several years behind the current
state-of-the-art. Radar imagery reveals many earth and planetary surface features not detected by
conventional photography. This radar imagery is of the Appalachian disturbed belt in Virginia. Note
the position of the Burkes Garden Dome near the center of the picture.
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F1G. 9. Relationship of manned earth and lunar orbital spacecraft to other NASA missions.




PLANETARY EXPLORATION FROM ORBITAL ALTITUDES

craft being studied by NASA which do have
adequate payloads, and their possible sched-
ules, are shown in Figure 8. The relationship
of such flights to other NASA missions is
shown in Figure 9.
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