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Analytical Topographic Surfaces 
by Spatial Intersection 
The problem of representing detailed map surfaces by mathematical 
functions deserves more consideration. 

1 NTRODUCTION 

T HE GENERAL PROBLEM of photogrammetry has been divided into two parts: the 
simultaneous restitution of the orientation of any number of photographic rec- 

ords, and the reconstruction of three-dimensional space by the intersection of cor- 
responding rays.' Many theoretical and practical solutions of the first part of the 
general problem have been developed a s  a result of analytical photogrammetry. In  
particular, these solutions have been concerned with orientation, resection, aerotri- 
angulation, camera calibration, image coordinate correction, and similar problems. 
The second par t  of the general problem, concerned ultimately with reconstruction of 

ABSTRACT: The projective transformation equations and their derivatives, a s  
used in the spatial intersection problem of analytical photogrammetry, provide 
solutions for discrete sets of object-space coordinates. These coordinates are 
ordinarily used i n  analytical aero-triangulation. However, the recent develop- 
ment of analytical surface equations, i n  which the geometry of topographic 
surfaces i s  expressed as a function of on-surface data-point coordinates, leads 
lo consideration of spatial intersection as  a direct means of deriving analytical 
equations of topography. I t  i s  shown that a linear system of surface equations 
with unknown coeficients can be combined with a linearized system of projec- 
tive transformation equations involving unknown corrections to coordinates. 
The combined system i s  solved simultaneously for the analytical surface coefi- 
cients as well as the corrections to the coordinate data. Methods of evaluating 
the surface to produce contour maps  and providing other geometric information 
deserve consideration. 

surfaces in space, has been less responsive to  analytical solutions. A major aspect of 
the problem, namely tha t  part concerned with surfaces rather than point intersec- 
tions, is ordinarily solved by either manual or automated analogic photogrammetry. 
Advanced cartographic methods, involving numerical and polynomial approxima- 
tions are also under d e v e l ~ p m e n t . ~ . ~  These methods are associated with stereo-model 
coordinates and with computer-controlled plotters. Consequently, they provide a 
combined computational graphical substitute for analogic photogrammetry. This 
does not quite approach the potentiality of analytical photogrammetry from a n  
idealistic point of view. A need seems to proceed directly from photocoordinates to an  
analytical definition of surfaces in three-dimensions. 

Thus, a major purpose of this paper is to demonstrate the intrinsic relationship be- 
tween the point solutions of the projective transformation equations and the solu- 
tions for coefficients in certain analytical surface equations. First we postulate that  a 
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topographic surface is the locus of a n  indefinitely dense array of spatially intersected 
points. Analytical point intersections are implicitly contained in any number of line 
pairs emanating from each point of a topographic surface provided the spatial orienta- 
tion of each line is known, and i t  passes through a known position. In  photogram- 
metry we are explicitly concerned with ray pairs reflected to controlled vertices of two 
overlapping perspective bundles of rays. A spatially oriented photographic record of 
each perspective bundle permits a continuous model to be projected for stereoscopic 
viewing and analogical measurement. Alternatively, we may consider a point-by- 
point analytical reconstruction of the scene by using projective transformation. The 
latter procedure, without modification, is very inefficient; thus, i t  has been customary 
to determine the coordinates of a few control points by analytical methods. leaving 
the topographic compilation to less analytical (analog stereoplotting instruments), 
but  currently more productive methods of surface analysis. 

A potentially competitive analytical solution is possible if the indefinitely large 
array of intersected points can be reduced to a manageable finite array. T o  do this 
satisfactorily, an  analytical function, applicable t o  topography, is needed to define 
the surface continuously between relatively few data points. Multiquadric surface 
equations seem to  satisfy this requirement.4~5 They not only fit data points exactly, 
but  provide a logical interpolation of the surface at intermediate points a s  applied 
to topography. Furthermore, these equations are convenient for a simultaneous solu- 
tion of data-point coordinates and of coefficients of the analytical surface by spatial 
intersection. This can be accomplished using a revised version of the linearized pro- 
jective transformation equations of analytical photogrammetry. 

This approach is somewhat different than usual numerical surface methods; nu- 
merical methods do not determine a true analytical surface over any extended area. 
In addition numerical methods are based on model coordinates. The more general 
analytical method to  be described here is flexible enough to be used with image-space 
coordinates of central perspective bundles. Moreover, the derived surface is truly 
analytical over an  extended area. 

T o  aid readers who may not have immediate access to limited publications in this 
a brief review of essential elements of multiquadric surface theory is pre- 

sented here. 
A general symbolic expression for multiquadric surfaces is: 

in which Z is an  analytical function of X and Y, resulting from the summation of a 
single class of individual quadric surfaces Q each with its vertical axis located at the 
data point coordinates Xi and Yj. The associated coefficients Cj determine the alge- 
braic sign and flatness of each quadric surface. 

A summation of cones and sharp-nosed hyperboloids have been shown to be quite 
effective in representing various types of topography. Thus, Equation 1 may be ex- 
pressed for this particular application as: 

C Cj[(xj - X ) 2  + (Y j  - Y)' + c]f = Z 
3-1 

in which each term of the multiquadric surface is a single cone, or hyperboloid, de- 
pendent respectively upon whether C equals 0, or is a positive constant. 

An early experiment with multiquadric equations was based on a topographic 
model from K r ~ m b e i n . ~  His model was contoured from a 9 by 10 grid sample of part 



FIG. 1. (Left) Model of topography based on McClure, Pennsylvania, quadrangle. (Center) Location 
of 52 significant data points. These were taken from the lefthand figure and used to derive the corre- 
sponding multiquadric equation. (Right) Contour map from the multiquadric equation of topography. 
The equation was evaluated a t  2,601 points (51 by 51 grid) to define the location of contours as shown. 

of the 15-minute USGS quadrangle map, McClure, Pennsylvania. This model is 
reproduced a t  reduced scale in Figure 1 (left). The  ground area represented by the 
model is about 23.2 square miles. The original map had a contour interval of 20 f t  and 
the 90 surface elevations at the grid intersections were assigned values to  the nearest 
10 ft. However, the original map and grid data were not used in the multiquadric 
analysis. The horizontal coordinates and elevations of 5 2  significant points were 
measured and interpolated from the contours on Krumbein's generalized model. The 
horizontal locations of these significant points are shown in Figure 1 (center). The 
corresponding multiquadric surface, as  determined by the 5 2  coefficients, is shown in 
Figure 1 (right). This solution was determined by using Equation 2 with C=O, i.e., 
a conic summation, which is adequate but  not necessarily the optimum. The  general 
procedure is the same regardless of the basic quadric or higher degree mathematical 
surface chosen. 

The initial data in the example just shown consisted of Cartesian coordinates on 
the model surface ranging from XI, Y I ,  21 to X,, Yn, 2,; the quadric term coefficients 
C1 to Cn were unknown. Equation 2 was expanded into a system of n linear equations 
with n unknowns. The left side was arranged in i rows and j columns whereas the 
right side consisted of a single column in i rows. This then gave: 

Using matrix notation, the n-vector of unknowns was: 

Each unknown element was: 

aij = [(xi - X J 2  + ( Y j  - Yi)2] t  

from which an  n X n  coefficient matrix was determined: 

A = [aij] .  

Also, the n-vector of absolute terms was: 
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Thus, Equation 2 was reduced to: 

for which, as  usual, the solution was: 

After the known coefficients Cj were used in Equation 2, we obtained the required 
equation of topography that  fit the data  points exactly and provided the logical inter- 
polation a t  intermediate points as shown in Figure 1. 

I t  has been discovered recently that  the coefficients Cj in a profile version of Equa- 
tion 2, such as, 

can be determined with simple algebraic formulas based on the coordinates of data  
points, eliminating the need for matrix inversion. A related solution probably exists 
for the three-dimensional applicatian. If so, these will be the subject of a future paper, 
because the computational advantages will become tremendously significant. 

Assume that  the given parameters for a pair of photos are: -f, Xcl, Yci, Zci, wcl, 
+cl, KCI ,  XCZ, YC2, ZC2, W C ~ ,  4C2, and  KC^, referring to  the camera focal length, camera 
coordinates, and camera orientation angles of two camera stations. The  unknowns 
for n intersected surface points are: dX01, d Yol, dZol, dXo2, d Yoz, dZon, . - , dXn, d Yn, 
dZn which represent corrections to  the assumed coordinates XOI, Yol, 201, Xoz, Yoz, 
Zoz, . . . X,, Yn, Z,. The  observed parameters (plate coordinates) for the first point 
are: XOIOI ,  yo101, ~0201, and where the subscript pairs, 02 and 01 in ~ 0 2 0 1 ,  forex- 
ample, refer respectively to  the x-coordinate on the second photo of the image of the 
first point. 

Then, from the image-space coordinates, four linear equations for the first surface 
point are formulated as follows: 

In  this system, which is repeated in sets of four equations for each additional sur- 
face point in the region covered by the two photos, the theoretical values F(x)olol, 
F(y)o101, corresponding to  observations x0101, yo101 are: 
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which are well-known projective transformation equations subscripted for the first 
two equations of System 5. The m's in Equation 6 refer to direction cosines of image 
coordinates relative to the X YZ object-space coordinate system, using a well-known 
convention. 

The absolute terms of Equation 5, namely x- F(x) and y - F(y), are determined by 
subtracting the theoretical values F(x) and F(y) from the observed quantities x and 
y respectively. The theoretical values in Equation 6 are evaluated utilizing estimated 
values of Xol, Yol, and 201. Here all other parameters, Xcl, Ycl, and Zcl, and the m's, 
are known from the resected camera coordinates and orientation matrix. 

The a,  6, b, 6, c, and C terms in System 5 are linearized coefficients needed to solve 
the transcendental projective transformation equations. In particular, these are con- 
tained in an  expression for the total differentials of dF(x) and dF(y). Thus, from Equa- 
tions 5 and 6: 

Then the explicit correlation the of a, 6, b, 6, c, and G terms with the partial differen- 
tial coefficients are : 

These coefficients and the absolute terms of Equation 5 are evaluated initially with 
assumed values of Xol, Yo1 and 201, and of other surface coordinates. As is normal for 
a transcendental function, the coefficients of the so-called linear system in System 5 
are re-linearized, and the absolute terms recomputed, in each cycle of an  iterative 
process until the final increments, dX01, d YOI, and dZol, approach zero or are a t  least 
consistent with the precision of the observations. 

SIMULTANEOUS SOLUTION OF SURFACE COORDINATES AND 

COEFFICIENTS O F  THE EQUATIONS OF TOPOGRAPHY 
The shape of a multiquadric surface is invariant in a normal three-dimensional 

Cartesian system. Therefore, the 2-coordinate of the XY-reference plane may be 
arbitrarily equated with zero a t  the level of average terrain. As to utilization of the 
projective transformation equations, i t  is convenient for the basic estimate of the 
2-values, Zol,Zoz . . - Z,, to be the same value for all data points, namely the average 
terrain height minus the average camera height above terrain. The average camera 
height above terrain may be directly and accurately estimated from radar altimetry, 
for example. Then the XY-datum plane of the camera coordinate system is made to 
coincide with the XY-datum plane of the multiquadric surface. If the camera co- 
ordinates are based on a datum a t  sea level, for example, the transformation only 
requires the subtraction of all camera coordinates from the average terrain height 
above sea level. An adjustment.of the X and Y coordinates is not necessary. 

Assume that  the estimate of camera height above terrain is made carefully so that  
the variations of the actual terrain heights from the datum plane are small compared 
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with the camera height above terrain. Then the terrain variations may be treated a s  
approximations AZ. Further, assuming that  nearly vertical photographs are used, the 
height error caused by treating a terrain variation a s  a differential approximation is 
negligible. If these assumptions are not applicable in certain instances, then the re- 
quired rigor may certainly be developed; however, the following presentation will not 
be encumbered with these details, instead we place more emphasis on solving the 
basic problem. 

Based on the preceding assumptions, the Z's of the multiquadric surface summation 
can take on the same meaning as dZol, dZoz . dZ, through the approximation 
dZ=AZ. Thus, for the general case where Cf  0,  Equation 3 becomes: 

Then the first pair of equations in System 5 become: 

The  expanded multiquadric equivalent of dZol, as  shown in the two equations 
above, would occur in the first four equations of System 5. The differential dZoz would 
be replaced in the second four equations, dZoa in the third four equations, etc., as  
System 5 is expanded. Thus, four equations are added to System 5 for each surface 
point, and there is an  increase of only three unknowns; in effect, one unknown multi- 
quadric coefficient, Cj, is substituted for an  unknown d Z  as each new surface point is 
added to the system. On a point-for-point basis, a multiquadric system of equations 
can be combined with the spatial intersection system of equations without introduc- 
ing additional unknowns. However, the application of the combined system to the 
detailed definition of topographic surfaces will result in a need to greatly increase the 
density of control points over that  used in aerotriangulation. 

The combining of the linear rnultiquadric system of equations with the linearized 
spatial intersection system of equations does not change the basic requirement for 
relinearization of the system in each cycle of an  iterative least-squares solution. The 
corrections, dXol . . dX, and dYol . . . d Y,, as determined by the first solution are 
applied to the original estimates of Xol . . X ,  and Yol - . . Y,. Then the corrected 
values of Xol - X,, Yol . . . Y, are used in the multiquadric terms as well as  in the 
expressions for the partial differential coefficients. I t  should be noted that  dZ no 
longer appears as  such in the expanded system of equations, as  illustrated in System 
9, and therefore need not be computed; in fact, i t  would be incorrect in this problem 
to do so, even if possible, because the X Y plane a t  Z = 0 is a fixed-reference plane for 
determining the final values of all dZ's. In effect, each d Z  is corrected in each iteration 
by the response of the linear multiquadric coefficients Col . . C, to the revised X 
and Y coordinates of that  cycle. In the final iteration, as  the incremental changes in 
the dX's and dY's approach zero, the values of the coefficients Col . . Cn define a 
surface which, a t  data points in particular, is the height variation between the actual 
terrain and the datum plane, i.e., dZ0l . . dZ,. As with multiquadric surfaces in 
general, subject t o  the density and distribution of data points, i t  can be expected that  
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the solution will provide a logical interpolation of the terrain between data points. 
Upon completion of the iterative photogrammetric solution, the known coefficients 
C j  may be used in Equation 2 to  separately express the equation of topography for 
future use. 

The  theory developed above has been checked with a few data points, bu t  it is not 
known whether i t  is practical for a large number of points, without modification. The  
possibility of solving for a large number of coefficients by formula rather than matrix 
inversion is an  attractive consideration, bu t  this has not been completely confirmed. 
In  any  event, i t  has been shown, theoretically, that  analytical photogrammetry can 
solve both parts of the general problem of photogrammetry, which includes the 
representation of surfaces in three-dimensional space. If this theory is reduced to  
practice, i t  is probable that  i t  will be combined with automatic image-matching of 
photo-coordinates, thus resulting in a procedure that  could be called automated, 
analytical sterocompilation. 

Now we conclude with a few remarks about the possible advantages of analytical 
solutions of topography as opposed to  graphical and numerical solutions. An equation 
of topography can be evaluated digitally or analytically, depending on the applica- 
tion. For the automatic production of contoured maps, an  analytical mode is prob- 
ably preferred. Automatic contouring can become a computer-plotter problem in 
analytic geometry, i.e., to determine and plot the intercept equations of level surfaces 
passing through a three-dimensional equation of topography. This approach could 
lead to  a reconsideration of the nature of the need for digitized cartographic data. 
Topographic maps may be stored in analytical coefficient form, much like a mathe- 
matical subroutine. A recalled topographic map may be digitized, if needed, by com- 
puter, without having been produced in graphical form. Problems involving map 
use-determining unobstructed lines of sight, areas of defilade, volumes of earth, 
minimum length of surface curves, and others-could involve a direct application of 
analytical geometry and calculus to the interrelationship of these parameters with a 
mathematical surface of topography. For these reasons, the problem of representing 
a topographic surface in detail by analytic functions, using analytical photogram- 
metric methods, deserves increased consideration. 
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