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Lunar Shape and Gravity Field
Photogrammetric missions can be utilized not only to establish control points on

the moon but also to obtain gravity information on the far side.

INTRODUCTLON

M ETHODS OF SELECTING orbits to map planetary surfaces in an optimal manner
have been presented by Stern and Stern [1968]. However, these authors define

optimal as the condition that a maximum of area of the planet is covered with a
minimal amount of overlap. Such a planetary mission, of course, would obtain only
pictures of the surface of the planet. If a sufficient overlap of the pictures would be
attained and if the pictures would be taken with a metric camera, the photographs of
the planet could be used to make a map of the surface of the planet, as applied to the
moon by the Lunar Orbiter System [Norman, 1969].

ABSTRACT: The positions of a metric camera in a spacecraft orbiting the moon
can be treated as unknown parameters in a photogrammetric solution for estab
lishing control points on the surface of the moon. According to Newton's law of
gravitation, hmvever, the orbit of a spacecraft around the moon, or the positions of
the camera in a satellite on a photogrammetric mission, can be expressed by six
orbital elements and the parameters of the lUl1M gravity field. Such a substitu
tion of the camera positions not only reduces the number of un/mowu param
eters but also provides an opportunity to gather information about the gravity
field of the farside of the moon where spacecraft caunot be tracked from earth.

The scale and orientation of such a map can be obtained from photographs taken
by a pair of satellite-borne stellar cameras, from altimeter measurements of the dis
tances between the camera and the surface of the planet, and from tracking of the
spacecraft from the earth. This approach \\'as proposed by the C&GS [1965] and by
the Geodesy and Cartography Working Group in NASA [1967] for a more accurate
mapping of the moon than that obtained by the Lunar Orbiters. Brown [1968] showed
that wi thou t stellar cameras and al timeter measuremen ts the scale and a mass
centered coordinate system can be obtained by short-arc methods.

Precise timing of the photographic exposures is required for these proposals. vVe
will assume that this requirement is fulfilled in a photogrammetric mission for the
moon or for another planet. vVe are then able to determine not only the geometric
shape of the moon but also its gravity field. The orbit of a spacecraft around the
moon on a photogrammetric mission is highly sensitive to the irregularities of the
gravity field because of its low altitude. The positions of the spacecraft at the ex
posure time are obtained from the photogrammetric sol u tion. These posi tions can he
regarded as observations of the orbit and will allow conclusions about the lunar grav
ity field not only for the moon's nearside but also for the farside where the occultation
of the spacecraft by the moon makes direct measurements from the earth impossible,

One might object that extracting this additional information will weaken the
photogrammetric solution. I [owever, in a purely photogralllllletric solution the space
craft posi tion for each photograph en tel's the sol u tion wi th three unknown parameters.
If, for instance, the entire moon is covered with photographs, this will amount to
thousands of unknown parameters for the camera positions. These many unknown
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parameters can be replaced by the parameters of the gravity field of the moon and six
orbital elements for each orbit, because the orbit of the spacecraft around the moon
can be expressed by Newton's law of gravitation. Although it is known from the analy
sis of the tracking data of the Lunar Orbiters that the gravity field of the moon is
rather irregular [Muller and Sjoglen, 1968], it will be possible to express the gravity
field by fewer parameters than there are unknown coordinates for the camera posi
tions, without distorting the results for the camela positions. Such a reduction of the
number of unknown parameters, Gf course, will improve the photogrammetric solu
tion.

A photogrammetric mission which completely covers the moon cannot be expected
in the near future. However, photogrammetric pictures taken from an Apollo com
mand module in an orbit moderately inclined to the lunar equator are planned. Even
for such a photogrammetric mission one should try to replace the coordinates of the
camera positions by the parameters of the lunar gravity field because results for the
lunar gravity field of the nearside are available from the analysis of the Lunar Orbi
ters, in addition to the tracking of the spacecraft from the earth. Such a method will
give a unique opportunity to gather information about the gravity field of the moon's
farside.

PHOTOGRAMMETRIC ApPROACH

Using the colinearity equations, the vector Oi of the measurements on the plate i
can be represented as a function of the vector ri of the three elements of the orienta
tion of the plate i, as a function of the vector Xi of the three coordinates of the camera
position of the plate i, and of the vector Yj of the three coordinates of the ground
pointj:

(1)

where Xi and Yj are expressed in the same coordinate system. Approximate values for
ri, Xi, and Yj can be obtained so that we apply Taylor's theorem and obtain from
Equation 1 the observation equations which lead to the normal Equations 2 of the
least-squares adjustment for n photographs with m ground points in common
[~chmid, 1958]. Here Llri represents the vector of corrections to the approximate
values for the three elements of the orientation of the plate i, LlXi the vector of correc
tions to the three coordinates of the camera posi tion of the plate i, and LlYj the vector
of corrections to the three coordinates of the ground pointj. The matrices Ai, Hi, C i ,

D i , Eij, and Fij are of dimension 3 X 3. The vectors ii, Ii, and ij of the absolu te values
of the normal equations each contain three elements.
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As is known, the coefficien t matrix of Equation 2 is singular. I n order to obtain a
unique solution, adjacent photographs must have at least five ground points in com
mon. In addition to this, seven coordinates of ground points have to be known for
orientation and scaling. These values can be easily introducerl inlo Equation 2 as
observations wi th zero variances [Koch and Pope, 1969].

If the distances from the camera to the ground are measured (for instance, by a
laser-al timeter) as proposed by the C&GS [1965] and by the Geodesy and Cartog
raphy Working Group in NASA [1967], these measuremen ts will in trod uce the scale
into the Equation 2. The laser measurements have to be synchronized with the open
ing of the camera shutter. From a calibration, the angle between the principal axis of
the photogrammetric camera and the laser beam will be known. Hence, the spot on
the photograph can be marked where the laser beam hit the ground and an observa
tion equation can be formed according to Equation 1. If Si is the laser measurement
at the time of the ith photograph and Y j • the vector of the coordinates of the ground
point which reflected the laser beam, we have the relationship

(3)

Stellar cameras com bi ned wi th the photogrammetric camera will give the camel a
orientation in the astronomic right ascension and declin3.tion system which by means
of the lunar ephemerides can be transformed into a moon-fixed system, hence

(4)

where Pi are the observations of the stellar camera at the time of the exposure of the
plate i. The Observations 3 and 4 in addition to Equation 1 yield the normal Equa
tions 5.

(See page 378 for Equation 5)

The matrices G denote the contribution of the stellar camera Observations 4 to the
normal equations, and H, I, and J the contribution of the altimeter Observations 3
which is shown only for plate 2 and ground pointjs. The solution of Equation 5 gives
the coordinates of surface points of the moon in a moon-fixed coordinate system whose
origin is in an arbitrary position.

DYNAMICAL ApPROACH

So far the camera positions Xi have been treated as independent parameters. How
ever, the orbit of the spacecraft around the moon can be expressed as a function of
the orbital elements eo at an epoch.o and of the parameters?\: of the lunar gravity field

Xi = xi(eO, ?\:). (6)

'While flying over the moon's nearside the spacecraft will be tracked from the earth so
that

t = t(eo, ?\:) (7)

where t denotes the tracking data. Finally, from previous tracking of lunar satellites
information g about the gravity field of the moon has been gathered which can be in
trod uced by

g = g(?\:). (8)

If the entire surface of the moon would be covered with photographs from
heights, for instance, less than 100 km., the elimination of the camera positions
according to Equation 6 could considerably reduce the number of unknown para
eters in the normal Equations 5. But even if only an equatorial belt of the moon is
covered by photographs, it might be possible to reduce the number of unknown
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parameters by the substitution Equation 6 if we take Equations 7 and 8 into account.
From the tracking of the Lunar Orbiters a good knowledge has been obtained for

the gravi ty field of the nearside of the moon (lVI uller and Sjogren [1968]. Blackshear
[1969]). Satellites on the lunar farside, however, cannot be reached by earth tracking.
If no synchronous satellites are sent up for the moon from which 11100n satellites arc
tracked, a photogral11metric mission will provide an excellen t possi bi Ii ty of obtaini ng
information about the gravity field of the farside. But in contrast to tracking from
synch ronous satelli tes, a photogral11l11ctric mission will also givc the geometric featu rcs
of thc surface of the moon.

COMBlN,\TION OF THE PJlOTOGRAi\Ii\IETHIC AND DYNAi\!IC,\L ApPROACH

One way of determining the parameters ?C of the lunar gravity field is to adjust
the photogral11mctric and dynamical data in two steps. I n such a solu tion, Eq. 6 yields
the observation equations whose observed quantities (i.e., the coordinates Xi of thc
camera stations) have been obtained together with their covariance matrix from thc
solution of the normal Equations 5. These observation equations together with Equa
tions 7 and 8 give the normal equations for the parameters?C of the gravity field. Their
solution yields, in addition to the parameters ?C, new adjusted camera positions with
their covariance matrix. The com parison of this covariance matrix wi th the one ob
tained for the camera positions by the inversion of iVlatrix 5 from the photogrammet
ric data alone will show the improvement due tJ the inclusion of the dynamical con
straints and orbital data. In addition, at this stage the change in the magnitude of
the squares of residuals can be obtained and used to show whether the chosen model
for the lunar gravity field is adequate. If indeed this is the situation, the new adjusted
camera positions are introduced into the System 5 to obtain a corresponding new set
of ground coordinates.

The disadvantage of such an approach is the fact that one has to cope with a great
number of camera positions. By simulation studies it should be decided beforehand
how many parameters of the gravity field of the moon are necessary to describe the
orbi ts of a planned photogrammetric mission wi th an accuracy com pati ble wi th the
one obtained for the camera posi tions from the photogral11lllctric solution. Then, the
camera positions Xi in Equations 1, 3, and 4 can be substituted according to Equation
6 by the orbital elements eo and the parameters ?C of the gravity field. Hence, we
obtain the normal Equations 9 for the combination of the photogral11 metric and dy
namical approach. Here ~e denotes the corrections to the approximate orbital ele
ments and ~?C the corrections to the parameters of the gravity field. The matrices
K, Li , M, N i , 0, Qi> and R j are of dimensions 6 X6, 3 X 6, k Xk, 3 Xk, 6 Xk, 6 X 3, and
k X3, respectively, if k is the number of parameters?C of the gravity field.

(See page 378 for Equation 9)

The normal Eq uations 9 con tain a considerable n UI11 bel' of zero elemen ts because
no observation equations contain coefficients for more than one set of three orienta
tion paramcters. The sal11e holds for (he orbital elements for cach orbit and for thc
coordinates of the ground points. Jn addition, coefficients for ground points appear
only in the observation equations for thc plates which contain their images. Because
of these l11any zero-elements it "'ill be possible to solve the huge Systel11 9. As in
photogrammetry, the orientation parameters or the ground stations could lJe climi
nated analytically before the system goes in to the compu tel' for the numerical sol ution.
However, System 9 is much more irregular than, for instance, the normal equations
of the adjustment for a photogrammetric block. The compacting of normal Equations
9 should therefore be accomplished by the computer program so that only non-zero
elements of the normal equation are stored and used in the solution of Equations 9
[Krakiwsky and Pope, 1967].
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ORBIT INTEGRATION

The equations of motion of a moon satellite are expressed in a coordinate system
whose center is the mass center of the moon. The solution of Equation 9 will therefore
give the coordinates of the points at the surface of the moon with respect to the mass
center. If the photogrammetric mission would be flown without the laser altimeter
it would still be possible to scale the results by introducing the product of the lunar
mass and the gravitational constant as a fixed quantity into the orbital analysis. If
there would be no stellar cameras, the moon-fixed coordinate system could be oriented
by earth tracking.

For only half of the lunar surface (or even less) will the lighting conditions permit
photography [Konecny, 1968], and radar tracking from the earth is possible only for
the lunar nearside. Ievertheless, it will be advisable to use a few long arcs instead
of many short ones to reduce the number of unknown orbital elements, although this
procedure may not harmonize with the optimal selection of photographs for the
photogrammetric approach. The orbits will be integrated numerically, along with the
variational equations for the unknown parameters. If necessary, the equations for
powered flight will be used.

Harmonic coefficients of the expansion of the lunar gravity potential in spherical
harmonics have been determined by Blackshear [1969]. If only parts of the lunar sru
face are covel ed by photographs, the gravi ty field of the moon is better expressed by a
known expansion of spherical harmonics up to a low degree and an unknown poten tial
of a simple layer distributed over the surface of the moon [Koch, 1968]. The unknown
parameters of the gravi ty field in this represen tation are connected wi th specific
surface areas so one can easily account for a great number of observations in certain
areas in con trast to few observations in other areas [Koch, 1970].
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