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Parameter Constraints
in Least Squares
For example, points on a lake shore in a photogrammetric model may be con­

strained to have the same elevation.

(Abstract on next page)

INTRODUCTION

J\ LMOST ALL OF those interested in computational photogrammetry are well aware
l""\.. of the increasing use of the method of least squares in estimating variables in
overdetermined models. Furthermore, as most of the analytical methods used rely
heavily on digital computers, and are best expressed in matrix algebra, it follows that
modern treatments of least squares are in matrix notation. Some noted photogram­
metrists realized the importance of this fact and authored papers1.2 introducing the
fundamental models of least squares in matrices. Other works3 ,4 made valuable con­
tributions to more generalized concepts which are currently used in modern analytical
systems. Although lacking any derivations, Madkour5 includes a good overall cover­
age of the method of least squares with its varied cases of application.

All of the writings cited above may be considered as general in nature covering a
variety of situations. By contrast, this paper is intended to address, rather in detail,
one type of adjustment problem. Case6, to this writer's knowledge, was the first to
discuss the subject of constraints encountered in analytical photogrammetry in gen­
eral. In a recent presentation7 , this author enumerated a multitude of constraints
which may be met in extraterrestrial applications. Neither of these two works, which
were concerned mostly with photogrammetric aspects, devoted sufficient attention
to adjustment aspects. Consequently, it was deemed timely and useful to discuss in
this paper the method of least squares in the presence of constraints.

Lest the reader may be unfamiliar with what
is meant by constraints, we should first give a few
examples. Points appearing on a lake shore in a
photogrammetric model may be constrained to
have the same elevation. Points identified along
a straight stretch of highway or railway may be
constrained to lie on a straight line. I n extrater­
restrial work, the total base between two camera
positions may be constrained to a given value, if
such a distance is measured.

I n this study we shall consider constraints
from two viewpoints. The first encompasses situa­
tions where functional constraint equations involv­
ing parameters only, and which must be rigorous­
ly satisfied, augment the basic condition equa­
tions arising from the physical or geometric con­
siderations of the problem. The second point of
view addresses the occasions where the parame- DR. EDWARD M. MIKHAIL
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ters involved in the mathematical model are also treated as observations. N umer­
ical examples are included to help in the understanding of the various concepts
discussed.

Before commencing the detailed treatment, a short general remark regarding
least squares might be helpful. It must be emphasized that the method of least
squares applies only to linear mathematical models. The fact that we normally use
some series expansion, such as Taylor's, to linearize non-linear models should not
cause us to consider such linearization as a part of least squares. This is particularly
so when an iterative procedure is used to compensate for the neglected higher-order

ABSTRACT: Jl![odern applications of computational photogrammetry, such as
extraterrestrial problems, encounter and make use of a variety of constraints.
Least squares is invariably used in estimating the unknown variables in the
usually overdetermined photogrammetric models. Procedures of least-squares
solutions are involved in the presence of two types of constraints. Three methods
of solution can be applied for the first type, namely, functional parameter con­
straints which must be rigorously satisfied. Constraints are also treated from a
second point of view which includes two methods: one where the unknown vari­
ables are simultaneously considered as parameters and observations, and the
other which regards them simply as observed data. Both methods are equivalent
under a condition which is totally practical.

terms. In such situations the basic conditions of the problem may change from one
iteration to another and may cause undue misinterpretation of the results. This point
is elaborated upon in detail in the latter part of this study.

FUNCTIONAL CONSTRAINTS OF PARAMETERS ONLY

DERIVATION OF GENERAL CASE

We shall begin our discussion by treating the most general problem then point
out the special applications. Let the linear mathematical model take the general form

AV + B4. = FO (1)

where V is the vector of observational residuals, 4. is the vector of parameters (or
corrections thereto if the model is a linearized one), A and B are coefficient matrices,
and FO is a constant term vector.

In addition to the condition equations given in Equation 1, a set of equations may
exist that relate some or all of the elements of 4. as well as, to be general, the elements
of another vector 4.'. Such a vector, 4.', representsasetof extraneous parameters that
might be necessary for the formulation of the functional constraints. Consequently,
let these constraints be of the form

(2)

in which C1 and C2 are coefficient matrices and GO is a corresponding constant-term
vector. Applying least squares to the model of Equation 1 augmented by the con­
straints of Equation 2, we minimize the scalar

where Wo is the weight matrix of the observations, which is normally taken as the
inverse of the covariance matrix, and K o and K c are two vectors, of appropriate di­
mensions, of as yet unknown Lagrange multipliers. If «1>" is differentiated with respect
to the free variables V, 4. and 4.', the corresponding partial differentials are equated
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to zero, and the result is com bined with Equations 1 and 2 and rearranged, we get
the following set of five vector equations:

- WoV + AtKo =0

A V +BA = FO

BtKo + C1tKe =0
(4)

CIA + C2 A' = GO

C2tKe = O.

If the first two equations are solved for V and K o , respectively, and the result sub­
stituted into the third equation, Equation 4 reduces to:

- N A + CI tKe - T

CIA + C2A' = GO

in which

N = Bt(AWo-IAt)-IB

T = Bt(A Wo-IAt)-IFO

The first equation of Equation 5 may be solved for A:

A = AO + N-IC1tKe

where

(5)

(6)

(7)

(8)

and the result substituted into the remaining two which, when solved simultaneously,
yield

A' = [C2t(CIN-lClt)-lC2]-I[C2t(CIN-IClt)-I(GO - CIAO)]. (10)

Finally, if Equation 9 is used in Equation 7, the vector A is obtained as:

(11)

Equations 10 and 11 represent the least-squares solution for the general problem as
expressed by the model consisting of Equations 1 and 2 combined. Next we discuss
briefly some simpler cases.

SPECIAL CASES

a. In many situations, particularly in analytical photogrammetry, the set of
condition equations comprising the mathematical model takes a form simpler than
that of Equation 1 where A is an identity matrix, 1. In this instance, the solution will
still be given by Equations 10 and 11 but the matrix N and the vector T would be
computed from the following simpler forms than those given in Equation 6:

N = BtWoB

T = BtWoF°.
(12)
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b. Even though we have so far considered cases with additional parameters, A',
situations may arise where no new parameters are added when functional constraints
are used. In such cases, A', and correspondingly Equation 10, will be absent and the
solution will be given by the following equation which replaces Equation 11:

A = AO + N-1Clt(CIN-IClt)-I(Go - CIAO).

Of course Nand T may be computed from either Equation 6 or 12.

(13)

(14)

A TREATMENT BASED ON DIRECT ELIMI ATION

I t must be agreed that the solutions given above are relatively complex and re­
quire a large number of matrix manipulations. Consequently, wherever these manip­
ulations can be reduced in number, savings in the computational effort may be real­
ized. In this section, we show that such savings are possible particularly where the
model and constraints are both originally linear. This will be achieved by altogether
avoiding the direct use of the constraint equations in the least-squares solution. In­
stead, these equations are first solved for as many parameters as the number of con­
straint equations. This will lead not only to the cancellation of the constraints from
the least squares, but also the reduction of the number of unknown parameters to be
determined directly from the least-squares solution.

Starting with the general case where additional parameters exist, let the system
of Equations 2 be partitioned to

[~::J A + [~::J A' = [~::J
such that Cl2 is a square matrix. The system of Equation 14 represents, in fact, two
matrix equations from which A' can be eliminated. This reduces the constraints to
the form

where

DA = HO (15)

(16)

(17)

D = Cn - C22C12-ICn

HO = G 20 - C 22 C I2-IGIO.

The matrix Cl2 will always be non-singular as long as the constraint equations are
independent, which should obviously be the case. At this point, Equation 15 repre­
sents a case where the functional constraints involve the parameters of the math­
ematical model only. Consequently, the following treatment applies equally to that
case as well as to the one with the vector of added parameters, A', after it has been
eliminated.

We now proceed to eliminate the constraint Equations 15 and as many parameters,
AI, from the total parameter vector A. This is accomplished by partitioning A such
that Equations 1 and 15 take the forms

AV + RIAl + R 2A 2 = FO

DIAl + D 2A 2 = HO

where DI is a square matrix, and hence Al is of the same order. Now solving the second
of Equation 17 for Al we get

Al = DI-I(HO - D 2 A 2)

which, when substituted into the first equation, yields

(1S)
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R = B2 - BjDj-jD z

po = po - BjDj-jHo.
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(19)

(20)

Again Dj-j will always exist unless the mathematical model inadequately describes
the problem and includes dependent equations.

Eq uation 19 can no\\' be solved by least sq uares in the usual manner;

where

N = Rt(A Wo-jAt)-IB

T = RI(A Wo-lAt)-lpo.

(21)

(22)

With the value of ~2 computed from Equation 21, ~j can now be computed from
Equation 18 and the final answer vector will simply be

(23)

The application of this treatment to the case where A is the identity matrix is suffi­
ciently evident that it needs no further comment.

Before leaving this section we should clarify a point that may have crossed the
reader's mind. The treatment given above appears sufficiently straightforward that
one might wonder why then do we bother with the apparently more complex general
case given earlier. The answer to this is to say simply that it all depends on the prob­
lem at hand. Certainly numerous situations occur where it would be illogical not to
use the method of elimination explained in this section. However, there may be other
instances where this approach may become impractical. For such a case the reader is
referred to this writer's paper (MikhaiJ7). There, the direct elimination of the added
parameters gave rise to such complicated condition equations that it was deemed
more realistic to solve the problem directly using equations comparable to Equations
10 and 11.

A PROCEDURE TREATING CONSTRAINTS AS OBSERVATION EQUATIONS WITH RELATIVELY
LARGE WEIGHTS

Schmid and Schmid3 presented a most general procedure for least squares in which
all elements of the mathematical model may be considered as observations, placing
the burden of classification on the weight matrix. This concept can be applied here
by considering the constraint equations with an observational residual vector Ve and
an associated weight matrix We. This changes them from the form of Equation 2 to
the following form;

Equation 24 can be combined with Equation 1 and gives

AV + RA = po

where

(24)

(25)
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A = [A OJ° I'

- [B OJB=
CI C2 '

V= [~J

..i = [~J
~' '

(26)

The solution of Equation 25 can be readily given by

..i = [Bt(AW- IAt)-1.i3J-l[.i3t(AW-1Xt)-lpOJ

in which

(27)

(28)w = [Wo OJ
o We .

It is clear from Equation 28 that no correlation is assumed between the two sys­
tems of equations. The magnitudes of the elements of We are considerably larger than
those of Wo, which leads to very small values for Ve thus bringing Equation 24 close
to its true form of Equation 2.

Before we move on to the next section, we shall first give a numerical example to
illustrate some of the concepts covered so far.

Example 1

Suppose that the mathematical model of a certain problem is of the form

V + B~ = po

where

[Xl]
~=

X2 ' [-11]
po = 1.2

1.0 .

We shall assume here that the weight matrix of the observations Wo is the identity
matrix I. Next, we consider the set of constraints

CI~ + C2~' = GO

where

-1J
-1 '

t:.' = X3 GO = [-1J
' 3 '

that is to say, two equations will be added, with one extra parameter X3.

Method a: We apply the procedure derived earlier for the General Case and for the
Special Case. From Equation 6,

and

N = [ 5
-8

-8J14 ' T = [-3.4J
6.7 '

N-l = l [14 8J.
6 8 5

Hence, the solu tion vector ~°in the absence of constrain ts is

[ 1.
00JAO = N-IT = .

1.05
(1.1)
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N OW, applying Equation 10 we compute 4,' as

11' = X3 = - 0.97922.

Next, using Equation 11 and the values of LlO and Ll' thus computed we get

11 = [XIJ = [1.ooJ + [0.06233J = [1.06233J.
X2 1.05 0.03311 1.08311

This leads to the total answer vector as

1283

(1.2)

(1.3)

(1.4)
[

Xl] I 1.06233]
X2 = L 1.08311

X3 -0.97922 .

Method b: Based on Direct Elimination. The matrices CI , C2 and GO will first be
partitioned as

Cll = [1 -1]

C21 =[2 -1]
Cn = 1

C22 = -2

Glo = -1

G20 = 3.

Then from Eq uation 16, we compute D = [4 - 3] which may be parti tioned to D I = 4
D2 = -3, and HO = 1. The B matrix can be partitioned accordingly:

B I = [2 -1 0]1 and B 2 = [-3 2 1]1.

Using Equation 20 we get

B=[-1.5 1.25 1.0]t and pO=[-1.6 1.45 1.0]t

which lead to

A 2 = X2 = (Btjj)-I(jjpO)

or X2 = 1.08311. Equation 18 can now be used to compute LlI =XI, hence Xl = 1.06233.
Finally, if desired, Ll' =X3 may be computed from

11' = CI2-I(G I O - Cl1 A)

or X3 = - 0.97922. The total vector will then be

rXl] r 1 .06233l

lX2 = l 1.08311

JX3 -0.97922

(1.5)

which is identical to that given by 1.4.
Method c: Based on Observation Equations. Vve start by choosing W=/; the

Band FO matrices are

FO=[-1.1 1.2 1.0 -13]t.

The solution vector is obtained from
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[
Xl] [ 1.04486]
X2 = 1.07383

X3 -0.98785 .

(1. 7)

It is obvious that this vector is not the same as the answer given before. This is
because by giving the constraints the same weight as the cond~tion equations, they
were not strictly enforced. Consequently, we next construct the W matrix as

This leads to the answer vector

[
Xl] r 1.06000]
X2 = l 1.08188

X3 -0.98038

(1.8)

which is closer to the answer than that of 1. 7. Therefore, we now increase the weight
of the constraints to We = 1001 and get

[
Xl] [ 1.06210]
X2 = 1.08299.

X3 -0.97934

(1.9)

This answer is essentially the same as the exact one given in 1.6. If a closer vector
than that of 1.9 is desired the value of We relative to Wo can be increased to, say,
1000 WI.

"PARAMETERjOBSERVATION" CONSIDERAnON

One of the most powerful tools used in modern analytical photogrammetric sys­
tems has been the ability of introducing the unknown parameters also as observations
with known a priori covariance matrices. Brown 4 should probably be credited as
being the first to introd uce this technique, although it is also em bodied within the
paper by Schmid and Schmid3 • This technique allows for the writing, in addition to
the original mathematical model as in Equation 1, of a set of simple linear equations
reflecting the fact that the parameters can also and simultaneously be considered as
observations. Consequently, if a parameter x is denoted by XO as an observation with
a residual Vp , and its approximate value by xO o with a correction 0, then obviously

x = XO + Vp = xOo + 0

which leads to

where

Equation 30 may be written for all the parameters, thus

(29)

(30)

(31)

(32)
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Equation 32, combined with equation 1, yields
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(33)

which may be considered as being of the general form of Equation 1. Least squares
can then be applied directly to Equation 33 and, after a few straightforward manip­
ulations, gives

(34)

where, the only term so far undefined, Wp is the a priori weight matrix of the param­
eters which is usually the inverse of the a priori covariance matrix. In view of Equa­
tion 6, Equation 34 may be written as

(35)

whose solution is

(36)

This writer has pondered over the reasons for the dual role of 4 as parameters and
as observations, and also over the consequent necessity of writing the additional set
of Equations 32. This led to the speculation that perhaps only one set of equations
will be sufficient. Therefore, we will attempt next to consider the parameters strictly
as observations* with the a priori "'eight matrix W p , and write the mathematical
model as

[A B] [~J = po (37)

where Vd simply replaces the vector 4, Equation 37 is in the form of the so-called
"Adjustment by Conditions" model whose least-squares solution is given by Madkour5

and lVf ikhail 8 •

(38)

We will now show whether, and under what conditions, Vd is equal to 4. From
Equation 38 we get for Vd

It can be shown from matrix algebra that

(39)

Substituting Equation 40 into 39 and making use of Equation 6 leads to

Vd = Wp-IT - Wp-IN(N + Wp)-lT.

From Equation 35 we obtain

Wp-IT = Co + Wp-l(N + Wp)4

and

(41)

* A treatment similar to the one given here is included in reference (10) in which a portion of the
parameter vector was considered as observed data.
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which when substituted into Equation 41 yields

V~ = .:i. + [Co - Wp-IN(N + Wp)-IWpCOj. (42)

Equation 42 shows that in order for V~ to be equal to .:i., the vector Co must be
equal to zero. This means that the approximate values must be chosen equal to the
observed values of the parameters, which is usually the case. To recapitulate, then,
when a priori estimates of the unknown parameters in the model (as well as the
corresponding a priori covariance matrix) are known, two ways are possible for a
least-squares solution: one in which they are considered as both parameters and ob­
servations, and the other regards them simply as observed data. The fundamental
condition for this possibility is the vanishing of the vector Co. Whenever the value
of this vector becomes different from zero, as for example in the case of iterative
solutions due to non-linearity of the model, this possibility does not hold which will
be amply demonstrated in the following examples.

Example 2

Let us take a very simple case of a one-loop level net with poin t A as the reference
point with an elevation of 5.000 m (Figure 1).

The observed differences in elevation are given in Table 1 and their weight matrix

A

Line Difference in Elevation (meters)

c

FIGURE 1

B 1
2
3

TABLE 1

-0.793
-2.310
+3.106

is taken as W o= I. Let the a priori estimates of the elevations of points Band C be
4.205 m and 1.893 m, respectively, and their weight matrix W p =O.Ol I. It is required
to compute the least squares estimates of these two elevations based on the given
data.

Method (i). It is easily seen that the mathematical model relating the observa-
tions and parameters is composed of linear equations. Despite this fact, one may
linearize the model using the given estimates as approximate values for the parameters
(hence co=O) or Zboo=Zbo=4.204 m and zcoo=zco=1.893 m. Hence, the linearized

model will be

r- 1

V + I 1

L 0

0] [4.205 + 0.793 - 5.000] [-0.002]
-1 [::J = :.310 + 1.893 - 4.205 = -0.002

1 ..,.000-3.106-1.893 +0.001.

(2.1)

Noting that A = Wo= I, Equation 34 applied to the data gives

[~~1 2~;J[::J = [+O~003J
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or

G:J 1 [2.01 1 J[ 0 J
3.0401 1 2.01 0.003

0.003
--~O.OOlm
3.0401

0.00603
Dc = ---"-' 0.002 m.

3.0401

(2.2)

(2.3)

These lead to the final elevations

b = 4.206 m c = 1.895 m. (2.4)

(Note that the corrections in (2.3) are sufficiently small that no further iteration is
necessary.)

Method (ii). In this method we shall simply consider the given elevations of
points Band C as observations whose residuals Vb, Vc we now seek. In this instance
the mathematical model corresponding to (2.1) will be

V1l

[~
0 0 -1 -;] " [-002]v: I= -. 002 wi th W = [~

0

J1 0 1 (2.5)
.01I

0 1 0 VbJ + .001
Vc

which is in the same form as Equation 37. Using Equation 30 we get

or

[

-1
V~ = 1001 0

1

-1 [

10301

OJ _1_ 10100
1 30401

10000

10100

10201

10100

10000] [- .002]
10100 - .002

10301 + .001

(2.6)

0.3
Vb = ---~ 0.001 m

304.01

0.603
Vc = ---~ 0.002 m.

304.01

(2.7)

These two values are exactly the same as those given by (2.3) and will lead to
the same elevations shown in (2.4). If one computes the observational residuals, he
gets all three values approximately equal to -0.001. As the corrections in (2.7) are
of the same order of magnitude as the residuals, there is no need for any iterations.
This situation will be contrasted in the following example where the solution must be
repeated several times in an iterative manner.

Example 3

Suppose that it is required to fit a straight line with the equation y-mx=O
through the two points (1.1, 2.1) and (2.1, 4.0) whose covariance matrices are the
identity matrix. The a priori estimate for m is mO = 1.0 with a variance (J'm

2 = 100.
Method (i). Denoting the observed coordinates by 0, and the approximate value
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for m by mOo, the linearized form of the equation for one point is AV+BLl=po in
\\'hich:

A = [_moo 1],

Using the data given lye get

[
-1 1

A= o 0

o
-1

B=[-1.11
-2.lj [

-1. 0JFU=
-1.9 '

(3.1)
£ll = 0.902-182.

Wo = I, Wp = 0.01 and \I'e choose Co = 0 (i.e., mOo = mO) Hence, using Equation 34 \I'e get

2.82 £l, = 2.5.!5

Obviously the value of Ll1 is of the same order of magnitude as mO and therefore we
must iterate the solution to overcome the effects of the neglected higher-order terms.
In this case mOo will become 1.902482, (mo+LlI), and CO will no longer be zero but will
take the value 0.902482. Hence,

(1.216598 + 0.01) 6~ = - 0.005118

6 2 = - O.OO·it 72.

(3.2)

(3.3)

If \I'e iterate a third time we "'ill get

6 3 = 0.000025 (3.4)

which will lead to the final value of m as

m = 1.898335 (3.5)

assuming that Ll3 is sufficiently small to terminate the iterative process.
Method (ii). The linearized form is in this case AV=po where

[-m
O 1 0 0 -XIJ = [-1 1 0 0 -1.1JA=

0 0 -mo 1 -X2 0 0 -1 1 -2.1

[-1.
0

Jpo = Wo = I and W p = 0.01.
-1.9 '

Applying the equivalent of Equation 39 we get

V m1 = V ill = 0.902482 (3.6)

which is exactly identical to the value of .Ill given in (3.1) where CO was equal to
zero at that cycle. Now, if we add Vml to m O and recompute another value we get

V m, = 0.003187 (3.7)

which is obviously quite different from the value of Ll2 given in (3.3). The reason for
this should be clear by now; the value of Co at that iteration was 0.902482 which is
different from zero. As a form of a check let us compute the second term on the
right-hand side of Equation 42. Referring to (3.2) and realizing that it is equivalent
to (35), we have

Co - Wp-1N(N + Wp)-IWpCO = [I - Wp-IN(N + Wp)-IWp]CO

[
1.216598 ]= 1 - 100 _ X 0.01 0.902482
1.226J98

= 0.007358.
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TABLE 2. SUMMARY
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a priori
Correction No.

Final value V'WV (weightedMethod
estimate 1 I 2 I 3 ofm sum of squares)

(i) I 1.0

I
.902482 - .004172 .000025 1.898335 0.008140

(ii) 1.0 .902482 .003187 .000025 1.905694 0.008207
(iii) I 1.0 .902482 - .001562 .000065 1.900985 0.008156

If this value is no\\' added to .12 we get 0.003186 which is equal to V"'2 to a one in the
sixth decimal place. This demonstrates the correctness of Equation 42.

If a third iteration is applied we get

and the final value is then

V"'3 = 0.000025,

m = 1.905694.

(3.8)

(3.9)

FIGURE 2

(not to scale)

If the idea occurs to the reader, a third method (iii) was attempted in which the
total residual vector was computed and all the observations were updated each itera­
tion. The results of this attempt are included in the summary Table 2.

If the final value of m is used to plot the straight line with respect to the given
two points we will get Figure 2. This figure may lead to a misinterpretation of the
results; nevertheless it is included to point out certain subtle factors which are

worthy of discussion. The first glance at
the figure may lead one to believe that
method (ii) gives the best, or most logical,
solution followed by method (iii) and
then by method (i). This is because our
experience tells us that a well-fitted
straight line should pass between the two
points. Unfortunately, this will be, in
this case, an erroneous interpretation of
both the problem and the results. For a
given problem there is only one rigorous
least-squares solution based on the mini­
mization of the quadratic form (VtWV).
In this instance it is that given by method
(i) as evidenced by the smallest value of
the sum of squares in the table. The other
two methods, therefore, must be only ap­
proximate. This can be ascertained by
the fact that, after the first iteration, the
conditions of the problem changed by the
addition of the residuals to the observa­
tions-be it the one representing the pa­
rameter (Method ii) or all of them
(Method iii). Consequently, we are in ef­

fect solving a different problem each iteration. This is not the case for the first method
as the values of the observations remain unaltered all through the solution. This dis­
cussion also applies to the weight matrix of the observations.

In closing this discussion we must emphasize that all three methods are identical
at the end of the first iteration as was shown by the corrections computed. This
indicates that the process of iteration, which is necessary because of linearization, is
not really a part of least squares which is based completely on a linear model.
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A r'OTE ON ERROR PROPAGATION

It is often of interest to compute the a posteriori estimate of the cofactor (or
relative covariance) matrices of the estimated parameters. This can, in all cases,
be obtained by applying the law of propagation of covariances to the relationships
from which the parameters are computed. Consequently, it can be shown, for example,
that from Equation 10, the cofactor matrix Q of the added parameters is

Q:!.. = [C/(C1N-IC1t)-ICZ]-1 (43)

from Equation 11, the cofactor matrix of the original parameters is

Qil = N-l[I - C1tM-IC1N-l + CItM-ICzR-ICztM-ICIN-I]

where

M = CIN-IClt

R = C2tM-1 Cz.

(44)

(45)

The remaining relationships can be treated similarly and appropriate expressions for
the cofactor matrices accordingly derived.

Perhaps one point which should be discussed is whether the propagated cofactors
of the parameters will be equal if computed by each of the two methods given
previously in the section on "Parameter/Observation." Referring to Example 2
the cofactor matrix of the parameters from Equation 2.2 (Method ii) is obviously

1 [2.01
Qp = 3.0401 1

To compute the corresponding matrix from Method ii, it can easily be showns's that
for a model of the form A V = PO, we have

Qv = W-1At(A W-1At)-IA W-l.

Equation 46 may now be applied to the data of Problem 2 and we get

1 [-1
Qv = 3.0401 0

1 [302
Qv = 3. 0401 - 1

[

10301

_~ ~J 10100
10000

-lJ
302

10100

10201

10100

10000] [-1
10100 1

10301 0
-:]

(46)

It can be shown furtherS that the a posteriori cofactor matrix is equal to the a
priori matrix minus Qv, or

1 [302 -lJ 1 [2.01
p = 1001 - -- = --

Q 3.0401 -1 302 3.0401 1

which agrees exactly with the one computed above.
We may also consider the same thing with regard to Problem 3. From 3.1 it is

obvious that

1
Qill = -- = 0.354610.

2.82

As for the second (or third) method,
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and

Qv = 100 [-1.1

11.24

0.1128

1 [ 443-21 --
. ] 1128 - 231

-231J[-1.1J 100
123 - 2.1

11.24 0.04
Q<l, = 100 - -- = -- = 0.354610

0.1128 0.1128

which is the exact value obtained above. Vve must note, however, that in this in­
stance of iterative solution the above comparison will hold for the values from the
first iteration only.

CONCLUSION

An extensive treatment of the use of constraints in least squares is presented. A
balance has been attempted between both excessive abstraction and brevity, and too
much detail. Furthermore, despite their simplicity, the worked examples are in­
cluded to demonstrate the underlying concepts. It is hoped, therefore, that this
paper will be of value to students and practicing photogrammetrists alike, par­
ticularly in tackling problems with terse explicit control where constraints playa
useful role.
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