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Altimeter Observations as 
Orbital Constraints 
Astro-photogrammetric triangulation is expected to 
improve significantly in accuracy. 

(Abstract on page 340) 

N A S A ' s  APOLLO Program plans to orbit an  advanced Mapping Camera System 
(MCS) on Missions 15, 16 & 17  to the moon. Basically, the MCS is composed of a 

stellar camera, a metric mapping camera and a laser altimeter to provide a distance 
D to the surface where the optical axis of the niapping camera is pointing. The alti- 
meter observation is syncronized to fire simultaneously with the exposure of both the 
stellar and mapping camera. The result is a stellar and metric camera exposure and a 
D to the ground for each time ti. The purpose of this paper is: to  show a mathematical 
approach for utilizing the altimeter observation D in a photogrammetric triangulation 
program which also employs orbital constraints (it is proposed to modify the well 
known Lunar Orbiter Strip/Block Triangulation Programs (LOSAT/LOBAT) to accept 
this observation according to the following concept), to  derive the equations for deter- 
mining latitude, longitude and height (4,A, h)  on the ellipsoid from-the altimeter dis- 
tance and its associated orientation as reduced from the stellar photographs, and to 
show the utility of utilizing the derived position on the ellipsoid as  an additional 
constraint for multiple ray direction cosine observations. In a geometrical sense, this 
second purpose will permit the entry of this derived 4, A, h as  a ground tracking station 
on the moon. Therefore, the precision of the laser altimeter ( + 2  meters) can be 
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ABSTRACT: L u n a r  satellite geodesy utilizing the Apollo Mapp ing  Camera Sys -  
t em  can be expected to make significant improvements over previous lunar  control 
point networks. I t  seems widely recognized Chat satellite altimetry will contribute 
significantly to these improvements. However, the literature o n  the subject seems 
sparse and also few of the well-known computer programs accept altimetry data 
and mapp ing  camera data such as that to be collected o n  the Apollo Missions.  
T h i s  paper introduces some concepts for employing these data in programs 
which do not accept altimeter observations directly, and also i t  illustrates a 
rigorous, direct approach. The  concept of constraining several common photo 
image-point measurements f rom different camera stations to intersect at the 
point measured b y  the altimeter i s  expected to be a very strong constraint to the 
overall triangulation and orbit determination applications, 

utilized in the overall orbit determination problem. Although we must recognize the 
error propagated to the ground position from the spacecraft, this can be an especially 
effective way to utilize the altimeter information where the computer program does 
not accept a Pythagorean type altimeter observation equation directly. 

Let the altimeter distance D, as illustrated by Figure 1, be represented by a Py- 
thagorean relationship as  

where Xu, Ya, Z5 are the moon-centered rectangular coordinates of the p o i n t  o n  the 
ground  where the altimeter distance D intersects the surface, XC, YC, ZC are the moon- 
centered rectangular coordinates of exposure station position in space, and D is the 
measured slant distance of altimeter to the lunar surface, aligned with mapping 
camera's optical axis. 

Transposing and taking the square root of Equation 1, we have 

For the purpose of including observations of Equation 2 in the least-squares 

A(Xa, Y a ,  Za) 
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FIG. 1. Geometry of altimeter distance. 
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adjustment, i t  is necessary to  expand by a Taylor's series about approximate values of 
its seven parameters as 

where, dF/dD = 1. In  the absence of ground control, D i  could be considered as a 
constant; then d D = 0 ,  and D would not contribute another unknowrl per photo. In  
general, the linearized altimeter observation equation has the form 

( X C  - XX") ( Y c  - YX") (ZC - Z") - d X c  - d pc - dZc = V n  
D D V 

(3 )  

Fn is tlie measured D minus the approximated D or, in other words, i t  is Equation 
2 evaluated with the best estimates. This difference is the constant term in the linear 
form of each observation equation. V D  is the residual error in D after adjustment be- 
cause, in the method of least squares, observation equations are never satisfied 
exactly due  to random error in the measurement. The altilrleter distance D in Equa- 
tion 2 is an observed value subject to an error. I t  offers some interesting possibilities 
which can be shown by the following equation which relates the true distance to  the 
measured distance: 

where D ,  is the true distance, DO, is the measured altimeter distance for each i - th  
photo, dD is a bias factor (one per each mission) and VD,  is the residual for each Do,. 
If the photo object space contains accurate control points and/or if  time t for each D 
is known precisely, then dD can be considered as a bias factor and one dD can be 
determined for each mission. In addition, a residual V D ,  for each Do, can be deter- 
mined. This technique is often called self calibration. On the other hand, Do, may be 
considered as an observed distance subject only to random error VD,. The choice de- 
pends on the geometric quality and distribution of the total set of observations con- 
tained in tlie sin~ultaneous adjustment scheme. The  latter application seems most 
appropriate for Apollo largely because the nioon's surface has no surveyed control 
points to  lielp define dD, then dD = 0. 

From astrodynaniics,' the exposure stations X c ,  Yc, Zc can I)e given as functions 
of the six Keplerian orbital elements a, e ,  i, Q, w ,  t ,  or as position and velocity com- 
ponents. This is where orbital constraints are of potential value, for i f  XO, Y O ,  20, 
x O ,  yo,  2 0  denote the position and velocity (state vector) of the spacecraft (exposure 
station) a t  some arbitrary epoch t o ,  we may write in principle 

[ f Ii = g l [ ~ " ,  Yo, Zo, X", Yo, zo, t L ,  c,,m, S n m l .  

This is by virtue of a knowledge of the differential equatio~zs of motion. Frorrl this, one 
can compute X c ,  Yc ,  Z c  coordinates a t  any time t ,  provided the initial conditions 
X O ,  Yo, 20, X O ,  yo,  io a t  time to are idso known. In  the LOSAT/LOB..ZT Progra111s,~ tlie 
initial state vector must have been previously determined by an orbit reduction and 
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ephemeris computation such as that provided by NASA from the Apollo tracking data. 
The C,, and S,, terms of the gravity potential function are considered as constants 
in the LOSAT/LOBAT program. 

The projective equations of photogrammetry are fundamental to the formulation 
of the general triangulation problem. They are given by SchmidS and Doyle4 and can 
be functionally represented as follows. 

where (x, Y ) ~  is the distortion-corrected j-th photo image point measurement on i-th 
photo, x,i, y,:, f i  are the calibrated photo coordinates of the principal point and 
principal distance of the i-th photo, usually considered constant for one camera, 
+i, w i ,  K c  are the orientation angles of i-th photo in the moon-fixed system, Xic, Yic, Zic 
are the object space coordinates of each i-th photo on the orbit, and X j ,  Y j ,  Zj are the 
object space coordinates of the j-th point on the lunar surface. 

The linearized form of Equation 5 contains in the matrix of partial derivatives 
[B], the three attitude angles and each of the partials for the six coordinates of Equa- 
tion 2. Therefore i t  is expedient to substitute Equation 4 into Equation 5a and re- 
write 5a as 

The concept here constrains the photo position X", Ye, Zc to be on the orbit as defined 
by the state vector. Note that by the chain rule from the calculus, one can derive the 
partials of each unknown parameter to obtain the matrix of partial derivatives (called 
B in Ref. 4) for Equation 5b. Six orbital elements and ti for each photo replace 3n 
points of X", Yc, Zc. The term n is the number of photo stations. 

From Equations 5a and 5b we have 

and then d(F2) =d(Fl). As F1 is a function of Xc, P, Zc, the chain rule gives the par- 
tial derivative of Fz as: 

If Equation 5c is evaluated, we have the partials for Equation 5b as 

If Equations 3 and 5b are used in a simultaneous adjustment, then the parameters 
(dX; d Yc, dZc)T in Equation 3 must be replaced by Equation 5C. Note that the time 
of each exposure t ,  locates the exposure station position on the orbit. 

The 6 X 6 matrix in the normal equations representing the state vector will provide 
linear corrections to the state vector for each iteration. Another row and column 
should be added for time ti. Since we have a ti for each photo, it is convenient to 
associate time with the set of orientation angles as in Equation 5b. This matrix is 
located in the border of the normal-equation matrix so the terms may be partitioned 
efficiently. The typical form of the normals is shown in the LOSAT/LOBAT r e p ~ r t . ~  
With D as a constant, the six parameters of Equation 1 do not add any additional 
unknowns to the normals; moreover, the origin of D is constrained to the orbit trajec- 
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m e r r a i n  Surface 

FIG. 2. Altimeter distance and multi-ray observations. 

tory. This concept should be associated with conjugate image points to be of maxi- 
mum effectiveness a s  a constraint. Figure 2 illustrates conjugate x ,  y image mea- 
surements. 

Concerning the second purpose of this paper, the item of particular importance 
is how do we obtain object space ground coordinates for the terminus of the altimeter 
distance a t  the surface. Referring to Figure 1, this point is called 3, Yal Za and the 
geometry of the altimeter is given. The  image point x ,  y near the optical axis is fur- 
nished by boresight calibration for each camera and is x,, y, in the remaining equa- 
tions. 

If X c ,  Yc, Zc are given from the ephemeris for each photo, x,, yay f are plate coordi- 
nates of the altimeter point image as given by previous calibration and the principal 
distance of the camera. The  matrix 

is the attitude matrix, "object space-to-photo" for the i-th terrain photo. Deter- 
mined from Stellar photo reduction for angles such as w ,  4 ,  K. TM is in the True Moon- 
Centered Coordinate System of date. 

The  terms Xa,  Ya, Za (which are ground coordinates of the altimeter distance where 
the altimeter distance intersects the terrain surface a t  point A )  are required. 

Let 
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with respect to camera system coordinates, (Figure 1). Then 

The length of a is: 

Now the components of A as illustrated in Figure 1 are: 

This completes the derivation of the Xu, Ya, Za ground position of the altimeter 
terminus in moon-centered rectangular coordinates. I t  may be necessary to determine 
a selenographic position 4, A, h of this point on the ellipsoid. By reversing our think- 
ing, such a point on the ellipsoid is analogous to a tracking station located on the body 
being orbited. I t  also contains the error propagated through the equations from the 
spacecraft. I t  is conventional to enter tracking station positions with azimuth, eleva- 
tion and range data. The Xa, YO, Z0  point-data could be entered, if necessary, in this 
manner, if the available program would not accept a specific equation such as the 
Pythagorean relation. However, this is probably not desirable in most programs be- 
cause the tracking stations are usually part of the parameter set to be differentially 
corrected and are therefore limited in the number available for useage. 

Functionally, the transformation from selenographic to rectangular coordinates is 

where a and b are given as the semi major and semi minor axes of the ellipsoid. Specifi- 
cally, 

X = ( N  + h) cos 4 cos X 

Y = ( N  + h) cos C$ sin h 

where N is the radius of curvature normal to the ellipsoid The  inverse that  we seek 
is : 
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(Usually two iterations are required.) The  selenographic to selenocentric transforma- 
tion and its inverse are well documented in the Manual of Photogrammetry by Doyle, 
p 466, and in Heiskanen5 and will not be repeated here. When Equation 7 is com- 
pleted, the altimeter's terminus is positioned on the ellipsoid. This is shown in Figure 
3. 

The final item in this paper is illustrated in Figure 2. in which the altimeter's 
terminus is the position where the camera from adjacent orbit passes also photo- 
graphs the same common ground point. The TRACE Orbit Determination Program, 
written by the Aerospace Corporation6 accepts direction cosines from such geometry. 
The  TRACE Program minimizes the miss distance between the various direction co- 
sines from each camera ray. In  the planned Apollo application, about 6 to  1 2  rays can 
be expected to such a point. These conjugate images will be marked and measured 
and transferred by conventional photogrammetric procedures. Utilizing these multi- 
ple ray direction cosines as observations and having the q5, A, h as determined from 
Equation 7, i t  will be possible to tie the adjacent Apollo orbits together and determine 
a unified control point network. By virtue of the stellar camera and orbit constraints, 
the network will be related to the right ascension, declination coordinates of the stars 
and the moon's center of mass. In  addition, experimenters who are attempting to 
make improvements in the gravity and libration models may also benefit accordingly. 

I n  reference to Figure 2, and the photogrammetric concept in general, i t  should be 
clearly seen that  the image point of the altimeter from each particular exposure, and 
all exposures, is to be transferred to all overlapping photographs. These points are to 
be used as common image pass points. The  same image appears in several different 
photographs, but  each of them must go to the same place on the ground. The  distance 
D should be constrained in the intersection formulation. Then, the intersection of all 
rays to a point will occur on or near the ground surface which is the altimeter's 
terminus position. All parameters, including intersection, are solved simultaneously. 
This exploits the altimeter's measuring accuracy while tying the different photos to- 
gether into a unified photogrammetric block. The  photogrammetric adjustment will 
force the conjugate image points to intersect, or in the case of the TRACE program, i t  
will minimize the miss distance from intersection of the several rays. This ties the 
photos together in a unit block. By virtue of all the photos in the block now being one 
unit and recreated in space as they were a t  the time of exposure, the X c ,  P, Zc posi- 
tion of each photo finds its most probable position also. In  principle, this movement 

FIG. 3. Ellipsoidal and rectangular coordinates. 
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can be reflected in small corrections t o  the gravity coefficients. Clearly, a simultane- 
ous solution, or iteration with improved gravity and libration models, will likewise I 
improve the control point network. 

I n  summary, three concepts have been treated here. The  first shows the usage of 
the rigorous Pythagorean relationship for representing altimeter observations while 
forcing the exposure stations to  fall on the orbit. The  second derives the altimeter's 
terminus ellipsoidal position which can be used as a control point or tracking station. 
And, thirdly, shows the usage of the derived position as an  additional constraint for 
surface points which will also have direction cosine rays from several different cameras 
from the same or adjacent orbits. The  concept illustrated by Figure 2 is considered to  
be a very strong constraint for the problem. I t  seems obvious tha t  such applications of 
altimetry will result in more accurate adjustments during the 1970s. Simulations 
should be conducted t o  verify and validate these possibilities. 
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