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FIG. 1. A discretely sampled arbitrary 
planar curve. 

Smooth Irregular Curves 
A sequential approximation and interpolation procedure for 
computer analysis is applicable to contour lines. 

GIVEN n arbitrary real data points, 

assumed to lie sequentially along some unknown planar curve. The objective is to 
obtain efficiently a reasonable approximation of the unknown curve. Prior to dis- 
cussing the details of the method developed, i t  is useful to take a qualitative look 

ABSTRACT: A n  eficient procedure i s  presented for determining a smooth curve 
(w i th  no value or slope discontinuities) through a n  arbitrary set of points in a 
plane. T h e  method was  developed specifically for, but i s  not restricted to,  com- 
puter determination of smooth and accurate contour lines. A fami ly  of locally 
valid functions constrained to connect smoothly at the data points are sepuen- 
t ially determined. A new independent variable i s  introduced and employed in  
the interpolation equations. T h i s  independent variable i s  a "pseudo arc-length" 
which usually approximates true arc-length well and i s  increasing along the 
curve. T h i s  independent variable i s  shown to be well suited for accurate jitting 
of irregular contours and provides a direct control over the density of solved 
points, thus  reliably yielding smooth computer plotted contours. T h e  procedure 
i s  applicable to open or closed curves; further, the curves determined can even 
cross themselves a s  do contours for overhanging cliffs. Several examples are 
provided to demonstrate the practical use and eficiency of the method. 

a t  the problem. Consider the sketch in Figure 1. In the most general case, neither 
x nor y will be monotonically increasing. This results in y (in general) being a multi- 
valued function of x and vice-versa; thus precluding the direct application of classical 
one dimensional interpolation procedures (e.g., Lagrangian interp~lation,~ Spline 
Function interpolation2 or any other simple fit of y as a function of x or vice-versa). 

* This study was conducted under U.S.A. TOPOCOM Contract DACA 71-71-0802; it was one of sev- 
eral ideas included in "Mathematical Terrain Analysis" presented at the Annual Convention of the 
American Society of Photogrammetry in Washington, D. C., March 1971. 
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After giving some thought to this problem, i t  was noted that  an ideal choice of an 
independent variable for interpolation would be arc length along the curve because 
length is monotonically increasing along the curve and has a unique value a t  every 
point. Unfortunately, the objective curve is unknown; arc length along it is therefore 
difficult to measure! However, advantage can be taken of the knowledge that the n 
data points (Expression 1) lie on the unknown objective curve to define an approxi- 
mation to arc length. A pseudo-arc-length is defined explicitly below and has been 
found to be an excellent independent variable for interpolation formulas. 

The method considers a local subset of six points to define sequentially a local 
polynomial approximation to the curve between Points 3 and 4 of the local subset. 
After each stage of the procedure, a new point is added and the first one deleted 
to define a new subset of six points. The family of locally valid polynomials are 
determined in such a manner that each connects a t  its bounding data points with 
no slope discontinuity with the polynomials approximating either the preceding or 
succeeding segment. The decision to consider sequentially six points is subjective and 
is not central to the method developed. Analogous processes can be developed using 
an arbitrary choice for the number of points in the local subset. 

Prior to discussing the details of the fitting procedure, the independent variable 
to be employed will be defined. Consider the first six of n data points as depicted in 
Figure 2. Define a cumulative polygon approximation to arc length as 

for each point in the data subset; a t  any x, y  along the unknown curve between two 
of the data points (say points k and k+l)  s is measured along the straight line be- 
tween (xk, yk) and (xk+l, yk+l). Clearly, s so defined is single-valued and smoothly 
varying from sl to s,. By choosing a power series of the form 

as the parametric polynomials to approximate the unknown curve, we insure that 
every value of s from sl to sn yields a unique pair of (x, y )  values. A left, middle and 
right averaging procedure is developed next. 

The fundamental ideas underlying the approximation method are illustrated in 

FIG. 2. The first six data points. 
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Figure 3. The procedure makes use of three overlapping cubic fits of x and y as func- 
tions of pseudo-arc-length (i.e., the left, middle, and right fits shown in Figures 3a, 
b, c). The left L, middle M, and right R cubic approximations are obtained by fitting 

x = A1 + Azs + A3s2 + A4s3 

Y = B1 + Bzs + B3s2 + B4s3 , 

(4) 

to the data 

(s ,  x, Y ) L  = ( 0 ,  X I ,  y1; Sz, xz, yz; S 3 ,  Xg, y3; S4, xq, y4) (5) 

respectively. The left L, middle, and right R coefficients are computed as 

AL = SC'XL, B L  = SL-~YL (8)* 

AM = SM-~XM, BM = SM-~YM (9)* 

AR = SR-'XR, BR = SR-~YR ( lo)*  

where the L, M, and R coefficient matrices are defined as 

The L, M, and R data matrices are defined as' 

and the resulting coefficient matrices to be inverted in Equations 8 ,  9 and 10 are 

1 0 0  

(15) 

1 S4 sh2 s43 

1 sz sz2 sz3 

SM = [ l  s3 s32 
1 S4 ~4~ 

1 S6 ~6~ 

* The inverses SL-~, SM-~, SR-1 can be obtained analytically and are special cases of the classical 
Lagrangian interpolation formula'. Note that the same matrix inverted for the x-coefficient is re-used to 
compute the y-coefficients. This is a key factor contributing to the efficiency of the method. 
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where the si are evaluated according to Equation 2. 
The final approximation for the unknown curve between Points 3 and 4 of the 

subset makes use of the preliminary cubic approximations to obtain reasonable final 
slopes a t  Points 3 and 4. To obtain these objective slopes a t  Point 3 ,  the left and 
middle slopes are evaluated a t  Point 3 and averaged as 

Similarly, the middle and right slopes are averaged a t  Point 4 to obtain 

- 
dx 1 d x ~  ~ X R  +- ZI.,=;[TI,, ds I.,] 

I t  is desired that the final a p p r o ~ i ~ a t i o n  to the 3+4 segment pass through points 
2, 3 ,  4, and 5 and satisfy average slope requirements (Equations 18 to 21) a t  Points 
3 and 4. The lowest degree polynomials in s  that can satisfy these conditions is a 
quintic. Thus, the final approximation to the 3-4 segment is obtained by fitting 

The coefficients are obtained as 

A = S I X ,  B = S I Y  

where 
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- "Left"  ----- "Middle" 
4 "Right" 

and 

FIG. 3. The preliminary and final approxima- 
tions. 3a-The preliminary left approximation for 
the segment from Point 2 to 3. 3b-The prelimin- 
ary middle approximation for the segment from 
Point 3 to 4.3~-The preliminary right approxima- 
tion for segment from Point 4 to 5. 3d-The slope 
averaging concept a t  Points 3 and 4. The final 
slope a t  Point 3 is equal to  (left slope a t  3 plus 
middle slope a t  3) ; the final slope a t  Point 4 is equal 
to )(middle slope a t  4 plus right slope a t  4). 3e- 
The final approximation for the segment from 
Point 3 to 4. 

The final approximation Equations 22 and 23 can be used for interpolation a t  any 
desired interval to estimate points between Points 3 and 4. 

We can now add the 7th x ,  y data point to the original six and delete the original 
first point. The same procedure can be applied to determine an approximation be- 
tween Points 4 and 5 of the original data points (Points 3 and 4 of the new subset); 
but now we can proceed directly to the right approximation step (beginning with 
Equations lo), because the old middle approximation becomes the new left and the 
old right approximation becomes the new middle. The resulting final approximation 
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between Points 4 and 5 will join smoothly with the previously determined final 
approximation t o  the curve between Points 3 and 4. This is true because both final 
approximations were constrained t o  the same slope a t  Point 4. All subsequent 
approximations follow by  analogy, each new da ta  point incorporated will require 
only the computation of right and jinal coefficients (Equations 10 and 24). 

A Fortran IV subroutine (SMOOTH) has been developed based on this approach 
and has been used for interpolation between discrete points along a variety of irregu- 
lar curves, including altitude contours. I n  order t o  maximize the efficiency and gen- 
erality of this algorithm, four useful bits of logic were incorporated into SMOOTH, 
as  explained below. 

1. SMOOTH automatically transfers input points into the output array if these points 
are separated by less than the desired interpolation (plotting) interval. 

2. As the algorithm (as explained above) begins producing points for plotting (for 
example) at the 3rd original data point and the last point for plotting would be the n-3 
point, logic was introduced to make the representation complete: 

(a) For closed curves-If the n original points are closed (as evidenced by the n-th point 
being equal to the first) then the 2nd through the 5th points are added to the end of the 
set. This has the effect of closing the curve so that SMOOTH output points will begin and 
end at the 3rd data point with no slope discontinuity. 

(b) For open curves-Two new points a, b are introduced (Figure4) between the first two 
data points in the set. These points a, b are selected to lie along the straight line connecting 
the first two points and to be separated by 1/10 the desired interpolation interval. This has 
the effect of causing the output points to begin a t  Point b (which is indistinguishable from 
Point 1) instead of Point 3. Similarly, two points c, d are artificially introduced adjacent to 
the final point along the straight line connecting the final two points. 

3. As the arc length increases around the curve, the elements of Equation 24 tend to 
have an increasingly wide numerical range. As this tendency leads to poor accuracy (and 
eventually, singularity), i t  was necessary to circumvent this difficulty. The solution was 
relatively simple, the origin (the point where s =0) is simply redefined to be the first point 
of each subset (for that subset's right and Jinal fits). 

A simplified logic flow diagram for SMOOTH is given in Figure 5. This logic 
flow diagram should be correlated with the foregoing development in order t o  fully 
understand SMOOTH. T o  prevent excessive clutter of Figure 5, the logic for de- 
tecting dense input points (closer than the objective interpolation interval), directly 
outputing them, and subsequent restarting of the SMOOTH procedure is deleted. 

T o  provide a basis for practical appreciation of the SMOOTH interpolation pro- 
cedure, three applications are shown in Figures 6, 7,  and 8. The  first example uses 
as  input points the four corners and mid-points of each side of a square (connected 
by  straight lines in Figure 6-left). As is illustrated by the SMOOTHed points plotted 
in Figure 6-right, symmetric input da t a  does yield a smooth, symmetric set of inter- 
polated points. 

FIG. 4. Initializing points for open curves. 
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Augment I npu t  P o i n t s  
t o  I nsu re  Snwoth C los ing  

o f  "Closed" Curves, and 
Compi e t  i o n  o f  "Open" ( n = n + 4  curves.  > 

Def ine  i n i t i a l  
Data Subset 

" L e f t "  Approx imat ion 
o f  2 + 3 Segment 

Compute t h e  
"Middle" Approx imat ion 

o f  3 + 4 Segment 

S o l u t i o n  f o r  
and Ana l ys i s  o f  

t h e  I n t e r p o l a t e d  
A r ray  o f  

P o i n t s  

Set 
" Le f t "  Slopes = "Midd le"  Slope5 

"Midd le"  Slopes = "Right "  Slopes 

New Data 

k-- 
o f  4  + 5 Seament 

Compute "Le f tM-  
"Middle" Average 

Compute "Mi dd i el'- 
"R ight "  Average 

Approx imat ion t o  
3 + 4 Segment 

FIG. 5. The SMOOTH algorithm. 

FIG. 6. Demonstration of the SMOOTH interpretation algorithm with symmetric data. 
Left---Original data connected by straight lines. Right-Plot of SMOOTHed points. 



FIG. 7. Demonstration of the SMOOTH algorithm with typical unevenly spaced and irregular 
data. Left-Original data connected by straight line. Right-SMOOTH output. 

Figure 7-left displays a bit more realistic set of points, typical of points along a 
contour line. The SMOOTHed curve in Figure 9-right is an  esthetically pleasing 
smooth curve passing through these data. 

In  Figure 8-left, exact but  irregularly spaced points along contours of the 
analytic surface function 

500 +- 
( ~ - 8 ) ~ +  ( y -  1 

are displayed, connected by straight lines. In Figure 8-right, the points resulting 
from application of the SMOOTH interpolation procedure are presented. The points 

FIG. 8. Demonstration of the SMOOTH algorithm for contouring non-linear surfaces. 
Left--Original data connected by straight lines. Right-SMOOTH output. 
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in Figure 8-right resulting from SMOOTH differ typically in the fourth decimal 
place from the exact coordinates determined from precision root-solving of Equation 
30, and are graphically identical t o  the actual contours upon plotting as  in 8-right. 

The  smoothing interpolation procedure is a reliable and efficient means for the 
computer approximation and display of discretely sampled unknown curves. 

The  comments and criticisms of Messers D. L. Light and M. J .  Biggin of USA 
TOPOCOM are gratefully acknowledged. 
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The American Society of Photogrammetry 

publishes three Manuals which are pertinent to its discipline: 

Manual of Photogrammetry (Third Edition), 1966 
Price to Price to 
Members Nonmembers 

1220 pages in 2 volumes, 878 illustrations, 
80 authors. (Sold only in sets of 2 volumes) 

Manual of Photographic Interpretation, 1 960 
868 pages, 600 photographs (of which 225 are stereo 
pairs for 3D viewing), 16 full-color photographs, 
90 authors $12.00 $15.00 

Manual of Color Aerial Photography, 1968 
550 pages, 50 full-color aerial photographs, 16 pages 
of Munsell standard color chips, 40 authors $21.00 $24.50 

Send orders, or requests for further information, to 

ASP. 105 N. Virginia Ave., Falls Church, Va. 22046 


