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INTRODUCTION

E XTRATERRESTRIAL APPLICATIONS of ana
lytical photogrammetry can be divided

into two broad categories: those dealing with
photographs from orbiting vehicles, and those
concerned with photographs acquired at or
near the surface. Common to both of these
categori~s is the problem that control points,
defined 111 the conventional absolute sense
are simply not available in extraterrestriai
work.

In the first category concerning photo
graphs from orbiting vehicles, this problem is
alleviated through the use of orbi tal con
straints in the analytical reduction. In the
second category, however, the photographs
are not generally related to each other by the
nice geometric constraint of an orbit. These
photographs are normally taken (or to be
taken) from soft-landed vehicles, from roving
vehicles, or from hand-held cameras used by
landed astronauts traversing the surface.
Consequently, it cannot be assumed that the
geometric relationships between different
camera stations are always known. Instead,
we must consider the possibility of a variety
of relative control information which may
exist in the object space. It is the objective of
this paper to deal with this type of informa
tion in relation to applications within the
second category of extraterrestrial photo
graphs.

By relative control information is meant
anything other than points with known co
ordinates in any type of coordinate system.
The exception applies to both partially and
completely known control points. The types

* Presented at the Annual Convention of the
American Society of Photogrammetry, Washing
ton, \? c., March 1969, under the title" se of
Relative Control Information in Analytical Extra
terres! rial Photogrammetry."

of relative con trol considered in this paper
include distances of any kind (i.e., between
camera stations, between object points, etc.);
points known to lie on planes of any orienta
tion (i.e., vertical, horizontal, etc.); points
which lie on lines of different orientations;
known angles; and known geometric shapes.

Considering the fact that there are two
distinct procedures of analytical reduction
tech niq ues, namely seq uen tial and si mul
taneous, the usc of the above men tioned in
formation will be considered in relation to
both tech niq ues.

It is important to note at the outset, that
this general subject of use of constraints in
analytical photogrammetry has been already
treated in the literature. I ,2 However, most of
the work published emphasizes regular aerial,
and in some cases orbi tal, photographs. This
paper, on the other hand, is concerned with
extraterrestrial applications of more or less
close-range photography.
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SEQ E:-fTIAL TRIANGULATION SYSTEM

A seq uen tial triangulation system is con
sidered here to be divided into two basic
operations, relative and absolute orientation.
As we are concerned in this study with ex
traterrestrial application of photographs
taken on the surface, we will confine ourselves
to a stereo pair situation, However, all the
relations derived here would apply equally
well to multiple stereo pairs which have been
collected into one coordinate system after

we will study each category of relative con
trol and find out which of the seven absolute
orientation parameters can be determined.

DISTANCES

The first type of relati"e control informa
tion is known distances which may be be
tween camera stations, between object points,
or between a camera station and an object
point. Any of these, or combinations thereof,
would simply determine the scale factor s.

ABSTRACT: The logical techniques for nse in extraterrestrial mapping are
probably those of analytical photogrammetry. Such techniql/.es are equally ap
plicable for photographs from descending vehicles, orb'iting vehicles, or from
tile surface of the ext'raterrestrial body (via soft-landed vehicles or landed hu
man beings). In all cases, lack of known absolute or partial control in the object
space is a reality to be reclwned with. A variety of possible rei a ti ve con trol
information is available for use in the reduction of photographs talun from
poillts on or near the surface of the extraterrestrial body. Such relative control may
include: knowll distances, points known to lie on lines or planes of d~tferent

orielltalions, and known angles and shapes. The contribl/.tion of each of these
pieces of information to tlte solution of the photogrammetric problem is e.tfected
though the derimtion of corresponding equations. A consideration is given to
sequential as well as simultaneous analytical triallgulation systems as (t.tfected
by the incorporation of sllch relative coutrol data.

If a known distance in the object space is
D i and the corresponding distance in the
model is di , the scale factor is directly ob
tai ned from

independent relative orientation and assum
ing no significant distortions between them.

Relative control information is then used
in the step of absolute orientation which is
conventionally performed using the transfor
mation

1 "
s = - :L (Dddi)

'It i_l
(2)

The application of Equation 1 necessitates
that control information be in the form of
coordinates with respect to one unified system
(X, Y, Z). It is not necessary, howeyer, that
all three coordinates be known for a control
poi n t, as one can easily utilize partially known
control points. Ne"ertheless, Equation 1, in
its given form, cannot be used for relative
con trol information. I n the following section

where:

s
R

c, Cu' C,
(x, y, z)
(X, 1', Z)

(1)

is a scale change
rotation matrix in terms of
three independent parameters
three translations
model coordinates
control coordinates

where n is the total number of known dis
tances. If the distance is between two cam
era stations, then

di = [bi + b; + b,2J,II' (3)

which is the length of the base at the arbi
trary scale of relative orientation.

If the distance is between two poi n ts rand
t, we have

di = [(", - x,)' + (y, - )',)' + (z, - z,)'l'/2 (4)

which is distance in the model between the
two points.

Here, the two points I' and t may both be
object points or one may be an object point
and the other a camera station.

The value of s obtained from Equation 2
represents the simple mean of n values.
However, if the known information is of
varying known weight, then the weighted
mean should be used.
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(12)

PLANES

The second valuable source of relative
information is the knowledge that a number
of points lie on a plane in the object space.
Such a plane would basically assu me one of
three positions, either vertical, or horizontal,
or inclined. \Ve will study each of these cases
independen tly.

Known Vertical Plane. The model coor
dinates x, y, z are operated on by a rotation
matrix such that after rotation the coordi
nates of a given set of points lie on a vertical
plane. The rotation matrix in three dimen
sional space is a 3 X3 orthogonal matrix which
would have a maximum of three independent
parameters. Schut3 has shown different
methods of constructing such a matrix. One
such method, which we shall choose as suit
able for this case, is by performing a single
rotation a abou t a directed Ii ne. If the direc
tion cosines of that line are A, Il, 'Y then the
rotation matrix is gi\'en by

lf the equation for the first of the points is
subtracted from those for all other points, C
can be eliminated and the equation for the
i-th point reduces to

(y/ - y,') = (x! - ~.,') tan fJ. (11)

Using Equation 8 into 11 and expanding, the
latter simplifies to

(x; - Xl) cos a sin fJ - (Yi - y,J cos a cos fJ

+ (Si - z,) sin a = O.

The unique case should be whpn three points
are known because they a' e the minimum
that determines a plane. This is true because
we would have two of Equations 12 in the two
unknowns a and (3.

It is important to emphasize that after the
rotation in Eq uation 8 the gi ven plane would
be perpendicular to the x'y'-plane and par
allel to the z'-axis. However, there is no rea·
son at all that the z'-axis would be parallel to

[

A2(I-COSa)+ COSa

R = AI'(1 - cos a) + I'sina

AI'(1 - cos a) + I' sin a

AI'(1 - cos a) - l' sin a AI'(I - cos a) + I' sin aJ
1'2 (1 - cos a) + COSa 1'1'(1 - cos a) - Asin a

1'1,(1 - cos a) + Asin a 1'2(1 - cos a) + cos a

(5)

Four parameters seem to be involved in R
bu t one of these is a dependen t parameter
because of the fact that the three directon
cosines are related by

A' + 1" + 1" = 1. (6)

I n our problem. the directed line would be
chosen to pass through the origin and parallel
to the trace of the given plane. Hence, from
Figul'e 1,

A=COSfJ l'=sinfJ 1'=0 (7)

and R I'educes to

the Z-axis of the con trol system. Hence, the
information gi\'en by the knowledge of one
vertical plane is not su fficien t to level the
modeL

If the known vertical plane is to be taken
parallel to, for example, the X Z-plane, the
result would be that the y'-axis will be par
allel to the y-axis. The same applies for the
case of the YZ-plane. I n this instance a more

1 cos' fJ(1 - cos a) + cos a

R = L sinfJcos/3(I- cosa)
- sinasin/3

sin fJ cos fJ(1 - cos a)

sin' fJ(1 - cos a) + cos a

sinacosfJ

sin a sin fJJ
sin a cosfJ

COSa

(8)

appropriate method of constructing R would
be to choose two sequential rotations. For ex
ample, if the vertical plane is to be parallel to
the XZ-plane, two sequential rotations w
about x-axis and K about z-axis will be used.
The rotation matrix will then be

o

The transformation equation would be

(9)

where x, y, z are model coordinates and x', y',
z' are the transformed coordinates. The
transformed coordinates of the points known
to lie on a vertical plane must then atisfy the
equation [

COS K

R = -Si~ K

sin K

cos K

o
°J1

1

o 0 coSW

1 Lo -sin W

Si~WJ
COSW

y' = x' tan fJ + C. (10) or
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After transformation, the condition for points
in the known plane would be

y' = constant

[

COSK

R = -Si~ K

or

COSw

cosw

-sinw

sin K

cos K

sinw sin KJ
sinw COSK

cOSW

(13)
y'

X'

or

- (Xi - XI) sin K+ (Yi - YI) cos w cos K

+ (Zi - z,) sinwcosK = 0
(14)

FIG. 1. Geometric situation involved where a
plane is known to be vertical.

rCOs<l> sinw sin <I> -coSW sin <1>]
R 0 cosw sinw

Lsin<l> -sinw cos <I> cOSW cos <I>
(15)

[Til
= ~:J'

Now suppose that there are known m
yertical planes PI, P 2 ••• P'" in the object
space. Suppose further that there are 1t1 points
in plane PI, 112 points in plane P 2 ••• and 11",

points in plane Pm. The transformed x'- y'
coordinates of all the points in anyone of
these planes must satisfy the equation

(x;' - ~'2')(Y,' - y/) - (x,' - x,')(y;' - yz') = 0 (16)

where

(x, y, Z)l are model coordinates for first
poi n tin the plane

(x, y, Z)i are model coordinates for other
points in the plane.

Similar derivation can be performed for the
condition of the known plane being parallel to
the YZ-plane.

If we now return to the condition of a gen
eral vertical plane we must consider the
si tuation where two or more such planes are
a,·ailable. This is important because it has
already been shO\nl that one yertical plane
alone does not bring the ::;'-axis to be parallel
to the Z-axis. T\\'o or more, howeyer, would
effect such a parallelism provided these
planes are not themseh"es parallel.

To bring the ::;'-axis to be parallel to the
Z-axis the rotation matrix R ,\"oldd be formed
of two seq uen tial rotations wand cP abou t the
x- and y-axes, respectively. Hence

(17)

(18)

where

(Xl', Yl') and (X2', Y2') are transformed co
ordinates of the first two points in one
plane,

(xi', yi') i = 3, 4··· It are transformed
coordinates of any other point in the
same plane,

and

There will be (nl- 2) Equations 16 for PI,
(1t2-2) for P 2 ••• and (11",-2) for Pm, all in
terms of only two unknowns wand cP. These
can then be solved by the method of least
squares, provided ?n, the number of giyen
yertical planes, is equal to or more than two.
\Vhen the numerical value of R is evaluated,
all other points in the model can be trans
formed. If the model was originally at the
right scale, differences between the trans
formed z'-coordinates would be true differ
ences in elevation.

The equations deriyed in this section re
garding one vertical plane, as well as two or
more such planes, have been programmed and
tested. Simulated data was generated and
used to verify the more important situation
of several vertical planes. The resul ts ob
tained were exactly as expected, thus indi
cating correct mathematical formulations
and geometric concepts.

](nowlI Horizon/al Plane. \Vith a known
horizontal plane it should be obvious that the
transformed .:;'-axis would be parallel to the
Z-axis. This is the same as the preceding in
stance of two or more "ertical planes, and
therefore the rotation matrix R of Equation
15 would be applicable here. The only differ
ence is that after rotation the z'-coordinates of
all points in the known plane must be equal.
Hence the condition equation

o
o ]cOSW sinw

-sin w cosw
[

COS<l> 0-sin <1>] [I
R= 0 I 0 0

sin <I> 0 cos <I> 0

or
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where

Obviously, for the unique case of two points,
one pair of Equations 21 would be solved for
the two unknowns wand cf>. For more than
two points the method of least squares would
be applied. It is, furthermore, a straight
forward matter to extend the treatmen t to
the condition of several vertical lines.

(22)Z/ - Zl' = o.

A. GLES

The seven-parameter transformation of
absolute orientation (Equation 1) is confor
mal and does not cause any deformations.
Consequently, the internal geometry of a
model after relative orientation must be
assumed to be correct within the tolerances of

I t should be noted here that the si tuation
of one given vertical line is equivalent to two
given vertical planes that are not parallel.
This is easily ascertained by the fact that two
non-parallel vertical planes would intersect
in a vertical line. This situation of vertical
lines has also been programmed and tested
wi th satisfactory resul ts.

Known Horizontal Line. After model trans
formation the known line would be parallel
to the x'y'-planc and hence each point on
that line will have the same z'-coordinate.
As a stright line is defined by two points in
space, only one equation of the following
type would be obtained:

Consequently thc rotation matrix R mu~t

include no more than one independent param
eter. This parameter would be a single ro
tation about a line through the origin. Such a
line would be constructed perpendicular to
the projection of the line on the xy-plane. If
the line is originally parallel to the model
z-axis, the solution is obviously a rotation of
90° abou t ei ther the model x- or y-axis, wi th
out the need for Equation 22. It is important
to note that the condition of a horizontal line
is equivalent to that of a vertical plane. Both
yield no valuable information unless morc
than one (line or plane) are given. Hence we
consider next the case of two or more hori
zontal lines that arc not parallel.

\Vith two or more non-parallel horizontal
lines the transformed Zl -axis becomes par
allel to the Z-axis. This implies that the
transformation matrix R can be constructed
by two sequential rotations wand cf> about
:1:- and y-axes, respecti vely. Hence the same
matrix given in Equation 15. Equation 22
may then bc wri ttcn for all poi n ts on the
same line with the same value for Zt'. For the
second and other lines, each would have a
different value for Zl. All the equations are
then collected and solved by least squares for
wand cf>.

Known Inclined Line. Similar to the cor
respondi ng case of a plane, none of the ab
sol u te orien tation parameters can be deter
mined from the mere knowledge that a set of
points lie on a straight line.(21)

(20)

(19)

xl - Xl' = 0

Y/ - :Yl' = O.

x' = hI

y' = h2

where kt and k2 are constants and x', y' as
defined by Equation 17.

Tf the contribution of the first point is
subtracted from those for all other points, the
relations for any point i would be

LINES

Similar to the instance of a plane, a given
line can bc vertical, horizontal, or inclined in
the object space. \Ve will likewise treat each of
these situations individually.

XI/own Vertical Lines. In this instance, the
model coordinates are transformed such that
the z'-axis will become parallel to the object
Z-axis. The transformation matrix R would
be constructcd by two sequential rotations
and would takc the form givcn by Equation
15. Aftcr transformation, coordinates of
points along the given linc must satisfy the
relations

For a gi\'en plane with n points, (n-1)
Equations 18 can be written and solved by
Icast squares forw and cf>. If there is more than
one horizontal plane, appropriate equations
may be written making sure that Zt' in Equa
tion 18 is the first point in each plane. There
fore, for first plane (zt')t will be used for all
points in that plane; a (Z/)2 will be used for all
points in the second plane; and so on. For a
scaled model, differences in elevation can be
directly obtained after transformation.

Known Inclined Plane. If all that is known
is that a set of points lie on a plane in the
objcct space with no information regarding
the plane, no parameters for absolute orienta
tion can be determined. This should be
readily obvious si nce the the same set of
poi n ts would lie on a plane in the model
assuming that model distortions after rela
tivc orien tation are negligible.
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(23)

where

determined. Of course if some geometric shape
is broken down to known planes and/or lines,
then more parameters can be determined.
But then we would be concerned with situa
tions already covered in the preceding sec
tions.

(26)

v

B

..
~

is the vector of resid uals in the observed
photo-coordinates
coefiicient matrix composed of the
partial derivatives of the equations
with respect to the photo parameters
corrections to approximate values of
photo parameters
matrix of partial derivatives wi th re
spect to object point coordinates
corrections to approximate values of
object point coordinates

po values of the equations evaluated at the
given observations and assu med ap
proxi mations to the parameters.

00

B

SIMULTANEO S TRIANGULATION SYSTEM

Basically two types of simultaneous tri
angulation systems are available, one built
on the collinearity equation, and the other
utilizing the coplanarity-scale-restraint com
bination of equations. A mathematical model
built on the collinearity condition is consid.
ered by this author easier to augment by the
conditions arising from relative control infor
mation. Consequently, it is within the bounds
of such a simultaneous triangulation system
that we consider the use of relative informa
tion.

The linearized form of collinearity equation
takes the form

The set of Equations 26 are those in the
photogrammetric problem arising from the
geometry of projectivity between object- and
photo-spaces. Any addi tional information can
be incorporated by augmenting Equation 26
with the corresponding condition equations.
In the following sections we shall derive these
additional condition equations and study the
means of incorporating them into the mathe
matical model.

DISTANCES

As before three types of known distances
will be considered.

Distance Between Two Camera Stations. Let
the distance L" be known between the two
camera stations i and r. The condition equa
tion is

[

XI] [c~SK sin K 0] [X']
y' -SlI1K caSK 0 y'.

Z' 0 0 1 z'

If one line is now chosen to be parallel to the
Y-axis, the coordinates X' of points on that
line must satisfy the relation

X;'-X,'=O (24)

where Xl' is for the first point and Xi' for any
other. If the minimum condition of two points
is considered, the angle K can be readily
determined from

tan K = - (X2' - XI')/(Y2' - Yl'). (25)

Otherwise the method of least squares is used.
At this point, if the model was originally

scaled, the system of coordinates would be
parallel to the object-space coordinate sys
tem. Absolute orientation would further be
completely determined if a point, such as the
apex of the angle, is chosen as the origin of the
coordinate system. This would account for
three translations and make one of the lines
of the angle the Y-axis (or the X-axis).

GEOMETRIC SHAPES

An object or objects of known geometric
shape may supply some information useful
for control purpose. Such shapes may include
sq uares, rectangles, circles, spheres, etc. If the
shapes of these objects are the only known
information, no parameter of absolute orien
tation can be determined. This is, as pointed
out earlier, because after relative orientation
the shapes of all objects would be correctly
reconstructed. However, if these geometric
objects are also of known dimensions, then the
scale of the relatively oriented model can be

the work performed. Angles, naturally, are
reconstructed correctly af ter relative orien ta
tion and undergo no change in value during
absolute orientation. All that changes is the
orientation of the plane of the angle. This

. obviously leads to the fact that a known
vertical angle is equivalent to a known ver
tical plane, a known horizon tal angle to a
known horizontal plane, and so on.

A known horizontal anglE' is of particular
interest because it allows the leveling of the
model. If one of the lines forming the angle is
chosen also to be parallel to ei ther the object
X- or Y-axis, the third parameter (azimuth)
of the rotation matrix can be determined.
Consequently, the system may first be trans
formed such that the plane of the angle is
horizontal using the procedure given under
Known Horizontal Plane. Next, the coordi
nates x', y', z' may be transformed by
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VD + BDZi.i + BD~; = F,O. (32)
1.1 1.33.1 1,33.1 1.1

Distance Between a Camera Station and an
Object Point. Designating the distance be
tween camera station i and object pointj by
D ij , the matrix form of the linearized equation
IS

Any or all of the three condi tion Equations
29,31, or 32 can easily be combined with the
set of equations represented by Equation 26.
The merged condition equations may then be
reduced by least squares using well-estab
lished procedures.

which represen ts the condi tion eq uation for
one known distance.

Distance Between Two Object Points. The
known distance between two object points j
and s is denoted by Sjs such that

5;,2- (X;-X.)2- (V;- V.)2- (Z;-Z,)2=0. (30)

The linearization of Equation 30 is identical
to that for 28, except for using the appropri
ate subscripts. In matrix form it is

(36)

(38)

or, In matrix form,

Chp ~ = GhpO
1.22.1 1,1

I t is then obvious that for n given poi nts,
(n-l) condition equations can be written.

Known General Plane. As three points de
fine a plane, four or more points are required
to effect additional conditions. If the first
three points are 1, 2, and 3 the general condi
tion equation for a point i would be given by:

I
(Xi - Xl) (Xi - YI) (Zi - ZI) I
(X2 - X,) (V2 - Y,) (Z, - ZI) = O. (37)

(X, - XI) (Y, - YI) (Z, - ZI)

I t is in teresti ng to note that the precedi ng
two condi tion Eq uations 33 and 35 for the
vertical and horizon tal planes can be ob
tained from Equation 37 if the appropriate
restrictions are imposed.

The linearized form of Equation 37 is

Cp ~ = Cpo.
1.1212,1 1,1

Equation 34 does not include any observa
tional errors, and its incorporation in the
least square adjustment is not as straight
forward as those obtained in the preceding
section. A brief description of a procedure for
dealing with this type of constrained least
squares is given in an Appendix.*

Known Horizontal Plane. Points in the
object space known to lie on a horizon tal
plane would evidently have equal elevation,
although the value of such elevation may not
be known. Hence, if two such points are 1 and
2, the general condition equation is

Zi-ZI=O (35)

(Yi - h)(Xi -X2)-(Xi -X,)(Yi - Y2)=O. (33)

The linearized form of this eq uation is

Gvp ~ = G,I (34)
1.44.1 1.1

(29)

(31)V. + B.~ = F,O.
1,1 1.66.1 1,1

VL + i1£ t. = h O

),1 1,66,1 1.1

F" = Li; - (Xci - X .,)2 - (Y.. - Y.,)2 (27)

- (Z,; - Z.,)2 = 0

where (Xc, Y C ' Zc) refers to the coordinates of
camera station.

Equation 27 when linearized becomes

dLir - I/L;r[(Xci - X,,) (5Xci - 5X.,)

+ (Yci - Y.,)(5 Vd - 5 V,,) (28)

+ (Z,i - Z,,)(5Zr i - 5Z,,)] = -(FiN2Lir)

where Firo is the value for Equation 27 if
approximations are used for the unknowns.
Equation 28 can be written in more concise
form, with obvious correspondence in terms,
as

(39)

PLANES

As we have done before, we shall consider
three types of known planes.

Known Vertical Plane. A vertical plane can
be determined by two points provided they
do not lie on a vertical line. Therefore, in
order that a condition may be furnished and
enforced, at least three points must be desig
nated as lying on the vertical plane. If n
points are given, where n z3, then (n-2)
conditions can be written.

The general equation of a vertical plane
through points 1, 2, and i are the same as
Equation 16, or

LINES

We shall again consider three types of
lines.

Known Vertical Line. If the first point is
designated by 1, the condition equation for
another poi nt i is

Xi-X,=O

Vi - YI = 0

which, if linearized, becomes

* Due to space limitations, the Appendix is not
reproduced here but is contained in Reference 4.
Editor.
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and

where

This equation applies when, in general, an
angle is of known value in the object space. If

2

3

FIG. 2. A general known angle in space.

GEOMETRIC SHAPES

Although geometric shapes do not inAuence
the operation of absolute orientation, as
pointed out earlier in the section on Geometric
Shapes under the sequential system, they
nevertheless contribute constraints on the
triangulation process. However, it must be
clear that condi tions can only be wri tten if
the number of points is greater than the
minimum number required to define a uniquc
geometric shape. We will discuss in the fol
lowing only a few examples as it is unrealistic
to attempt covering all possible shapes.

Regular geometric shapes which are formed
by a discrete number of points, such as
corners, vertices, sq uares, rectangles, cu bes,
etc., can all be treated as one group. Such
figures or shapes can easily be though t of as a
defi ned set of known lengths, Ii nes, angles,
and planes. Consequently, these types of
information can be readily handled by the
techniques developed in the preceding sec
tions. As an exam pIe, a known rectangular
shape would contribute line, angle, and plane
condi tions. If the size of the rectangle is also
known, then distance conditions may be
added to provide a scale.

A second group of geometric shapes in
clude those without any distinct points, such
as circles, spheres, and the like. The treat·
ment of these is different inasmuch as they
are normally expressed by analytic equations.
Let us first consider a given sphere. The gen
eral equation of a sphere can be written as

X' + V' + Z' - 2aX - 2b V - 2cZ - d = O. (50)

It is ob\'ious from Equation 50 that a sphere
is uniquely defined if four points are given
(provided they do not lie on a plane). Hence.

in addition, the anglc is known to lie in a
vertical or a horizontal plane, the three points
1,2,3, must furthcr be used in the appropriate
condi tion eq uations (34) or (36), respectively.

(46)

(44)

(43)

(40)

(Zi - Z,)

(Z, - Z,)

(Vi - Y,)

(Y2 - Y 1)

CL.Ii = CLO.
2,39,1 2,1

ChI = Chl
O

3.9 9.1 3.1

cd.li = C,'IO
2,44,1 2,1,

(Xi - X,)

(X, - XI)

]{nown General Line. As two points, 1 and 2,
would uniquely define a line, additional con
ditions would be written only if three or more
points are given. For one such a point i the
following condition must be fulfilled:

ANGLES

An angle measured at poi nt 1 between the
two poi n ts 2 and 3 (Figu re 2) wou ld yield the
following condition from the cosine law

L23' - L 132 - L'2' + 2L 13 L12 cos 0 = 0 (47)

L 12' = (X, - X,)2 + (V, - V2)2 + (Z, - Z2)'

L 23' = (X, - X 3)' + (Y, - V 3)' + (Z, - Z3)' (48)

L I3' = (X, - X 3)2 + (V, - V 3)' + (Z, - Z3)'

and () is the known angle.
Equation 47 in linearized form is

Ve + Be.li = Feo. (49)
1, 1 1.99.1 1, 1

(Vi- V1)(X,-XI)-(V,- V,)(Xi-X 1) =0. (42)

Equation 41 is applicable if two or more
points appear on the horizontal line, whereas
Equation 42 is used only if more than two
points are involved. The reason for this is
that Equation 41 expresses the fact that the
points lie on a horizontal line, thus are of equal
elevation. However, to distinguish this from
the condi tion of a horizon tal plane, any more
points than the minimum of two (which de
fine a line) must satisfy Equation 42, which is
the equation of a line in two dimensions. The
general linearized form is (assuming three
points) :

This in fact represents two equations,

(Xi-X,)(Y2 - V,)-(X,-X,)(V.- V,)=O
(45)

(Xi- X 1)(Z2-Z,) - (X2- X,)(Zi-Z,) =0

which, in linearized form, are

Known Horizontal Line. If the first tW0
points are designated 1 and 2, and any addi
tional point i the following conditions hold:

Zi - ZI = 0 i = 2,3, ... ,1t (41)
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a condition will be giYen for every point in
addition to the first four points. Designating
the first four points by 1, 2, 3, 4 and the ad
ditional points by i, the condition that such
five points lie on the same sphere is:

In addition to Equation 54, three of Equa
tion 53 may be written making four equations
in four unknowns (Xo, Yo, Zo, R), or the
unique case. For every other point an addi-

(51)
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(52)CI A + C, A' = GO
6,1515.1 5,4 4,1 5.1

[

XI ]'1 ZI 1]-I[XI' + Y,' + ZI']
A r Z 1 ;('+ 1"'+Z'[Xi Y;Z;I] ~, " ~ 2 , ~'= [X;'+ Y,2+Z;']
X 3 Y 3 Z, 1 .\3' + Y 3' + Z3'

X 4 Y4 2 4 I X 4' + J? + Z4'

This equation can, in principle, be lin
earized to take the form Ca = GO. However,
it must be obvious that the linearization in
this case is quite a complex operation. Conse
quently, it might be more realistic to use
Equation SO five times (for the five points) in
place of Equation 51. This would lead to the
linearized form

where 1:>.' represents the added four param
eters a, b, C, and d of' Equation SO.

The condi tion of poi n ts known to lie on a .
circle may be considered as a special case of a
sphere, because it is obtained from the inter
section of a plane and a sphere. \Ve will choose
the general equation to be

(X - X o)' + (Y - Yo)' + (Z - Zo)' - R' = 0 (53)

\\"here X o, Yo, Zo are the coordinates of the
cen ter of the circle. If the first three poi n ts,
which are the minimum needed to define a
circle, are designated 1, 2, 3 the following
must hold to constrai n these th ree poi n ts and
the center to lie on a plane:

I

(XI - X o) (VI - Yo) (Z, - Zo) I
(X, - XI,) (Y, - Yo) (Z, - Zo) = O. (54)

(X3 - Yo) (Y3 - Yo) (Z3 - Zo)
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