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Image Transformations 
A suitable one represents an important means for improving 
image quality and increasing the accuracy of analytical 
photogrammetric processing. 

INTRODUCTION 

T HE GEOMETRY of a photogrammetric im- 
age suffers due to various sources of dis- 

tortion which occur a t  different phases in the 
process of forming and preserving the image 
prior to its final photogrammetric evaluation. 
The effect of the resulting deformation of the 
image can be partially eliminated by applying 
a suitable transformation to the set of mea- 
sured photo coordinates. The chance to im- 
prove the geometry of the image is limited to 
the introduction of a suitable scale change if 
the photographs are processed with analog 

interpolation of corrections determined from 
a stable framework of fiducial or rCseau marks. 
Generally, polynomial formulations using 
linear parameters are given preference in 
photogrammetric production to more com- 
plex systems with non-linear parameters. The  
number and selection of terms incorporated 
into the solution depend on the adopted de- 
gree of the transformation used. The  linear 
changes of the image usually prevail over the 
non-linear ones. Consequently, the linear 
terms determine the most important trans- 
formation parameters, such as scaling and 
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plotters. For the analytical treatment of pho- 
tographs, however, a wide range of mathe- 
matical transformations in two dimensions is 
applicable. Because of the physical nature of 
distortion causing phenomena, which can be 
neither predicted nor fully controlled, one can 
never remove the effect of the existing defor- 
mation from the image completely. Neverthe- 
less, the refinement of the geometry can a t  
least supress the main part of original posi- 
tional image errors. 

Different choices of mathematical or statis- 
tical means are available to define a suitable 
transformation. Theoretically, the trans- 
formation task consists of a two-dimensional 

skew factors, which introduce linear changes 
in dimensions and angles. The  non-linear 
changes are smaller and can be interpreted as 
causing a variable concentration or  extension 
of the image information along straight lines 
and a bend of hypothetical straight lines. 

There is a great variety of transformations 
to be utilized for the purpose of correcting the 
image geometry. In  general, the polynomial 
transformation necessary to convert the vec- 
tor x of primary coordinates into the vector 
X of corrected coordinates can be expressed 

* Presented at  the International Symposium on by 
Image Deformation at Ottawa, Canada, June 1971. X = x + A g  



where A is the matrix of the transformation 
and g, the vector of the individual trans- 
formation parameters. Considering non- 
rCseau cameras, the main restriction in 
selecting a suitable type of transformation is 
imposed by the limited number of fiducial 
marks available in the camera frame. As each 
fiducial mark contributes to the formation of 
two equations, the number of transformation 
parameters is then twice as large. Most cam- 
eras are nowadays equipped with four fiducial 
marks so the following simple transformations 
represent an  appropriate practical choice: an  
affine transformation with six parameters and 
the relevant matrix, 

a similarity (linear conformal) transforma- 
tion with four parameters, 

a bilinear transformation with eight param- 
eters 

or a projective transformation with eight 
parameters (shown in linearized form), 

As the transformations are used for the 
elimination of systematic distortions, there 
is no special need to require redundancy in 
setting the equation system. Therefore, 
Equations 4 and 5 are usually preferred to the 
simpler Equations 2 and 3. The photographs 
with eight fiducial marks could be preferably 
treated by using a more general transforma- 
tion containing all second order, and also 
some third order, terms. In  general, the num- 
ber of fiducials predetermines the usable 
number of unknown parameters in the se- 
lected transformation. 

The  use of rCseau photographs requires 
different reasoning. I t  would not be reason- 
able to increase the number of parameters in 
proportion with the number of rCseau points; 
such an  approach would be very inefficient. 
Instead, one takes full advantage of mosaic- 

type transformation of smaller sections of the 
image. This is more efficient, as  well as more 
dependable, than a simultaneous complex 
transformation. The  non-linear changes of 
the image can be eliminated better in sec- 
tions of smaller size. Any complex transforma- 
tion can be replaced by a set of simpler trans- 
formations which are applied to  fields derived 
by suitable partitioning of the original image 
area. In  an extreme example, the smallest 
rCseau squares are used for the simplest 
possible transformation consisting only of a 
suitable shift of the coordinate origin. More 
accurately, four corner crosses of a local 
rCseau square will accommodate any of 
Transformations 2 to 5.  Only a bilinear 
Transformation 4 could, however, provide an  
exact linkage of individual local transforma- 
tions in ties. 

Another important aspect is worth men- 
tioning. Not only the degree of complexity 
or the number of parameters for any par- 
ticular transformation plays a role, but  also 
the internal structure of the transformation is 
important. One can wonder whether or not 
local x, y deformations are mutually inde- 
pendent. Undoubtedly, x and y physical 
changes in real photographs have to be nat- 
urally correlated to a certain extent. Accord- 
ingly, some of the transformation parameters 
should be constrained. The  actual analytical 
form of these variable constraints is difficult 
to be determined or predicted. A typical 
example of a physically correlated two- 
dimensional deformation is the radial effect 
of an  improper flattening of the film. 

A good insight into the matter of analytical 
internal correlations could be provided by the 
comparison of two above mentioned trans- 
formations. I t  is obvious tha t  the similarity 
Transformation 3 represents a special case of 
more general affine Transformation 2. Both 
matrices in question use the same individual 
coefficients in a different arrangement. Using 
notation p and g for the parameters applied to 
Matrices 3 and 2, respectively, two basic 
constraints can be found 

to specify the similarity Transformation 3 
where +I, pz are identical with gl, g2. 

The x, y correlations are even more obvious 
for higher-order conformal transformation as 
represented by the following matrix 
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configuration of fiducial marks. Substituting aid of a least-squares solution if redundant 
Equation 10 into 11 one gets observations are applied to set the basic 

i o  = go + dg (13) equation system. In order to distinguish 
formally between this and the previous case, 

where the rectangular matrix of the transformation 

can be considered as an actual error of deriv- 
ing go, which compensates for the neglected 
vector gl. 

The residual errors in individual points, 
remaining after this imperfect transformation 
are expressed by the difference 

- - 
where symbols A,  A0 refer to the two-row- 
matrices formed from coordinates of indivi- 
dual points. Applying previous Equations 10 
and 13, one gets 

The first term on the right side of the previous 
equation represents the compensation achieved 
by the imperfect transformation where the 
latter term expresses the originally neglected 
part of the distortion. The final substitution 
of Equation 14 brings about 

dx = ( A ~ A ~ - ~ A ~  - A ~ ) ~ , .  (15) 
Similar formulas can be derived with the 

~ ~ - 
system is denoted B. The essential equations 
for both cases are listed in the following 
Table 1. The final Equations 16 (shown in 
Table 1) are adopted from 15 using the defini- 
tion of an auxiliary matrix P with the dimen- 
sions no, nl, which denote the number of 
parameters in vectors go, gl respectively. This 
matrix P contains all the information about 
the original errors due to neglected transfor- 
mation terms, and about their redistribution 
in the course of the specific solution, with re- 
spect to a definite configuration of the fiducial 
marks used. 

Taking into consideration the dimensions 
of matrices and vectors in Formula 16, 

one can alternatively express the vector of 
residual errors as a sum 

where pi, iilj represent individual columns of 
the relevant matrices and glj  are relevant 

TABLE 1. REDISTRIBUTION OF SYSTEMATIC ERRORS. 

( N o  Redundancy) 1 (Redundancy) 

Substitute t'ransformation 
I 

I 

False parameters 

- 
Errors in parameters 

I 

, 
I- 

Residual errors 
I 

dx = (Bo P - Bi)gl 

where 

1 P = (Bo'BO)-~B{BI 
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vector components. This arrangement makes 
i t  possible to perform the analysis separately 
for individual terms or groups of terms in the 
neglected part of the transformation Algl, 

e.g., in groups of missing or redundant terms A. = 
according to Figure 1. 

PRACTICAL APPLICATIONS 

The theoretical analysis leading to Equa- 
tions 15 or 16 can be practically utilized in 
two ways: to analyze and compare various 
formulations of incomplete transformations; 
and to assess the effect of different number 
and configuration of fiducial marks used to  
control the transformation. T o  demonstrate 
this, a few examples of such an analysis are 
presented here without any intention to 
prefer some of the applied formulations be- 
fore the others. 

COMPARISON O F  BILINEAR AND PROJECTIVE 
TRANSFORMATIONS 

Bilinear and projective transformations 
represented by Equations 4 and 5, respec- 
tively, have very similar structures. The  only 
difference consists of two additional quadratic 
terms in the projective formulation which in- 
crease its potential and partially correlate x- 
and y-changes. The  number of parameters is 
the same but  their geometric interpretation is 
different. 

In  recognition of its more general form let 
us consider the projective transformation as 
ideal whereas the other could be regarded as 
incomplete. I n  accordance with the above 
used notation, one defines matrices 

and 

With reference to the classification in Figure 
1, there are only additional terms to  be con- 
sidered for the matrix &. Four fiducial marks 
should be used to form an invertable matrix 
A. To  simplify the analysis the location of 
corner fiducial marks Pi can be defined in a 
right-handed system by unit coordinates, as  
follows: 

Consequently, the matrix A0 of the incom- 
plete transformation and i ts  inverse AoA1 are 

Following Equation 16 one derives 

0 1 0 1 

A1 = 

0 0 

0 0 

and finally, the residual errors are 

d x  = (1 + 2) (1 - x)gs 

dy = (1 + y)(1 - Y)~I. 
(18) 

The resulting Equation 18 can be interpreted 
by stating tha t  the bilinear transformation 
differs from the projective one in leaving 
quadratic discrepancies along lines parallel 
to the x and y axes. 

DISTRIBUTION OF SYSTEMATIC ERRORS 

The following set of examples shows the 
performance of selected typical transforma- 
tions as to the compensation and redistribu- 
tion of distortions not covered directly by 
the formulas. General third-degree Poly- 
nomial 8 is considered as an ideal transforma- 
tion with reference to above adopted conven- 
tion. Matrix A is arranged by composing 
A,, A, from Equation 8 in the following way: 

First, the effect of different configurations 
of four fiducial marks is discussed as used for 
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the projective Transformation 5. The in- 
complete transformation matrix 

1 O x O y O x y  x2 
60 = [ 

0 1 0 x o y y 2 x y  I 
compared with the ideal one shows up some 
redundant terms which should be removed 
using the auxiliary matrix 

in connection with parameters, g7 and gs. In 
addition, a series of missing terms should be 
hypothetically supplemented by the matrix 

21= [ x2 0  y2 0  x2y 0  xy2 0  

0  x2 0  y2 0  x2y 0  xy2 0  x3 O 0  y3 y3 O I 
applied to relevant parameters, gs, glo, . . to 
g20. Further extension of the analysis is differ- 
ent for the solution based on the use of either 
four corner fiducials (C-variant) or four 
middle side fiducials (S-variant). The results 
are condensed in Table 2. 

Equations 20, 21 (Table 2) could easily be 
interpreted in individual terms to show where 

maximum residuals are left with respect to 
each parameter, but this would not be very 
instructive. Instead, the composite effect of 
all errors can be assessed by the analysis of 
error propagation in Equations 20, 21. Under 
the statistical assumption that  the long-term 
occurrence of the parameters has a random 
character, the second-order parameters 
(g7 . . . glz) and the third-order parameters 
(g13 * . ~ z o )  are substituted by root-mean- 
square estimates mz, m3 respectively. Apply- 
ing the quadratic law of error propagation 
one gets for Equation 20, 

m ~ "  ( 2 ( ~ ~ - 1 ) ~ + ( y ~ -  1)2)m22 

+(x2+~2) ( (x2 -1 )2+(~2-  1)2)ma2 
m," ( ( ~ ~ - 1 ) ~ + 2 ( y ~ -  1)2)m22 ( 2 0 4  

+(x2+y2) ((2'- 1 ) 2 + ( ~ 2 -  1)2)m32. 

Similarly, the other Equation 21 could be 
adapted into 

m," m> = (3x2y2 f (1 - x2 - y2)2)m22 

+ (x4y2 + x2y4 + x2(1 - x2)2 (21a) 
+ y2(1 - y2)2)m32. 

Distribution matrix: C-variant : 
0 - 1 1 0 1 0 0 0 0 0 0 0 0 0  

- 1 0 0 1 0 1 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 1 0 0 0  

P= 0 0 0 0 0 0 0 0 0 1 0 1 0 0  where the fiducial marks 
0 0 0 0 0 0 1 0 0 0 0 0 1 0  lie in the Comers of the 

0 0 0 0 0 0 0 1 0 0 0 0 0 1  photo. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0  
L o o o o o o o o o o o o o o  

g7 g.3 g9 glo gii gin g13 gin gi5 g16 g ~ i  gi8 g19 gzo 

Residual errors: 
dx = Dg, dy = Dg, 
D =  [ ( I  -x2)  ( 1  -y2) y( l  -x2)  x ( l  -y2) x ( l  -x2) y(1 -y2)] 

qsf=((g9-g8) gll 5 3 3  g19) 
gvr= (glo (giz-g~) g14 gla gl.9 gzo) 

Distribution matrix: S-variant : r 0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 1 0 0 0  

P= 0 0 0 0 0 0 0 0 0 0 0 1 0 0  where the fiducial marks 
0 0 0 0 0 0 0 0 0 0 0 0 1 0  lie in the Sides of the 
0 0 0 0 0 0 0 0 0 0 0 0 0 1  photo. 

- 1 0 0 - 1 0 1 0 0 0 0 0 0 0 0  
0 - 1 1 0 - 1 0 0 0 0 0 0 0 0 0  

Residual errors: 
dx = Dg, dy = Dg, 
D= [xy (1 -x2-y2) -x2y -xy2 x(1 -x2) y(1 -y2)] 

92' = ( ( E l 2  -gl0 -g7) g13 El6 £!IT g19) 
SU'= ( ( .~ -g l l  -g8) El0 gl4 gl6 gl8 g20) 1 
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The average variance for the whole image 
area is derived by solving a double integral 
for Functions 20a and 21a in the range of one 
image quadrant (0 < x ,  y < 1). I t  follows that  

for C-variant, 
sz2 = Sue = l . 6 O m ~ ~  + 0 . 5 1 ~ 3 ~ ,  (22) 

for S-variant, 
= Sv2 = 0.62mz2 + 0.29m32. (23) 

A significant conclusion can be drawn from 
comparison of Equations 22 and 23 indicating 
that  middle side fiducial marks ensure a better 
statistical distribution of second- and third- 
order systematic errors, left beyond the po- 
tential of projective transformation, than 
corner fiducials. This holds true if one con- 
siders strictly systematic errors only and 
their typical occurrence, disregarding any 
random local discrepancies. I t  is interesting 
that  the same observation was made and 
quoted in Reference 1 as a result of extensive 
experiments based on processing real data. 

The potential of the bilinear transformation 
can be tested only for the corner point con- 
figuration because the other version defaults 
due to singularity of the solution matrix. 
Inasmuch as the bilinear transformation does 
not contain any x, y-correlations, the x and 
y coordinates are treated separately. The 
incomplete matrix 

& = [ I  x y xy]  

is to be supplemented by adding 

A1 = [x2 y2 x2y zy2 x3 y3]. 

For the corner point solution the distribution 
matrix P, = P, is derived as 

and final residual errors are 

dx = Dzgz, dy = Dvgv 

where 

Dz = Dv = ( ( 1  - xz) (1 - y2) y(l  - 22) 

The root-mean-square value of coordinate 
residuals becomes 

and finally, the average variance is 

Sz2 = Sv2 = 1 . 0 7 m ~ ~  + 0.51m32. (25) 

From a comparison of Equations 22 and 25 
i t  follows that  the bilinear transformation 
could generally perform better than the pro- 
jective transformation, anticipating the same 
configuration of fiducial marks. At  first sight 
this seems surprising and contradictory as the 
bilinear transformation looks inferior, not 
containing quadratic terms. The observation 
is, however, justified by realizing that  the 
available x2 or y2 coefficients in Equation 5 
are correlated with the xy-terms and, there- 
fore, exercise influence in definite direction 
without having necessary freedom. On the 
other hand, the general third-degree trans- 
formation, which is considered ideal for the 
purpose of analysis, does not recognize any 
correlation whatsoever. 

The final example shows the redistribution 
of systematic errors for a more complex eight- 
point transformation usually expressed sepa- 
rately for x and y by the matrix 

A0 = [l x y xy x2 y2 x2y xy21. 

The only missing cubic terms can be supple- 
mented by 

A, = [xa Ya]. 

The necessary construction of the distribu- 
tion matrix P is based on the knowledge of 
four corner and four middle side points, with 
the result 

P f  = [ 0 1 0 0 0 0 0 0  I 0 0 1 0 0 0 0 0 '  

With the use of P, the final residual errors are 
derived as 

dx = x(l - x2)g17 + y(1 - y2)g,9, 
dy = x(l  - x2)g18 + y(l  - y2)g20. 

(26) 

These formulas give rise to the root-mean- 
square estimate 

and are generally represented by the average 
variance 

Quite logically, the eight-point transforma- 
tion seems to be superior to the other an- 
alyzed formulations. 

So far, the analysis has been concerned en- 
tirely with the effect of the compensation and 
redistribution of systematic errors inherent in 
the image. As a matter of fact, in performing 
the image transformation one is unwillingly 
and inevitably treating also random changes. 
These changes include not only the random 
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errors of measurements but  also irregular 
local distortions caused by imaging system 
errors and deficiencies. I t  is to  be realized 
that  systematic errors usually prevail in 
larger areas subjected to  a transformation, 
whereas the treatment of the image deforma- 
tion in smaller areas is more sensitive to the 
effect of random changes. I t  can be stated 
that  the internal distribution of random er- 
rors, which happen to affect decisive ob- 
servations a t  control points (fiducial marks), 
is completely independent of the size of the 
control figure. However, i t  is considerably 
dependent on the number and configuration 
of these points. 

Using any transformation, the parameters 
of which are determined from measurements 
a t  certain discrete points, one introduces some 
unavoidable changes back into the image field. 
These resulting changes can be characterized 
by means of the variance-covariance matrix 
Qt t  

typical for the effect of the relevant trans- 
formation 

x = Ag. 

I t  can be formally written 

Qt = ?iQ,A'. 
Because the variance-covariance matrix of 
the vector of transformation parameters is 
given by 

Q, = (A'A)-l, (29) 

the final expression for Qt is 

Qt = A(A'A)-~;~'. (30) 

Some of the above used transformation will 
now be analyzed in order to find the matrix 
Q t  and assess the distribution of random 
errors. 

BILINEAR TRANSFORMATION 

The matrix Equation 4 is reduced to the 
form 

A = [I x y xy] 

and used for the transformation based on the 
fit a t  four corner points. The transformation 
yields the parameters g and relevant variance- 
covariance matrix 

Q, = $1 

where I represents the unit matrix. In ac- 
cordance with Equation 30, one derives 

As the transformation is performed inde- 
pendently for the x and y coordinates, i t  holds 
true tha t  

Qn = QW, Qru = Quz = 0. 

The distribution of weight coefficients Q, in 
the range of the transformed image is illu- 
strated in the following scheme 

The average variance representing the uncer- 
tainty of the transformation over the whole 
image is derived by double integration of Q,, 
in the area of the picture and yields the value 

SZ2 = Sy2 = 0.48Sc2 (32) 

where So2 is the variance factor. 

PROJECTIVE TRANSFORMATION 

The eight-by-eight matrix A necessary for 
the solution is compiled according to Equa- 
tion 5 ,  either with the use of four corner 
points (C-variant) or of four middle side 
points (S-variant). The relevant variance- 
covariance matrices Q, and Qt, as well as 
the distribution of weight coefficients and the 
resulting estimate of coordinate variances, 
are presented by Table 3. The difference be- 
tween C- and S-variants is very clear from 
the comparison of weight coefficients. The 
expected errors in corners for the S-variant 
are 1.6 times larger than the standard error 
expressing the magnitude of the inherent 
random disturbance, whereas all the errors for 
the C-variant are smaller than the standard 
error. 

From the standpoint of applying the pro- 
jective transformation to the image where the 
irregular random and local changes consider- 
ably contribute to the overall distortion, the 
projective transformation based on the use of 
corner points is significantly superior. This is 
quite an opposite conclusion from the previ- 
ous consideration about the distribution of 
systematic errors for this type of transforma- 
tion. 

A suitable image transformation represents 
an important means to improve image quality 
and to increase the accuracy of analytical 
photogrammetric processing. As no math- 
ematical transformation can entirely cope 
with the physical nature of the image changes, 
the inherent errors are not completely elimi- 
nated. One usually succeeds in supressing the 
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C-variant: where the fiducial marks lie in the S-variant: where the fiducial marks lie in the 
Corners of the photo. Sides of the photo. 
- - - - - 

I - 

Variance-covariance matrix Q ,  for transf r 2 0 0 0 0 0 0 - 1  
0 2 0 0 0 0 - 1 0  
0 0 1 0 0 0 0 0  

Q . = f  I 0 0 0 1 0 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  
0 - 1 0 0 0 0 1 0  

- 1 0 0 0 0 0 0 1  

rmation parameters: 
- 1 0 0 0  

0 1 0 0  
0 0 1 0  
0 0 0 1  
0 0 0 0  
0 0 0 0  
0 - 1  0 0 

- - 1 0 0 0  

Variance-covariance matrix Qt for transformation changes: 
x4++X2-xZ+y2+2 x3y+xy3-2xy 2x4+2x2y2-x2+y2+1 2x3y+2xy3-2xy 

+2xy3-2xy 2y4+2x2y2+x2-y2+1 I 
Distribution of weight coefficients: 

Q,, 1.00 0.77 0.75 0.77 2.50 1.19 1.00 1.19 2.50 
Qzv 0 0.09 0 -0.09 0 -1.00 -0.12 0 0.12 1.00 

' ' O 0  1 
2.50 1.38 1.00 1.38 2.50 Q,, 1.00 0 .63 0 .50 0.63 1.00 

Average coordinate variances: 
S,2=SV2=0.58 So2 I S,2=SvZ=0.81 So2 

effect of deformations, partially compensat- 
ing and redistributing the errors. A theoretical 
s tudy  of this distributing mechanism can help 
t o  understand the  existing internal correla- 
tions. Higher-order systematic changes a re  
usually mixed with random local errors. T h e  
distribution scheme is entirely different for 
these two categories of distortions, and their 
practical separation is difficult. T h e  effect 
of using various transformations or the  effect 

of applying different setups for control 
fiducials can be analyzed separately, bu t  the  
final assessment should be done only when 
knowing the  magnitude level for the  errors in 
these two basic categories. 

1. Ziemann, H. ,  Is the Request for Eight Fiducial 
Marks Justified? Photogrammetric Engineering 
1971, No. 1, p. 67-75. 

The 12th ISP Congress is in Ottawa, July 23-Aug. 5, 1972 


