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Hybrid and Conformal Polynomials

A hybrid function is probably better for long
aerotriangulated strips having a large number
of control points.

(Abstract on next page)

ERROR CHARACTERISTICS IN AERIAL TRIANGULATION

ERROR PROPAGATION STUDIES over the past thirty years have provided the photo-
grammetrist with a volume of information relating to the behaviour patterns of

systematic and random errors in aerial triangulation. Von Gruber'sl early investiga­
tions into the propagation of systematic errors were followed by the theories of
Roelofs, Gotthardt2 •3 and others in which the characteristics of random errors were
derived, either empirically or by "rigorous" theory. With a knowledge of the form of
these error patterns, adjustment procedures (which were rather primitive in the early
stages) were developed, and aerial triangulation as a standard production procedure
became a matter of course.

For many years, graphical methods predominated, with the Zarzycki4 interpola­
tion procedure offering the theoretically soundest approach to strip adj ustment.
Schermerhorn5 and Zeller6 advocated the extension of strip adj ustment to blocks for
purposes of controlling the odd behaviour of random errors. The possibility of nu­
merical treatment was avoided however, and only became a reality with the advent of
the electronic computer.

Switching from graphical to numerical procedures meant that photogrammetrists
were faced with the task of formulating mathematical expressions which simulated
the theoretically derived patterns generated by the systematic and random error
propagation.

In 1946 W. Bachmann7 proved for the first time that correction equations (formed
according to a rigorous least squares approach) for the three coordinates were of
third power in x, a fact substantiated by Roelofs 8 in 1951. The correction formulas
derived by Roelofs were of a complicated nature and were subsequently simplified
by van der Weele9 to the following form
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The above expressions when considered as polynomials representing error or cor­
rection surfaces simplify the rigorous adjustment procedure considerably. In other
words, the eight unknovvns in the planimetric expressions, for example, could be
solved for uniquely by reference to four ground control points suitably distributed
throughout the strip. Control in excess of four produces redundancies and conse­
quently dictates an adjustment solution for the unknowns. On the other hand redun-
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dant control will also allow for the solution of expressions containing more than eight
unknowns. Higher order terms or hybrid forms of the lower order terms added to the
above expressions may improve the flexibility of the correcting functions, although
theoretical investigations by Ackermann10 on this question prove the undesirability of
higher order polynomials.

Reverting to the problem of numerical treatment, the early advocates of automa­
tion faced the problem of programming known, or devising new adjustment proce­
dures which not only produced results to the required accuracy, but produced them
economically. As a result, the natural tendency was to utilise polynomial expressions
of various forms in a manner which yielded acceptable results and did not tax the
computer beyond its storage, word length and other limits, as would have been the
case with entirely rigorous procedures. Although the capacity of the modern com­
puter possessing considerable back-up memory does not present any real problems
nowadays, polynomial strip adjustment is still favored by many organisations, and

ABSTRACT: Results of polynomial strip adjustment procedures appear to be
comparable irrespective of the polynomial type used. Arguments produced to
justify the use of one polynomial in preference to another are shown to be uncon­
vincing particularly when dealing with transformations between reference
frames of diilerent status. Suggestions are made concerning empirically derived
compositions which offer alternative solutions to the adjustment problem in
photogrammetry. Other less-used polynomial forms are examined for use with
strips and possibly for blocks as well.

this fact alone is sufficient reason for analyzing and reviewing existing forms, and
postulating on the properties of other less frequently used mathematical expressions.

STANDARD AND HYBRID POLYNOMIALS

Expressions (1) above, although subject to the limitations of polynomial correct­
ing functions, do nevertheless correspond to a more exact adj ustment procedure (for
a certain control point distribution than do numerous hybrid forms. The question
which inevitably arises when comparing adjustment procedures is What is the accuracy
of the adjusted coordinates? Generally as far as is known, little difference exists between
the results from various polynomial adjustment procedures although tests currently
being conducted indicate a possible superiority of composed polynomials over con­
formal polynomials insofar as height adjustment is concerned. Some details of these
tests are given below.

The possibility of the adjustment being executed in two stages (i.e. separation of
planimetry and height) raises the question as to whether this technique is valid and
theoretically or otherwise justifiable. Arguments exist for and against this procedure.
The main consideration is clearly whether or not such a development vitiates the end
result. This is generally not the case. Furthermore, different accuracy requirements
are very often specified for planimetry and height, a factor which strongly favors
separate treatment. In this event, the polynomial for height adjustment could possi­
bly be improved by the addition of hybrid terms as was done by Nowickiand BornY

Discretion and rationalism must prevail however, for the addition of numerous
terms (some of higher order) merely to improve the goodness of fit is indeed question­
able. Too often an exact fitting of the error surface to the available ground control is
the aim of the procedure, i.e. the strip adjustment, is judged by the standard devia­
tion of the residuals at control points. Excessive flexibility in curve fitting has the
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obvious shortcoming of accommodating the random jumps known to exist in aerial
triangulation, particularly over long strips. I t is not suggested, however, that hybrid
forms of polynomials should be abandoned. On the contrary, empirical derivations of
suitable polynomial forms based on analyses of either systematic errors resulting from
different triangulation procedures, or "trial and error" adj ustmen ts of fully con trolled
test strips often produce highly satisfactory results.

A further variation possible is the use of either several polynomials on a single
strip, i.e. a different set of coefficients between bands of control, or composed poly­
nomialsl2 ,13 in which a variety of composition restraints have been imposed. The latter
of these two suggestions has both theoretical and practical advantages, and results
of recent tests, particularly with height adjustment have been most encouraging.

CONFORMAL AND ORTHOGONAL POLYNOMIALS

Among the polynomial forms which are currently being used in the adjustment of
spatial strip coordinates are those which satisfy the Cauchy Riemann relations. These
conformal forms may be derived directly in terms of complex numbersl5 from:

n

(X + iY) = L (aj + iaf+I)(X + iy)f- I
f~l

(2)

or, alternatively, they may be derived from normal polynomials upon which con­
formality conditions are imposed.14 Justification for the use of conformal polynomial
forms, mainly in the adjustment of planimetry has been represented as being because
they are convenient to use and furthermore, because they transform any small area
from the machine or strip system to the terrain coordinates without deformation.
Whether or not these criteria are sufficient cause for the application of conformal
polynomials is possibly a matter for conjecture.

The authors are of the considered opinion however that conformality alone does
not provide an adequate reason for selecting a conformal transformation for con­
verting coordinates from one reference frame to another. In fact, the foregoing reason
may be severely criticized when transformation occurs between reference systems of
unequal status as is usually the case in photogrammetry. In general, if good ground
control surveys are based on a sound national geodetic framework, the photogram­
metric systems will understandably have the lower status while it would not be diffi­
cult to envisage situations where the ground control system could very well prove to
be the one of inferior status. For proper flexibility, transformations between different
status systems must be expected to display affine characteristics to a greater or lesser
extent.

Although it may be desirable to retain basic geometrical properties of the refer­
ence frames it is in no way essential that this be done. Clearly, the adjustment poly­
nomial that should be chosen is the one that gives the best result when tested against
known and acceptable criteria, such as o"z and O"p, the absolute standard errors in
height and position. These criteria (as was stated earlier) are unfortunately only too
often applied to the residuals obtained at the control points alone to which the poly­
nomial is fitted.

By so doing a spurious impression of accuracy is obtained from the resulting small
standard errors. This is not surprising because a judicious selection of the number of
polynomials' coefficients, n, equal to three times the number of control points, m, will
reduce O"p and o"z to zero at the control points. In other words the observational redun­
dancies (m-n) are reduced to zero when a simultaneous adjustment in X, Yand Z is
undertaken. Clearly as (m-n) tends to infinity, o"z and O"p will tend to appropriate
maxima partly under the control of n, to which some practical limit must apply.
Undoubtedly this limit will be governed by the fact that error propagates through
the strip of aerial triangulation as a function of X 3•

7
,16
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Truncating the number of polynomial terms in this way would introduce a re­
mainder summation term the effect of which must be expected. Maximum standard
errors would thus provide a theoretically sounder basis for judging the merits of the
various polynomial forms, even although the implementation of such an ideal would
not be practicable, because there is no means of readily determining (CTz).,ax and (CTp).,ax
for any particular strip adjustment problem. Approximations to these quantities are
possibly best determined from the appropriate absolute standard errors derived from
check points distributed uniformly throughout the strip, and not used as control
points for the actual polynomial fit. To include discrepancies at the control points in
the calculation of standard errors, especially when these points tend to exceed the
number of check points, serves only to suppress the reality of the situation by giving
too low estimates of the relevant standard errors.

From what has been written, strips provided with sparse control distributions
should not be used when judging the merits or demerits of one polynomial type over
another. Special test areas, densely controlled, and hence having an abundance of
check data are the only units capable of providing reliable comparisons. Whether
these test areas should be surveyed and photographed to some preconceived standard
of accuracy, or not, or be a theoretical testl7 made to simulate an actual practical
example is, in the authors' opinion, a matter of personal preference. The important
thing is that secondary discontinuities resulting from error propagation are in fact
manifested and, in consequence, are accommodated by the fitted polynomial.

After all, the criteria used in discriminating between the effectiveness of one poly­
nomial compared with another are solely relative and it could well be argued that a
purely mathematical model, quite unrelated to things practical, would be adequate
for the above tests. Such a proposition might be sound enough in itself; nonetheless a
theoretically perfect model could not be expected to test the relative flexibility of
polynomials, unless the kinds of discontinuities encountered in practice were built-in.

I t is highly desirable therefore that a suitable common test model be used by
researchers and others when examining polynomial forms for adjustment and trans­
formation purposes. Recent tests using the I.T.C. Test Blockl7

, one such test model
form, and triangulations with grid-plates on a Wild Autograph A7 have proved most
rewarding.

Different applications of conformal polynomials in the adjustment of strips of
aerial triangulation are published. These range from the adjustment of X and Y
simultaneously, using second and even higher order termsl5 and Z separately, to the
adjustment of X and Y, and X and Z,14 jointly, using third-order terms. The choice of
one-pass or two-pass processing systems remains almost solely a matter of limitation
of computer core-storage. All non-linear methods so far devised provide only simul­
taneous two-space adjustment procedures and therefore the retention of conformality
between each of the dimensions of three space is an unattainable ideal at the present
time.

MikhaiJ18 has shown using quarternions that simultaneous three dimensional
transformations of degree higher than the first are not likely to exist and has sug­
gested the application of conformality in the projection planes as an acceptable com­
promise. It is felt, however, that this suggestion is of limited value only as the latter
concept is found to be tenable for polynomials comprising terms of order less than the
third. Arthurl9 disputes Mikhail's, and also Schut' sl4, contentions but, it is felt, pro­
duces no substantial evidence to refute the conclusions obtained. Recent papers by
Baetsle24 and Schut25 shed further light on the question of transformations in three
dimensions and the unlikelihood of these existing in second- or higher-order forms.
How does this affect the argument for using conformal polynomials?

As there is no way of maintaining point-geometry in three dimensions after non­
linear transformations it would appear that no argument can be produced as a conse-
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quence to justify any insistence on the retention of conformality in high-order adjust­
ment polynomials in two dimensions, based solely on the conformal property. It may,
of course, be argued that as different precision criteria are generally specified for plani­
metry and height the separation of the adjustment of the third dimension from the
other two is justified in practice, and hence the application of conformal polynomials
for the adjustment of X and Y is more or less axiomatic.

Such an argument could only have weight if the results of a transformation using
conformal polynomials produced smaller (jp's and (j;s than transformations via any
other polynomial forms. Further, this contention is unlikely to be proved correct as, if
experience so far gained is any indication, conformal polynomials show themselves to
be more inflexible than some other types. Second generation high speed digital com­
puters also reduce the influence of the convenience factor of the conformality
property to a level which can often be neglected.

The determination of the fitted polynomial coefficients is carried out by well­
known adjustment procedures which reduce to the solution of systems of linear
equations (often large) by elimination of matrix inversion techniques. By judiciously
selecting the kind of polynomial, assuming that arguments concerning accuracy are
equal, it is possible to reduce all off-diagonal terms of the matrix of coefficients of the
normal equations to zero. Such polynomials are referred to as orthogonal, examples of
these being those of Laguerre, Legendre, Chebyshev, Gegenbauer, Jacobi and Her­
mite, all of which satisfy the orthogonality conditions.

f bW(X) <Pm (X) <pn(x)dx = 0,
a

f bw(x) <Pn2(x)dx ,r. 0,
a

m,r.n

for a set of functions <po(X) , <Pl(X) , ... <pm(x) in the interval a~x~b where the
weighting function w(x) is non-negative. Taking advantage of these properties, fitting
a surface to known Zjk= F(xj, Yk), (j, k=O, 1, 2, ... n) reduces to a linear combina­
tion of known orthogonal polynomials in accordance with the form

n

Z = L: a;(y) T;(x)
i=O

in which a;(y), (i= 1,2 ... n) are representable in the form

n

a;(y) = L: ai.T.(y),
e=O

(3)

the ai. all being constants and the T.(y) being the corresponding orthogonol poly­
nomial approximations to y. For any given "}Ii •

ai(y)

•L: T;(Xk)f(XkY)
k=l

•L: T;2(Xk)
k=l

the f(Xk' y)'s being the appropriate values of Z at the y, Xk intersections. This then
presupposes the a;(y) are also known for values of Z within an assigned x, y frame­
work. Within these imposed restrictions the polynomial form may be written23

:
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by normalizing the initial values of x to the interval (-1, 1), existing orthogonal
function tables may be used in evaluating the coefficients of the polynomial terms
for Z. The y-limits are proportionately scaled.

For research purposes, using theoretical models or formalised test areas with
Equation 4 is very satisfactory, particularly if repetitive measurements and adjust­
ments are involved. Its general application, however, is not completely straightfor­
ward since the orthogonal polynomials have to be evaluated at non-uniformly spaced
(x, y), a procedure which cannot be handled efficiently without access to an auto­
matic computer. The possibility of using orthogonal polynomials for block adjust­
ment is well-worth investigating and tests have already been commenced. According
to Vlcek2l the method can be extended to problems involving three or more indepen­
dent variables.

STATISTICS OF TEST ADJUSTMENTS

In Table 1 the standard errors in planimetry and height are given for two tests
using the first twenty models of Strip 1 of the I.T.C. Test BlockY The first adjust­
ment example was conducted using a two-section composed polynomial of second
order for height and a separate third order polynomial form, after van der Weele for
planimetry. The second example cited followed Mikhail'sl8 suggestion of conformality
in the cardinal projection planes, and because of this is restricted to the use of poly­
nomials of second degree only. ineteen control points were used in each of the tests,
the distribution of control being identical in each case. No special restraints were im­
posed on individual point locations and therefore no model in the strip was fully con­
trolled.

The tests were repeated with varying numbers and distributions of control; that
for fourteen control points randomly distributed is reflected appropriately in Table 1.
The standard errors are computed from 63 points in each case, including 44 and 49
check points, respectively, the results indicating that a smaIl variation in the number
and relative positions of control points does not appear to affect the results.

TABLE 1: STATISTICS OF TEST ADJUSTMENTS

(i) (ii) (iii)

Aletres Composed 3rd Order 2nd Order Polynomials

Polynomial Polynomial conformal in the
Projection Planes

No. of Control Points 19 I 14 19 I 14 19 I 14

Scale of Theoretical Photography: 1:43,500

x - - 2.13 2.17 2.77 2.93
Y - - 2.60 2.54 2.75 2.63
P - - 3.37 3.34 3.91 3.93
Z 2.16 2.12 - - 3.19 3.20

0/00 H 0.32 0.32 - - 0.48 0.48
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TABLE 2: STANDARD ERRORS FROM PRACTICAL EXAMPLES

633

Standard Errors (ft)
Adjustment Function

x y z z as 0/00 H
------

Composed Polynomials - - 12 0.66
3rd Order Polynomials - - 40 2.22
2nd Order Polynomials - - 59 3.27

------
3rd Order Polynomials after v.d. Weele 11.2 12.6 - -
2nd Order Conformal Polynomials 35.6 8.2 - -

An actual strip of 1: 36,000 photography, of 35 models, flown with a Wild RC8
camera and triangulated on a Wild Autograph A 7 was adjusted using (i) and (ii). In
all 14 control points were used distributed evenly at ten model intervals. Unfortu­
nately, only ten independent check points were available for the calculation of the
absolute standard errors, consequently it would be unwise to base any conclusion on
such a small sampling. Nonetheless the standard error comparisons in Table 2 with
more conventional polynomials are worth mentioning.

The quality of this last example is somewhat doubtful and the tabulated standard
errors should not therefore be taken as indicative of the ultimate precisions obtainable
using the various functions mentioned. Table 2 is, however, valid as a means of show­
ing the comparative superiority of the composed polynomial for height adjustment
over the other forms, and of the third order hybrid polynomial over the second con­
formal polynomial for adjustment of planimetry.

CONCLUSIONS

Investigations being conducted by the authors indicate that no one adjustment
function can be relied upon to provide the smallest standard deviations, the precision
criterion currently used, for every photogrammetric strip triangulation adjustment.
Every polynomial form can, however, be expected to have its own distinctive maxi­
mum performance limits beyond which it is not possible to go. It is believed therefore
that some optimum number and distribution of control in the strip must exist for each
adjustment polynomial. How this opinion may be proved or disproved remains a mat­
ter for further investigation. A superficial illustration of the apparent lack of effect of
a change in number and distribution of ground control points in a strip adjustment is
provided in Table 1.

The tendency of many photogrammetrists to favor the use of conformal poly­
nomials regardless of the length of the strips triangulated is in the opinion of the
authors unjustified. For short strips and few control points the conformal function,
with its restraints, possibly has some advantages. For long strips, having a large
number of control points, where the status of the control and photogrammetric
reference systems differ greatly, the composed hybrid type of function is probably
better. Certainly, tests so far completed show this to be so. Even for the adjustment
of short strips, the latter polynomial type may well prove to be the most effective.
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