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Holographic Resolution 
Two-point analysis of the effects of phase, coherence 
and emulsion response. 
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ABSTRAC I.: Some problems involved in the use of clnssical resolution theory are 
analyzed to determine resolution l imi ts  of the holographic imaging process. 
Principal emphasis i s  placed upon  the effects of ob-ject-phase distribution for 
the situation where resolz~tion i s  limited by  eifher emzrlsion response or finite 
hologram size. A brief two-point resolz~tion analysis  i s  (leveloped based u p o n  
Kelley's  model of the photographic process and utilizing the emulsion impzilse 
response determined by R. C. Jones. Attention i s  drawn to some fu?zdamental 
diflerences between the resolution problem for the two cases. Graphs show calcu- 
lated intensity valz~es for both the two-point distvibution and the individual 
point-images. Included a s  parameters are the relative phase difference and the 
separation of the sources, the latter expressed i n  terms of a reference distance 
called the R a y l e i ~ h  sepamtion.  T h e  results show that the nonlinear relation be- 
tween object and image intensity,  which i s  characteristic of a coherent imaging 
system, has a significant effect on  the actual state of resolution, independent of 
the par t icubr  f(cctor l imit ing tdze resolution. I n  particular, the resolzrtion l imi t  
derived by use of the Rayleigh criterion m a y  be seriously in error. 

validity due t o  the  effects of the phase dis- 
tribution over the test object and the shape 
of the emulsion impulse response curve. 

I n  view of these considerations (and be- 
cause expressions for the resolution of a sys- 
t em may survive the assun~ptions made in 
the analysis used to obtain them3) a more 
critical s tudy of the two-point resolution 
problem in holography is presented here. I n  
this work we wish t o  illustrate the effect of 
these factors on the  analysis of the resolving 
power of the holographic imaging process. We 
will be concerned only with the two-point 
resolution. T h e  more complicated and less 
well-defined problem of utilizing the  results 
of such two-point analyses in the determina- 

intensities, due to separate sources in the test 
object, is not valid except in certain special 
cases involvillg specific object phase distribu- 
t1ons. 

a 'The impulse response of the photographic 
emulsion, which enters the process directly5 
rather than as a final detector for example, 
yields an impulse response for the imaging 
process which has a fundamentally different 
behavior than that of a diffraction-limited 
conventional optical system, i.e., it is a mono- 
tone decreasing function as opposed to the 
oscillatory behavior characteristic of the latter. 

Thus,  in the development t o  follow, we will 
determine the effect of the phase distribution 
of the  test  object on resolution where the  
holographic imaging system is resolution- 
limited by the emulsion impulse response and 
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FIG. la. The one-dimensional problem of the holographic imaging of two line sources. 

finite hologram size. Calculated intensity 
values will be graphically displayed in terms 
of parameters defining object spacing and 
phase difference. 

THE TWO-POINT RESPONSE 

Consider the one-dimensional problem 
(Figure la)  of the holographic imaging of 
two line sources where the construction and 
reconstruction reference beams are cylindrical 
waves with arbitrarily located centers and the 
two sources have equal intensity but different 
phases given by d+ and 4-. Let the emulsion 
have a line-spread function, or impulse re- 
sponse, given by h(x )  in Kelley's modelVor 
the photographic process as  used by Van 
Ligten5 and D i a m ~ n d . ~  If L is the length of 
the hologram and d is the separation between 
lines symmetrically located with respect to 
the hologram center, then the real-image 
amplitude is given as  a function of position 
x in the image plane by 

where 

L1 and Lz are the object- and image-plane 
distances, respectively, and R1 and Rz are 

perpendicular distances to the construction 
and reconstruction point sources respectively. 
All distances are measured relative to the 
hologram plane. C, Y and 4 are independent 
of d and the phases 4+ and $I-, and are fixed 
for a given transverse position of the con- 
struction and reconstruction sources, and for 
fixed construction and reconstruction wave- 
lengths XI and 

This expression is valid if the impulse re- 
sponse of the emulsion is the limiting factor 
in the imaging process and is obtained by 
taking the solution for the amplitude of the 
line-image,2 including an arbitrary source 
phase term and then applying superposition 
to the amplitudes to determine the amplitude 
reconstructed from the two line sources. 

Note that  the problem is linear in the am- 
plitude because of a further assumption that  
the overall photographic response is linear- 
i.e., tha t  the amplitude-transmittance of the 
emulsion is a linear functional of the incident 
exposure5-and thus the superposition of 
amplitudes is justified. However, unless this 
additional assumption is made, the ampli- 
tudes cannot be superposed because, as has 
been pointed the overall photographic 
problem involves the point-wise nonlinearity 
of the emulsion sensitometric response. 

The real-image intensity I(x, d) is given in 
terms of F ( x ,  d) ,  Equation 1, by 

where F* indicates the complex conjugate. 
Thus 
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where A+=4+-+- and we have made use of 
the fact t h a t  k(y*) is real. 

T h e  resolution of the process is now de- 
termined by  applying the  resolution criterion 
of interest t o  the  behavior of I (x,  d) a s  given 
by Equation 3. 

Before we discuss the  resolution analysis in  
detail, notice t h a t  there a re  three terms on 
the  right-hand side of Equation 3: the  first 
term represents the  image intensity due  t o  a 
single point source* located a t  x=d/2 ;  the  
second is a similar result for x =  -d/2; the  
third term, a cross-product, represents t h e  
effect of the  phase difference between the  two 
sources. T h e  last term, which is the source of 
ambiguity in  the classical analyses, differs in 
a significant way from the other two terms a s  
i t  can be positive, zero, or negative depending 
on the phase difference A 4 .  If one assumes 
the process is linear in intensity and computes 
the real-image intensity accordingly, a s  is 
done in the  classical or incoherent solution, 
then the result IL(x, d) given by  

and is equivalent to  assuming t h a t  the  phase 
difference A+ in Equation 3 is equal t o  ~ / 2 ,  
3*/2, etc. T h e  actual image intensity for 
values of A+ other than 9 / 2  will differ from 
Equation 4 by  a contribution which may be 
either positive or negative as  a function of x, 
and i t  is clear t h a t  this may have a nontrivial 
effect on the  resolution limit if the distance d 
is small. 

Although Equation 3 describes the  situa- 
tion if the impulse response of the film is the  
dominant resolution limiting factor, i t  is char- 
acteristic of the  general form in which the 
two-point image intensity can be written, in- 
dependent of the precise nature of the  basic 
resolution limiting factors. Therefore the 
two-point image intensity can be written as  
the superposition of the  intensity correspond- 
ing to  each point considered alone with a n  
additional term involving the  cross-product 
of the magnitude of the  fields, multiplied by 
the  cosine of the  phase difference between the  
sources. This  general property is, of course, a 
direct consequence of the linearity of the  
process with respect to  the  fields. From the  
preceding discussion i t  is clear t h a t  in terms 
of the  linear systems description of imaging 

* We shall now use the noun point for line yield- 
ing more usual terminology, such as two-point 
resolution although the problem is one-dimensional 
and thus the adjective line is more precise in referr- 
ing to the sources. 

systems7sa, h is  the  amplitude impulse re- 
sponse, and h2 is the  intensity impulse re- 
sponse of the  two-step holographic imaging 
process. Caution must  be exercised in the 
use of the  term infensity impulse response t o  
describe the  point-image intensity because 
the  process is obviously not linear in  inten- 

T o  analyze in  detail the resolution prop- 
erties of t h e  process, we take a s  a model for 
the point-spread function h, the  expression 
given by  Jones,lo, and discussed by  Gilmore": 

T h e  quant i ty  a is the  width of the  spread 
function defined a s  the  distance between the 
points where the  response is equal t o  one-half 
the  value a t  the  center where x=O (See 
Figure lb) .  

Substituting the  functional form of k in 
Equation 3, we obtain the normalized results 
shown in Figure 2 plotted a s  a function of the  
variable 

where 

CHARACTERISTICS OF THE POINT-IMAGES 

Figure 2a shows the normalized intensities 
I+ and  I- due  t o  each of the point sources 
(located a t  d/2 and -d/2, respectively) con- 
sidered independently, i.e., the first and sec- 
ond terms (normalized) of Equation 3. A 
parameter FR is now introduced which speci- 
fies the  separation d between the  sources in 
terms of a reference distance dB which is de- 
termined a s  follows: the  width of the  point- 
image is defined a s  the  distance between lo- 
cations where the point-image intensity dis- 
tribution has decreased t o  one-half i t s  value 
a t  the  center.t  I n  units of X, a s  plotted in 
Figure 2a, this width is given by  the  con- 
s tan t  2 [2112-- 1]1/2. 

Now d~ is defined t o  be t h a t  value o i  d such 
t h a t  the  separation between the sources is 
one-half the preceding quant i ty ,  i.e., 

T h e  significance of this value o l  the  separa- 
tion, t o  be  called the  Rayleigk Separation, is 
a s  follows. Having defined the  width of t h e  

t Because the point-image intensity distribution 
involves the square of the impulse-response h, the 
width of the point-image is less than the width of h 
measured between the same levels; this fact has 
evidently been overlooked in previous studies. Com- 
pare WI and WZ in Figure la. 



FIG. lb. Emulsion impulse-response, or line-spread function, and its square for the model given by 
R. C. Jones. The graph represents the normalized value of h and its square plotted against the normalized 
distance x / a .  Wl and Wz are the half-widths of h and h2, respectively. For the case of holographic imaging 
with resolution limited by the emulsion, h is also the field impulse-respose of the two-step imaging pro- 
cess and h2 is the intensity impulse-response. 

point-image intensity distribution, d~ repre- 
sents the  resolution limit if one applies the 
classical theory in  the  form described by  
Rayleigh's criterion12 t o  this problem. T h e  
result for dR given result differs from dm,, of 
Diamond's work2 by :  (1) the  factor of 1/2, 
which accounts for the  fact  t h a t  the  Rayleigh 
criterion involves one-half of the width of the 
point-imagel29$, and (2) the factor (d\/2-1)1/2 
which accounts for different values of the  
width of the  point-image and the width of the 
impulse response h. T h e  parameter FR is then 
defined for a fixed d by d =  F r z d ~ ,  i.e., the  dis- 
tance between the  sources expressed in units 
of the  Rayleigh Separation-we shall call the 
quantity FR the  Rayleigh Factor. If FI~ = 1, 
we have d = dR, i.e., the  two sources are sep- 
arated a distance equal to  the  Rayleigh 
Separation and the sources are  classically 
considered resolved. W e  shall see tha t ,  de- 
pending on A4, this may not be t h e  case 

PHASE EFFECTS 

Returning t o  consideration of the  real- 
image intensity distribution (Equation 3),  a t -  
tention will now be directed t o  characteristics 

$ The original form of Rayleigh's criterion is 
actually stated in terns of maxima and minima of 
the point-imate intensity distribution; if converted 
to width of the image, the reference distance is one- 
half the width if this is chosen as the distance be- 
tween the first relative minima on each side of the 
central maximum. 

of the  total intensity I(x, d), a s  a function of 
two parameters: A4, the phase difference be- 
tween the  two sources, and FR, the  Rayleigh 
Factor (Figures 2b-2c). 

Figure 2b illustrates I(x, d) and I*(x) for 
two sources separated by the Rayleigh Sep- 
aration dl<, i.e., FE= 1. Focusing attention on 
I(x, d), for values of A4 equal to  0, 7r/2 and 
T ,  i t  is apparent  t h a t  the curves for A + = 0  
and 7r/2 exhibit a behavior which is quite 
different from t h a t  for A+=T because they 
are  monotone decreasing from the center, and 
therefore represent a situation where the 
sources are unresolved. For A4 =T, however, 
the center of the pattern is the location of a 
local minimum, i.e., the  two sources a re  re- 
solved! Before entering into the details con- 
cerning Figure 2b, we would like t o  stress the 
significance of the previous observation. A t  a 
fixex distance d ,  equal to  the  minimum re- 
solvable distance given by the Rayleigh Cri- 
terion, the holographic image of two point- 
sources if limited by  the impulse response of 
the  emulsion exhibits different states of reso- 
lution depending upon the phase difference 
between them. Thus, the straight-forward ap-  
plication of the  classical Rayleigh Criterion 
to this ~ r o b l e m  leads to  a conclusion which 
represents a n  inherently ambiguous situation 
concerning the  actual resolution limit of the  
system. 

T h e  source of this ambiguity can be traced 
a s  follows: the Rayleigh criterion involves 
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Intensity 

I 

FIG. 2a. Characteristics of normalized point-image intensity distributions I+ and I- for the impulse- 
response limited reconstruction u3ing the model of Jones for the line-spread function h. The location of 
maxima, separation between maxima, and half-width are indicated. 

properties of only t h e  individual point-images 
I* (such a s  location of central maxima, rela- 
tive minima, width, etc.) and is not  directly 
concerned with the  total intensity I ( x ,  d). 
T h e  criterion tacitly assumes t h a t  if t h e  point- 
images, considered independently, are  ap-  
propriately located relative t o  each other, 
then the  resultant total intensity will exhibit 
a central dip. This  assumption is valid for 
incoherent fields and classical diffraction- 
limited optics.12 I n  a coherent problem where 
the phasela of the  sources becomes important,  

i t  is no longer sufficient t o  consider the  in- 
dividual responses alone because the phase 
difference will determine the  total intensity 
although i t  does not  affect the  point-image 
intensity distribution (Equation 3). In  the  
coherent case t h e  presence of a central dip 
may be lacking even though the  point- 
images a re  properly spaced. T h e  problem may 
be complicated further in  the  case of holo- 
graphic imaging because the point-image, if 
determined primarily by  emulsion effects, is 
monotone, contrary t o  the  situation existing 

FIG. 2b. Plot of the normalized two-point intensity distribution (See Equation 3) with phase difference 
A$, and Rayleigh Factor FR, as parameters. Values of A+ label the curves. The dotted curves are the 
individual point-image distributions. 
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FIG. 2c. Similar to Figure 2b except that F R = ~ .  

in classical diffraction-limited optics.12 
With respect to some details of the results 

displayed in Figure 2b, notice that  the curves 
for A+ = ~ / 2  and 0 illustrate the fact that  the 
a priori choice of the point image is not 
arbitrary as might be assumed. For instance, 
consider the case where A+=?r/2 where the 
cross-product term in Equation 3 is zero for 
all values of x and, as  mentioned in a previous 
section, corresponds to the assumption that  
linearity prevails, and thus would be equiv- 
alent to the incoherent or classical version 
of the problem. I t  might then be expected 
that, a t  least for this case, the two sources 
should be resolved; however, they are not. 
This situation can be attributed to the choice 
of the point-image width here. If the width is 
chosen twice the value previously assumed, 
then the sources would be resolved because, 
in that  case, the resultant intensity distribu- 
tion is formally equivalent to tha t  shown in 
Figure 2b. This effect of the definition of 
point-image width on the resolution limit as 
derived by application of the classical Ray- 
leigh Criterion has apparently been over- 
looked in those analyses of holographic resolu- 
tion where the impulse response of the film is 
the limiting factor. 

One can single out a unique phase difference 
A+, corresponding to the situation where the 

intensity just begins to dip by determining 
that  value of A+ for which 

i.e., by application of the Sparrow criterion.14 
The existence of such a value can be inferred 
by observing that  all values of the response 
are included in the range 0 <A+ <T, tha t  a t  
.rr there is a pronounced dip whereas a t  0 there 
is a central maximum, and that  I is a con- 
tinuous function of A+. 

Notice, however, that  i t  would be incorrect 
to assert that  two sources (characterized only 
by having equal intensities and separated a 
distance d ~ )  would be resolved, because for 
values of A+<A+, the distribution I(x, d) 
would not display a central relative mini- 
mum. The intensity distribution for A+=T 
has a zero a t  the origin. This occurs for any 
separation d independent of h (assuming 
symmetry of pattern) due to the assumption 
that  the two sources have equal intensity. 

Figures 2c, 2d and 2e (plotted on a com- 
pressed scale) illustrate the effect of increas- 
ing FR to 2, 4, and 10 respectively. Observe 
that  a t  FR = 2, I(x, d) shows a local minimum 
a t  the origin in all cases. The dip increases as 
the phase difference increases, and is just 
discernible (on this scale) for A+ = 0, increas- 
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FIG. 2d. Similar to Figure 2b except that FE =4. 

ing to a maximum of slightly more than 0.4 
a t  A4=n. If one were t o  redefine the width 
of the point-image intensity to be twice tha t  
chosen previously, then the separation d cor- 
responding to Figure 2b would be one (new) 
Rayleigh Separation, say ~ ' R I ,  i.e., the value 
generated by the classical procedure using 
d ' ~  and FR equal to one, and for this value of 
d  the two sources would be resolved. (See 
previous discussion concerning the influence 
of point-image width on resolution determina- 
tion.) As FR gets very large, i t  can be seen 
that  all the curves approach each other, i.e., 
the effect of ~ h a s e  difference on the recon- 
structed image becomes negligible and there- 
fore superposition of the individual point- 
image responses to obtain the total intensity 
is valid for any phase difference. However, 
for small values of FR, which would be the 
significant ones from a resolution viewpoint, 
i t  has been shown tha t  a similar conclusion 
does not follow. 

Finally, notice that  f o ~  all values oi FE the 

intensity I(x, d) increases monotonically a s  
A+ decreases from n to 0 for any fixed value 
of x; this is due to the fact tha t  h is positive 
for all values of x (see Equation 3). (This be- 
havior does not occur in the case where 
resolution is limited by finite size of the holo- 
gram as  shown previously.) Thus, in effect, 
although i t  is possible to resolve the sources 
a t  smaller separations where the phase dif- 
ference is large, the resultant intensity values 
are low, thereby requiring more sensitivity in 
detection. 

As stated previously, the analysis of resolu- 
tion limitation due to finite hologram size 
shares many features which are present in the 
resolution problem involving the emulsion 
impulse response, although the point-image 
intensity distribution is not monotone de- 
creasing in this case. Consequently, only a 
brief treatment of the resolution problem for 
this case will be given in this section. 

1 Intensity 1 

FIG. 2e. Similar to Figure 2b except that FR = 10. 



FIG. 3. The field impulse-response u(z) and the intensity impulse-response u2(z) for the case where 
resolution is limited by finite hologram size. W is the width of both responses. 

THE TWO-POINT RESPONSE 

Consider the previously outlined holo- 
graphic imaging problem under the following 
assumptions: let h(x) = 6 ( x ) ,  i.e., assume the 
modulation transfer function (MTF) of the 
emulsion is constant for all frequencies; let 
the hologram be of finite length L, and set 
XZ=X1=X for simplicity. Furthermore, let the 
construction and reconstruction sources re- 
cede to infinity in a manner such that  their 
angular displacement, relative to the holo- 
gram normal is kept constant, i.e., consider 
the case where plane waves (at oblique) in- 
cidence are used in the construction and re- 
construction stages. Also, let LI and L2 be- 
come large so that  the object and image 
planes are located a t  sufficiently large dis- 
tances for Fraunhofer diffraction to govern 
the image formation process. Under these as- 
sumptions, the reconstructed intensity dis- 
tribution corresponding to Equations 2 and 
3 (normalized here) is given by 

with 

where u2(z) is the point-image intensity dis- 
tribution and u(z) is given by 

sin z 
u(2) = -. . 

z 

Equation 3' is essentially a generalization 
of the classical, or incoherent, result which 
forms the basis for the quoted2 resolution 

limit of the equivalent diffraction-limited 
conventional optical system as derived by ap- 
plication of the Rayleigh criterion to  Equa- 
tion 3', with A+=.rr/2.12 The behavior of 
u2(z) and u(z) (Figure 3) is to be contrasted 
with h2(x) and h(x) (Figure lb) .  Notice that  
u2 does not decrease monotonically from its 
central maximum and that  u changes sign as  
a function of z Equation 3' is seen to have the I same general form as Equation 3: there are 
three terms, two representing the intensity 
distribution due to each source considered 
acting alone, and a cross-term dependent on 
the phase difference between the two sources 
and involving the product of the field im- 
pulse-responses. 

CHARACTERISTICS OF THE POINT-IMAGES 

The influence oi the parameters L, L1, Ls, d 
and X on the first two terms of Equation 3' 
(i.e., I+ and I- where I* = u2(z+)) is schemat- 
ically illustrated in Figure 4a where the 
responses I+ and I- are plotted. In  units of 
x', the distance between the central maxima 
is given by (L/Ll)(d/X). Notice that  the local 
minima are zeros of intensity and that  the 
distance between the first local minima on 
each side of the central maximum, defined as  
the width of the point-image, is of constant 
value 2 (also in units of x' ) .  The width de- 
fined here corresponds to  tha t  used in the 
holographic resolution studies of Reference 2, 
and is the equivalent width suggested by the 
original form of the Rayleigh criterion12 ap- 
plied to diffraction patterns of this type. 

I t  is interesting to observe that  the expres- 
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FIG. 4a. Characteristics of the normalized point-image intensity distributions I+ and I- for the case 
where resolution is limited by finite hologram size. For each distribution, the locations of the central 
maximum, and the adjacent minima are shown, together with the width of the image. Also illustrated is 
the distance between the central maxima of the individual images D =  (L/LI)(d/ZX). 

sion for u2(z) is precisely the  same a s  the  one- 
dimensional, diffraction-limited point-image 
which is  derived in classical diffraction 
theory, and this fact  has  probably motivated 
the  (hazardous) use of classical resolution 
criteria in this problem involving coherent 
optics. T h e  form of u2(z) also suggests a 
natural definition of t h e  point-image width 
such a s  defined above. W e  can now introduce 
the distance dR,  the  Rayleigh Separation, a s  
before. i.e.. we define d n  t o  be t h e  value of d 
a t  which t h e  separation between the  two 
images, considered independently, is equal to  
one-half the  width as  defined above, thus  

and the  distance d will be  given in terms of 
d~ by  d=F& such t h a t  when FR= 1, the 
sources are  a t  the  Rayleigh Separation. 

PHASE EFFECTS 

W e  now consider the  intensity distribution 
described by  Equation 3' for fixed FR with 
the  phase difference A+ a parameter a s  shown 
in Figures 4b-4e.t 

I n  Fig 4b, FR = 1, i.e., the sources are  a t  the  
Rayleigh Separation dR. Notice t h a t  for 
A+=?r/2, the resultant intensity distribution 
shows a dip or local minimum a t  the  origin 
with the  ratio of minimum to adjacent maxi- 
mum intensity given by  approximately 0.8. 
T h u s  the assumption t h a t  the  sources are  re- 
solved when the Rayleigh Criterion is  satis- 
fied2 is justified in this case. However, for the  
case where A 4 =  0 i t  is seen t h a t  the  two- 
point image distribiition does not  display a 
dip a t  the center, i.e., the  two lines are not 
resolved for FI1 = 1. For A + = a  the pat tern 
shows the characteristic previously discussed 
i.e., the local minimum a t  the center is a zero 
of the intensity pattern. This  is t rue for all 
values of Fn and again occurs because the  two 
sources have equal intensity, yield symmetric 
impulse responses and are symmetrically lo- 
cated with respect t o  the  center of the holo- 
gram; thus  the  analysis of the  preceding sec- 
tion also holds here. Because the  central in- 

FIG. 4b. Plot of the normalized two-point in- 
tensity distribution (Eq~iation 3') with phase 
difference A$ and Rayleigh Factor FR as para- 
meters. Dotted curves are point-image distribu- 
tions. 

tensity minimum is zero, we again find t h a t  
for A+ =a the two lines are  resolved for any  
finite FR. 

T h e  results displayed in Figure 4b, i.e., for 
FR = 1, suggest then tha t  the  value 

t Note that by defining d as above, the behavior 
of I as a function of x' is determined completely if 
FR and A$ are specified. In this case (L/Ll)(d/X) 
=2D = FR. 
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FIG. 4c. Similar to Figure 4b except that FE = 1.25. 

for the holographic resolution limit due to 
finite hologram size a s  derived by the classical 
approach2 is not valid unless a further as- 
sumption is made concerning the phase dif- 
ference between the sources. 

The results given in Figures 4c-4e show 
tha t  for phase differences of ?r/2 and ?r 

radians, the sources are resolved for all 
FR > 1, whereas for Ad = 0, resolution occurs 
somewhere in the range 

Finally, i t  can be seen from Figure 4e that  
for FR large, the curves for all values of Ad 
approach each other and, as in the previous 
case of impulse-response limited resolution, 
the phase difference is not a significant factor. 

The curves shown in this section are similar 
to results given by Carswell and Richard15 
for the microwave region concerning the re- 
solving power of ideal circularly symmetric 
imaging systems. The similarity of the results 

FIG. 4d. Similar to Figure 4b except that FE = 1.5. 
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Intensity 

.1.2 FR - 5 

FIG. 4e. Similar to Figure 4b except that FE = 5. 

is due  t o  the  assumption t h a t  t h e  emulsion 
spread-function in the  linear photographic 
response m o d e l q s  a delta function. Under 
this condition, the  expression yielding the 
real image field in  the case of holographic 
imaging is equivalent to  t h a t  obtained for a 
diffraction-limited conventional optical imag- 
ing system. I n  the  problem discussed here, 
we have a one-dimensional example of this 
fact. Some of the  interpretations and  con- 
clusions reported in  this section are also dis- 
cussed bv  Carswell and Richard.15 

CONCLUSION 
D u e  t o  the  influence of the  shape of the  

point-image intensity distribution and the  
phase difference between the  sources on the 
actual s ta te  of resolution in a holographic 
imaging system, the indiscriminate use of 
classical two-point resolution criteria, e.g., 
the  Rayleigh Criterion, renders the results 
obtained by application of such criteria sub- 
ject t o  questions of validity. T h e  resolution 
limits so derived, depending on the  phase dif- 
ference involved, can be in  error in either di- 
rection, i.e., they may be extremely conserva- 
tive and thus  underestimate the  potential of 
the  imaging system or may be physically un- 
attainable. 
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Erratum 
I n  connection with the article, "Underwater Mapping with Photography and 

Sonar" by Joseph Pollio (page 955, September 1971), i t  should have been noted that  
the paper had been published previously in the U. S. Naval Oceanographic Office 
Sfiecial Publication 153 under the title, "Manned Submersibles and Underwater 
Surveying." 


