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ABSTRACT: The properties of rigorous conformal transformations of three
dimensional euclidean space are expressed by equations that put them in a form
suitable for application to adjustment of photogrammetric triangulated strips.
The first step of a practical calculation is to recognize whether the deformation of
the strip does show actually the characteristics of conformality in space, criteria
are established to demonstrate these characteristics in a simple manner. Atten
tion is called to the fact that such rigorous transformations cannot contain more
than ten parameters. This property is likely to impose on aerotriangulation more
rigidity than commonly used interpolation methods do.

FOREWORD: This article and the following one
by Mr. Schut deal with the same topic which has
been discussed fervently in this Journal for the
past year or two. All of these are considered to
constitute valuable, practical and interesting
information. The two authors agree that a
second-degree conformal transformation in three
dimensions is not possible. Schut's proof of this
seems easier to follow than Baetsle' s,o however,
Baetsle shows that second-degree transformation
preserves the projected angles on the three planes
rather than the solid angles. In this manner he
confirms the opinion of Mikhail and also ex
plains the usefulness of this type of transforma
tion to photogrammetry. In addition to the refer
ences listed on pages 823 and 829 is an article
by Authur, Jan. 1965, page 129. The Editor
(who also specializes in aerotriangulation) takes
adi'antage of the situation by adding references
of his own: Tewinkel, Jan. 1965, page 180;
Keller and Tewinkel, 1964 (GPO) C&GS
Tech. Bull. No. 23.-Editor.

UTILITY OF CONFORMAL

TRANSFORMATIONS

F ITTING AN AEROTRIANGULATED STRIP of
photographs to the available ground con

trol is usually performed nowadays by nu
merical methods using transformation formu
las which express the corrections to be applied
to the coordinates of all points of the strip,

* Submitted under the title "The Conformal
Transformations of Three-Dimensional Euclidean
Space, and How to Use Them in Photogramme
try."

related to some uniform rectangular cartesian
system, with x-axis in the direction of the line
of flight, the y-axis horizontal, and h-axis
vertical:

~x = fleX, y, h); ~y = !2(X, y, h); Ml = !,(X, y, h). (1)

Such general formulas are, in common
practice, simplified by ignoring the influence
of h:

~x = 'P1(X,y); ~y = 'P2(X,y); Ml = 'P3(X,y). (2)

Another simplification is usually adopted by
splitting the problem into two stages; the
first for planimetry (Ax, Ay), the second for
height (Ah). Although these simplifications
cannot be justified mathematically, it is rec
ognized that the assumptions on which they
are based may be admitted because the results
obtained are sufficien t for most practical
cases. Moreover a more rigorous treatment
would take into account all those quantities
that are actually observed throughout the
entire strip, and the great number of quanti
ties involved would necessitate a volume of
calculations which would be out of proportion
to the internal accuracy of aero triangulation,
which in itself is relatively weak.

Nevertheless, one can adopt another point
of view, and it is the purpose of the author to
bring this problem into focus.

In expressions such as Equation 2, the
planimetric transformation usually adopted is
a conformal one; there is at least one theoreti
cal reason for adopting conformal transforma
tion. If one admits that the relative orienta
tions of the successive models in the strip are
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Because the y-dimension is small compared to
the x-coordinates, higher powers of yare
sometimes neglected in the polynomials.3

There is no theoretical reason why the
polynomials should be limited to the second
or third power. In other words, the plane
conformal transformation expressed by Equa
tion 3 may include as many parameters as one
desires. given n control points, the transfor
mation can fit these points exactly, provided
the polynomial includes all powers up to
(n-l). But the coefficients of the higher
powers are meaningless; therefore the expan
sions are limited to the second or the third
power. Consequently, if there are more than
three of four control points, the coefficients
are to be determined by some approximation,
usually by the method of least squares. In this

as correct as possible, then, because the so
called aerotriangulation consists of transfer
ring orientation angles and scale from each
model to the next, one may interpret the
deformations along the strip as caused by the
connections of the models with each other and
consider the angles as "locally correct." This
property differs from that of conformal trans
formation only by the fact that the models are
of finite dimensions, while the analytical
transformation is an infinitesimal one. This
procedure is used of necessity. Besides the
theoretical justification, a practical one may
be put forward. In many cases the deforma
tions actually show the characteristics of
conformity, at least to a first approximation.

These reasons are also valid for radial tri
angulation, as the author pointed out more
than 25 years ago l

; but in that purely plani
metric method of bridging, an actual triangu
lation net was measured with all the charac
teristics of a geodetic one. The classical ad
justment was used, and the only need for
applying conformal transformation was the
saving of time since computers were unavail
able.

But for aerotriangulation in space, due to
the great number of measured quantities,
continuous transformations are extremely
useful, and conformal formulas are used by
many authors2 . These are expressed by poly
nomials derived from limited expansions in
series of analytic functions of a complex vari
able, such as:

Llz = Co + ClZ + C2Z2 + C3Z3 + . . . (3)

where the constant quantity Q is called the
"power" of the inversion. Although the dis
tance R may be reckoned from p to both sides
of p on the line pm, it is more convenient to

FORMULAS FOR THE GENERAL

CONFORMAL TRANSFORMATION

The most general conformal transforma
tion of three-dimensional euclidean space is a
product of translation, rotation and classical
inversion. A summarized proof of this funda
mental property is given in Appendix 1. Such
transformations form a group. In the inver
sion, one point p is chosen, known as the
"pole" (Figure 1). The transform of any point
m is a point M, lying on the straight line
pm; the distance R = pM is determined in the
functional relationship to the distance r = pm
by

(6)R·y = Q

case the sum of the squares of the residuals
(lJx, lJy) are to be minimized where

oX = x + Llx - X, oy = y + Lly - Y (5)

and X, Y denote the coordinates of the con
trol points. Because the residuals are not
necessarily zero, the transformed strip does
not fit the control points exactly.

Once a conformal transformation is recog
nized as a useful tool in the planimetric prob
lem, the question may be raised if a conformal
transformation could be extended to three
dimensional space providing a simultaneous
adjustment of all three coordinates. This idea
has been studied by E. M. Mikhail 2 using
polynomials exclusively. The author states
that it is not possible to express a strictly
conformal transformation of three-dimen
sional euclidean space by these means. Faced
with this impossibility, which is a geometrical
fact, (the reason will be given below) E. M.
Mikhail substitutes the condition that only
the projections of the solid angles on the three
coordinate planes should be preserved for the
condition of preserving the solid angles them
selves. Expressing these properties he obtains
three polynomials (one for each coordinate)
which contain ten independent parameters.
It will now be stated in this paper that:

a. the rigorous conformal transforma
tion of euclidean three-dimensional space
cannot introduce more than ten indepen
dent parameters;

b. the formulas arrived at by E. M.
Mikhail may be considered as the first ap
proximation of the rigorous transformation.

The practical use of the rigorous formulation
will also be discussed.

(4)

Z = x + iy

Ck = ak + ibk •

where
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consider the vectors r' and R', with their origin
at p, and the power Q as being algebraically
defined, with positive or negative sign. The
choice of Q determines then the point M
univocally. Denoting the scalar value of r' by
r, the vectorial form of Equation 6 is

R = Qr-·r. (7)

An inversion is defined by four parameters
-the three coordinates of the chosen pole and
the value of Q. Obviously, translation and
rotation with six parameters altogether for
the most general euclidean displacement will
preserve all solid angles. Consequently, the
total number of parameters of the most
general conformal transformation is precisely
ten, as stated before. One might think that an
additional parameter could be introduced by
a modification of scale, which also preserves
all the angles, but this factor is combined
with Q, so that a modification of scale is al
ready included in the choice of that quantity.
The sign of Q has its effect on the orientation
of solid angles, which, in the most general
transformation, may be preserved or in
verted.

In the inversion, the pole itself is trans
formed to a point at infinity, which must be
considered as unique; with this convention
any point is transformed to a unique point
without exception. A sphere is transformed to
a sphere. To visualize the generality of this
assertion, one must consider a plane as being a
sphere going through the point at infinity; its

M = B +Qr-2S(m - b). (10)

The coordinates of the transformed point
M of m are, according to Equations 8 and 9;

(9)

(11)K = QS,

m= b+r

K being also a square matrix (3 X3) with the
following property:

KKT = KTK = Q2I (12)

Note that all vectors symbolized with lower
case letters are referenced to the original co
ordinate system while those symbolized by
capital letters are referenced to the trans
formed coordinate system.

Now Q is a constant scalar factor and S is a
constant matrix. We may write with only one
symbol

(the superscript T denoting transposition). It
is well known that SST =STS =1 (unit matrix).
These relations together with Equation 11
lead obviously to Equation 12. The trans-

B + Qr-2Sr'. (8)

Let the point a be the origin of a rectangular
cartesian coordinate system for the space
before transformation, and let us denote by b
the vector up (the components of this vector
are the coordinates of the pole p). The co
ordinates of some point m in this space are the
components of the vector

radius is infinite. As a sphere remains a sphere
by translation and rotation, the general con
formal transformation preserves the spheres.
The intersection of two different spheres
being a circle, the general transformation
preserves the circles, which are to be general
ized as "circles and straight lines" for the
same reason that spheres are to be general
ized as "spheres and planes." A straight line
going through the pole remains a straight
line; an actual circle going through the pole is
transformed to a straight line; conversely, a
straight line which does not contain the pole
is transformed to an actual circle; the trans
form of an actual circle not passing through
the pole is an actual circle.

The analytical expression for the most
general conformal transformation can be es
tablished in vectorial form by applying to the
right side of Equation 7 a translation (which
is expressed by adding a constant vector B)
and a rotation which is obtained from pre
multiplying the vector r by a rotation matrix
S. This matrix contains nine elements (3 X3);
all are functions of three independent param
eters. Then

p

FIG. 1

z

z·

y.



CONFORMAL TRANSFORMATIONS IN THREE DIMENSIONS 819

dR = Q( - 2r-adrr + ,-'dr). (16)

When the deformations are small, the ma
trix K must have special properties. To in
vestigate these properties, we first consider
inversion alone, as expressed by Equation 7.
What is the transform of an infinitesimal vec
tor dr, introduced as an increment of r? Dif
ferentiating Equation 7 will provide the an
swer:

formation Equation 10 may now be written
as follows:

M = B + r-'K(m - b). (13)

To calculate the value of the scalar r from
coordinates, use Equation 9; the scalar mul
tiplication of r = m- b by itself gives

r' = b2+ 1It2 - 2(b· m) (14)

where (b'm) denotes the scalar product of
the vectors band m.

Although the following notations will not
be necessary for the further development, the
expansion is given for the sake of clarity. Let
us write the equations equivalent to Equation
13 in an explicit form denoting by Ut, U2, Ua

the components of any vector such as u, and
by K ij the elemen ts of K:

But from

we get

,2 = (r.r)

,d, = (r·dr)

d, = ,-'(r·dr)

(17)

M , = B, + fb,' + b,' + b3' +1It1' +1It2'+m3' - 2(blml +b'1It2 + b3m3)1-1

. {Kl1(1It1 - b,) + K,,(m2 - b,) + Kd1lt3 - b3) I
M, = B2+ [ ]-I{ K 21 (m, - b,) + K 22 (1It, - b,) + K,,(m3 - b3)I
M3 = B3+ [ ]-I{K31 (m, - b,) + K32(1It2 - b,) + K 33 (1Il3 - b3)}. (15)

and Equation 18 becomes (see Appendix I)

dR = Q,-2 {dr - 2,-2(rr )drI
= Q,-2{ I - 2,-2(rr) Idr

and.substituting in Equation 16 yields

dR = {Q,-2dr - 2,-2(r· dr)r l. (18)

In the last term we find the product of a
scalar product (r·dr) by a vector r. This can
be written in another form by introducing the
"dyadic" product of vector r by itself. The
matrix

Now the matrix L r transforms any vector
into its image with respect to the straight line
on which the vector r lies (see Appendix II).
The unit vector on the line a, is r-1r, where
upon Equation 20 is identical to (11-7). Con
sequently, Equation 21 shows that the direc
tion of the vector dR is symmetrical to that of
dr. The angle (r, dR) is thus equal to the
angle (r, dr). and this is an analytical proof of
the inversion being a conformal transforma
tion.

If we apply the same calculation to the
general conformal transformation expressed

The terms ml, m2, ma are the coordinates of
the point to be transformed; bl, b2, ba are con
stants, being the coordinates of the pole; BI,
B 2, Ba are the coordinates of a point P which
is the transform of the point at infinity, and
consequently the pole of the converse trans
formation. The symbol [ ... ] stands for the
expression between square brackets in the
fully written value of M,.

PRACTICAL RIGOROUS FORMULAS

Equations 13, 14, 'and 15 are sufficient to
express the most general conformal trans
formation. We already see why the rigorous
transformation cannot be expressed by poly
nomials. This impossibility is shown by the
presence of the factor r- 2 , which means the
existence of a pole in the analytical sense of
the word. Consequently the formulas must be
put in a more practical form to be applied to
our photogrammetric problem. In that prob
lem we know that the deformations are rela
tively small; for instance, the x-axis of the
strip, which becomes a circle if the deforma
tion is conformal, will have a slight curvature.
That means that the pole will lie at a very
great distance. Coordinates such as bi and B i
will therefore be very large numbers, a cir
cumstance which is unfavorable for practical
calculations. We must, therefore, try to in
troduce small quantities with the hope that
their higher powers may be neglected if neces
sary.

[
,,2 "'2 '1'3]

(rr) = '2'1 ,l '2'3

r3Tl T3r2 T3 2

or, if we put

Lr = 2,-2(rr) 

dR = - Qr-2Lrdr.

(19)

(20)

(21)
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If the deformations are small, dRa must be
approximately equal to dra , which means that
the matrix

In particular, according to Equation 9 at
the origin a of the coordinate system, m = 0;
T= -b; then

by Equation 8, because Band S are constant
elements we get, instead of Equation 21,

dR = - Qr-2SL,.dr (22)

(34)

(33)

v = m + e-2c - 2e-2(c·m)c

= m + r 2c!1 - 2(c·m»).

Equation 13 can now be written as

M = B + r 2r-2Nv

To introduce Equation 32 in general Equa
tion 13, we first calculate the vector

v = 11- 2r2(cc») (m - b)

= II - 2r2(cc») (m - e-2c)

= m - r 2c - 2e-2(cc)m + 2e- 4(cc)c.

The last two terms can be transformed
using Appendix I becoming

-2e-2(c-m)c + 2e-2c.

Therefore,

(23)

(24)

or using matrixK (Equation 11),

dR = - ,-2KL,.dr.

must be nearly equal to the unit matrix_
Therefore, since the inverse of Lb is Lb itself
(see Appendix II),

K~ - b2Lb (25) .

where r2, given by Equation 14, is now to be
expressed by means of c;

,2 = c2 + m2 - 2e-2(c-m)

= e-2[1 - 2(c-m) + e2m2]. (35)

or, according to Equation 20

(38)

(36)

and this again must be a small vector d.
Therefore, we put

Therefore,

e2r 2 = 1 - 2(c-m) + e~1I2.

Using this in Equation 33 we get

v = m + (r 2 - m2)c

and Equation 34 becomes

M = B + e-2r-2N[m + (,2 - m2)c]. (37)

This gives for the transform of the origin to
m=O, r=b

(28)

(27)

(26)

and, conversely, if c denotes the scalar value
of c,

We are now able to introduce the small
quantities we need for practical calculations.

Although the vector ap = b is likely to be
very large, we take the transform c of the pole
p in an inversion with pole a and the power
Q= + 1. The vector c = ac is given by Equa
tion 7,

The scalar values of the vectors band care B = d - r
2

Nc;

related by Equation 37 gives now

(39)

be = 1; (29) M = d + e-2r-2N(m - m2c) (40)

thus, if b is large, c is small.
The approximate value of K given by

Equation 26 can now be written as follows

K ~ e-21I - 2r2(cc»), (30)

and the exact value of K as the product of the
approximate value pre-multiplied by a ma
trix N. The N matrix is the product of a rota
tion matrix Wand a scalar quantity n, which
differs only slightly from unity. Then

N = nW (31)

K = e-2N II - 2e-2(cc»). (32)

The rotation expressed by W may also be
assumed as having a small amplitude.

or, taking Equation 36 into account,

M = d + [1 - 2(c·m) + e2m2]-lN(m - m2c) (41)

which is the desired equation; i.e., c and dare
small vectors, N is the product of a rotation
matrix with small amplitude multiplied by a
scalar factor near unity. We have always our
ten parameters; namely, three for d, three for
c, and four in N.

FIRST ApPROXIMATION

Considering c as being small enough, the
linear approximation of the fractional factor
gives

11 - 2(c·m) + e2m2]-1 ~ 1 + 2(c-m). (42)
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(43)

Using an approximation of the same order
in the expression of N,

[

1+n -S3 S']
N~ S3 1+n -SI ,

-s, SI 1 + n

we get explicitly, neglecting all products such
as nc, CS, etc....

Equation 46 expresses the linear part of
the transformation; it includes translation d,
rotation and scale modification N. Equation
47 contains the non-linear part and can be
interpreted as "inversion plus symmetry."
There are three parameters in it, the compo
nents of the vector c.

The transformation expressed by Equation

M, ~dt+ (1 + n)m, - S3m, + S,ln3 + Ctln" - Ctm,' - Ct1ll3' + 2C3lntln3 + 2C,lnlm,

M, ~ d, + S3m, + (1 + n)1n, - St1ll3 - c,mt' +C,lIl,' - c,m3' + 2C311l,m3 + 2ct1lltlll'

M3~ d3 - S,lIl, + Stlll, + (1 + n)m3 - C.tltl' - C311l" +C3m3' + 2C'1/1.'1Il3 + 2Ctllltln3 (44)

or, turning to the usual notations (X, Y, Z) for (M" Nh N13) and (x, y, z) for (m" m" m3)

X ~ dt + (1 + n)x - S3Y + s'z + CIX' - C'Y' - CIZ' + 2C3XZ + 2c,xy

y ~d, + S3X + (1 + n)y - sJz - C,x' + c,y' - C,z' + 2C3YZ + 2c,xy

Z ~ d3 - S'X + SlY + (1 + n)z - C3X' - caY' + caz' + 2c,yz + 2clxy. (45)

These equations are nothing else than those arrived at by E. M. Mikhail.' The correspon·
dence of notation is as follows

Mikhail: A o
here: d l

A
1+n

B c D E
CI

F
C,

G

'VIle see now that, as stated before, con
formity in the three orthogonal projections on
the coordinate planes as considered by E. M.
Mikhail is equivalent to the linear approxima
tion of rigorous conformality in space.

Let us repeat that rigorous conformality
contains no more than ten parameters, which
we have held in the linear approximation. A
higher approximation would contain the same
parameters. Introducing more coefficients
would destroy conformality. Because the
simple and practical form of Equation 41 of
the rigorous conformal transformation, no
need exists for determining polynomials of
higher approximation. The linear form is able
to give a first approximation of the param
eters, and is at once suitable for treatment by
least squares. A better approximation, if re
quired, would be given by the rigorous for
mulas.

CRITERIA FOR CONFORMAL TRANSFORMATION

But before calculating parameters, one
should investigate whether the deformation of
the strip does actually show the characteris
tics of a conformal one with a sufficient likeli
hood. It is now our aim to establish some
criteria to facilitate this investigation.

The fundamental Equation 41 can be writ
ten as

46 is the linear conformal one and is well
known. If c = 0, the general transformation re
duces to the linear one. It contains seven
parameters and possesses many invariants
which can be used as criteria to recognize it,
such as angles between straight lines, ratio of
two distances, etc. It wi11 be only when these
criteria are not fulfilled that one should in
vestigate if the deformation is more generally
conformal. The simple criteria will be those
which are independent of d and N, in other
words, those which are invariant by a linear
conformal transformation. They should de
termine, at least in a first approximation, the
values of C1, C2, C3. These represent the change
of orientation along the strip, the change of
scale along the strip, and the curvature of
some deformed straight line.

CHANGE OF ORIENTATION

Equation 23 gives, in the general conformal
transformation, the transform dR of an in
finitesimal vector dr. If we replace the matrix
K by its expression Equation 32, we get

dR = - c-',-'NII - 2c-'(cc)IL,dr (48)

or, using the symmetry matrix Lc =Lb accord
ing to Appendix III,

(49)

whereby we have put

M* = [1 - 2(c'm) + C'lIl'-I](m - m'e). (47)

M=d+NM* (46) The non-linear part of dR, according to
Equations 46 and 47, is

(50)
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Therefore,

(58)

(57)

(56)

(54)

(53)

p = Q/2l.

e = I ~: I= I QI ,-2.

CURVATURE OF A DEFORMED STRAIGHT LINE

We know from the properties of inversion
that any straight line not passing through the
pole will be a circle. If l is the distance from
the pole to some straight line, the radius of
the transform is given by

This function shows a minimum for mj =

CIC- 2 = bl (see Equation 28). Such peculiarity
has never been reported, but b1 is nothing but
the abscissa of the pole, which, as we know,
must be very far away, and is therefore likely
to lie outside the x-range of the strip. This
indicates at the same time that Equation 56
will furnish a good value for CI, but a poorer
one for c.

This means that along a straight line in the
nondeformed space the inverse of the scale
factor is a quadratic function, or, conversely,
that along a straight line in the deformed
space the scale factor itself is a quadratic
function.

In practical cases, e will be unity at the
origin (m = 0), so that n = 1, and the straigh t
line will be the x-axis. In any point thereon
(ml' 0, 0), Equation 55 becomes

and from Equation 36

1
f = - = n[1 - 2(c·m) + c2m2]. (55)

e

This gives for the curvature, according to
Equation 54

As stated before, Q may be regarded as
containing also the scale factor in the general
transformation, and consequently Equation
53 remains valid in all cases. From Equation
12 we see that Q is the absolute value of the
determinant of K, and Equations 31 and 32
show that this value is

CHANGE OF SCALE

In the pure inversion, the scale factor e is
immediately given by differentiating Equa
tion 6

k = C 2,-2 = [1 - 2(c·m) + c2m2]-1 (51)

is a scalar quantity which is of no interest in
the direction of our vectors.

We can interpret Equation 50 as follows.
If dR and dr are translated to a common ori
gin, Lrdr is symmetrical to dr with respect to
the direction of r, and LbLrdr is again sym
metrical to Lrdr with respect to the direction
of b. Now, the product of two symmetries is a
rotation with amplitude equal to twice the
angle between the axes of symmetry. The
axis of rotation is perpendicular to both axes
of symmetry, and, in particular, to b, the
direction of which is our unknown. The
datum of our problem consists of the direction
of vectors like dr and dR as given by their
direction cosines. One pair of such vectors is
not sufficient to determine the direction of the
axis of the rotation which brings one vector on
the other. If we had two pairs of vectors, the
problem can be solved, but we must be sure
that the axis of rotation has the same direc
tion for the second pair also. This is obtained
when b, T (for the first pair) and r' (for the
second pair) lie in the same plane. Remember
that b is the vector ap, where a denotes the
origin, and p the pole, and that r is the vector
pm, where m is the point under consideration
on the nondeformed model; if the second
point m' where a direction is known lies on the
straight line am, then b, rand r' will be co
planar wherever p lies. Our conclusion is then
that we must know the alteration of directions
in three points a, m, m' of ~he strip lying on
the same straight line. In practical cases, the
alteration will be zero at the origin, and the
straight line will be the x-axis.

In this particular case, the direction of rota
tion can be found as follows: if u and U are
corresponding unit vectors, the first in the
space of control points m, the latter in the
deformed space M, the axis of the rotation
sought must lie in the bisecting plane of both
vectors. (There are two such planes, but be
cause only the small angle is to be considered,
the correct one can easily be identified.)
Similarly, vectors u' and U' corresponding to
the points m', M' will give a second plane.
The axis of rotation is then obtained as the
intersection of the two planes. Lastly, be
cause the vector c is perpendicular to the axis
of rotation, one gets, between the components
of c, a linear relation, such as

CICI + C 2C2 + C 3C3 = O. (52)

The most general case can always be re
duced to the particular one by an adequate
rotation.

where



CONFORMAL TRANSFORMATIONS IN THREE DIMENSIONS 823

CALCULATION OF THE VECTOR C

We have collected so far three sorts of
information about the vector c. The easiest to
express are those given by the scale factor
(Equation 56) and the curvature of the x-axis
(Equation 61). We may hope that Equation
56 will give a good value of CI, and Equation
61 a good va! ue for (C2 2 +C32) 1/ 2 ; these are
respectively the longitudinal and the trans
verse components of c. To separate C2 and C3

it is then sufficient to introduce Equation 52,
and to solve the system (Equations 52, 61).

Other information might be called upon to
provide redundant equations, but let us re
member that we are only seeking the criteria
for conformality and not calculating the
transformation without knowing that it can
be conformal.

If the straight line is the x-axis,

I = (b zZ + b3
2) 1/2

or, from Equation 28,

1= C- 2(C22 + C32)1/2.

therefore

Forn=1,

"Y = 2(cz2 + C32) 1/2•

(59)

(60)

(61)

deformation can be regarded as conformal in
space.
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ApPENDIX I

PROOF OF THE IDENTITY: u(v' w) = UVW (v· w)
denotes the scalar prod uct:

(v·w) = VIWI + VZW2 + V3W3; (I-I)

(uv) denotes the dyadic product:

(1-6)

Using pure matrix-notation, denoting u, v,
was column vectors

If both sides (u and w) from the original
identity are written as column vectors;

(1-4)

(1-5)

(v·w) = uTw

(uv) = uvT
•

Both sides of the asserted equality are vectors
the components of which are obviously:

UI(VIWI + V2W2 + V3W); 112(VIWl + V2W2 + V3W3);

213(VIWI + V2W2 + V3W3) q.e.d. (1-3)

and the equality results immediately from the
associative law applied to matrix-multiplica
tion.

ApPENDIX II

THE SYMMETRY-MATRICES L

Given in a three-dimensional euclidean
space, a straight line s and a point u, deter
mine the point v symmetrical to u with re
spect to s.

CONCLUSION

If the deformation of a triangulated strip is
likely to be conformal in space, closed for
mulas with only ten parameters can be writ
ten to express the transformation (Equation
41). Before calculating these parameters, it is
advisable to test the conformality by some
criteria which are given in the foregoing sec
tion, leading to values of a first approximation
of the three parameters Ct, C2, C3. Applying
then the transformation expressed by Equa
tion 47, if the deformation is nearly con
formal, the residuals will show that there is
some linear transformation such as Equation
46 which will fit the strip to the control points
with reasonable accuracy. This leads to the
determination of the seven parameters con
tained in that transformation, which is the
same problem as absolute orientation of a
single model. Improved values of all ten
parameters can then be obtained by least
squares using Equation 41 and the first ap
proximation of the parameters, leading to a
linear form in the usual way.

The author would be grateful to colleagues
who try to apply the proposed method will
provide him information concerning actual
triangulated strips which show that the



824 PHOTOGRAMMETRIC ENGINEERING

(II-2)

or, according to Appendix I,

v = 2(ss)u - u = L.u. (II-6)

Obviously, the square of L. is the unit
matrix and the inverse of L. is L. itself, since
the symmetrical of II is u. These properties
can easily be verified analytically using Equa
tion 11-8.

Interpreting Equation 11-6, we see that
L. is the matrix by which one must premul
tiply a vector u to find the vector v. The latter
is symmetrical to u with respect to the
straight line and goes through the origin of u;
it also contains the unit vector s. In pure ma
trix-notation:

(II-8)

(II-7)

L. = 2ssT
- I.

If we use I denoting the unit-matrix,

L. = 2(ss) - I.

Whence

If II is the vector gil,

v - u = 2(w - u)

v = 2w - u = 2s(s'u) - u (II-S)

To solve this problem with vectors, select
some point g on 5, and consider the vector
gu=u. Let w be the vector which is the
orthogonal projection of u on 5. Then, the
vector (u- w) must be perpendicular to 5 or,
if s is a unit-vector on 5, the scalar product
s' (u- w) must be zero. But w, lying also on
5, is proportional to s:

w = ks. (II-I)

s·(u - ks) = 0,

and because s' s = 1,

k = (s·u) (II-3)

w = 5(S·U). (II-4)
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