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A Theorem in Least Squares

Omission or addition of observations after parametric adjustment.

INTRODUCTION
N SOME occasions in adjusting indirect observations it becomes necessary to
amend the estimates of the unknowns as a result of (i) the omission of one, or
more, doubtful observations, or (1) the inclusion of additional new observations.

If the number of unknowns is small and automatic digital computing facilities
are readily available, the quickest solution to either of the problems mentioned above
is to run the entire adjustment again. lowever, if the svstem ol equations is large
and if the observations to be omitted, or added, are few in number, it is possible to
amend existing results in a relatively simple way without having to repeat the inver-
sion of the large matrix of coeflicients of the normal equations system, A'wA. The

ABSTRACT: Altention is drawn to a property of parameter adjustment (ad-
Justment of indirect observalions) which enables an estimuale of the unknowns,
based on n +k observations, to be obtained once the adjustment for n observations
has been calculated. If k is small the correction procedure is simple. An example
is provided to tllustrate the method.

most important practical applications are where the observations for the solution
amendment are one, two or three in number. A possible correction procedure is given
below.
DERIVATION OF THE CORRECTION TERMS
Consider an m X1 vector of unknown parameters AX related to an 2 X1 vector
of residuals v by the equation

AAX+f=v (1)
where A is an #Xm matrix of known coefficients and f is another nX1 vector of
known or absolute quantities. If we write

f = F[\ == 1 (2}

L=1+v (3)
and identify the [ as the observations of the quantities L, the v are then recognized
as the corrections to the L. Fy will be seen to include approximate values, (X), of the
unknowns, such that

X=(X)+ AX. (4)

If (i) n=m the solution for the unknowns AX is unique; (i7) if # <, no unique solu-
tion; and (i71) if #>m an overdetermination of the unknowns occurs. If w=! is the
nXn variance/covariance matrix of the observational errors, this will be a diagonal
matrix where the observations of the quantities involved in the adjustment are
treated as being independent.

* The article was published in The South Africa Swrvey Journal in December 1971,
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1128 PHOTOGRAMMETRIC ENGINEERING, 1972
The method of least squares leads to unbiased estimates AX* of the unknowns AX
with minimum variance which satisfy the normal equations
AwA-AX* + Awf = 0. (5)
That is,
AX*¥ = — (A'wA)'A'wf (6)

If vy, of order kX1, is the vector of corrections to the observations to be omitted,
Equation 1 may be rewritten appropriately as

A, 1 Uy
v= AX+ = . (7)

A, 2 Vs
The submatrix 4; is of order (n—%k) X m, such that (n—k&)=> m. Applied to Equation

7, the method of least squares provides the unbiased estimates of the unknowns as
AX* = — (Av'w Ay + AswaAo) ' (Ay'wy'wify + Astw.f,). (8)
Comparing Equations 6 and 8 we see that
A'wA = Al‘wlAl + Az‘ﬂ.’“p‘lz

or
Q=01+ Q.
and
Awf = AY'wifi + Asw.f,
or
F=PF + F,.
The first set of reduction formulas are then obtained simply as
0= Q0 — AYw.A. 9)
and
F, = F — A wf, (10)

Now Q— Q1= Ax'ws 4, which on premultiplication by 4,Q~* and postmultiplication
by Qi ! becomes

A:Q7H(Q — QYO = Azo_lAzthAzol"l-

Therefore,

]

A Q1" — A:Q07H(Q — QO = A0 — A,Q ' Ayw, 4,0,

and
A Q7' = (I — A, Q 'A'w.) 4. Q.
Now, premultiplying both sides of this equation by ws(I— 4,Q 1 4:'w-)~! we find that
w2 A.Q,7 ' = wo(l — A, Q' A'w,) '4,Q !
or,
wyd;wi !t = KA, Q! (say),

which will be seen to have the same meaning as
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Q_]AQEKAQQ‘-] = Q“AszzAZO_’.
From Equation 9 it is immediately apparent that
Q'4yKA4:Q' = Q(Q— Q)0 "= Q7' — Q0!

and the inverse of the matrix of coefficients of the reduced set of normal equations is
given by

QO '= Q'+ Q'4:'KA, Q. (11)
Thus, if the number of observations to be omitted from an already completed adjust-
ment is small, it is preferable to calculate the matrix K which would involve the in-
version of (I—A.Q'A,'w,), a kX k matrix, instead of the very much larger (n—%)
X (n—k) matrix Q.

The unbiased estimates of the corrections to the unknowns, viz., AX"¥*, as a result
of dropping k observations, is then

AX™ = — Qr'Fy, (12)
From Equations 12 and 5 we have
Q:AX* — Q1:AX* = — F+ F,
— F 4+ F — A)w.f,

and
Q- AX* = Q-AX* + Awyf.. (13)
Premultiplying (As-AX'*4f.) by K-'w. we have
(I — A:Q'As'wo)(Ax- AX™ + fo) = fo+ A2  AX™ — 4,Q7(Q — Q)AQ™ +
— A:Q7(Q-AX™* — Q-AXY)
=fa+ A2 AX* = v..

Therefore,
vy = fo + AAX* (14)
or
v, = (I — A, Q'Astw,) (Az- AX™ + fo). (15)
Premultiplyving Equation 14 by K,
Kvy = wa(l — A0 ' As'w) (I — A, Q' As'ws)(As- AX™* + fo)
and
Q'4,'Kv, = Q14,1 (A A* X' + f)
= QN(Q— QIAX*+ Q7 (Q1-AX™* — Q AXY)
= AX"* — AX*
AX™* = AX* + Q-'A:sKv.. (16)
For the » observations,
viwv = (A-AX* + flw(A-AX* — f)
AX*(AwA-AX* + Awf) — AX*Q-AX* + flwf
viwy = flwf — AX*AX*,

It

(17)
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FFor the (n—#k) observations,
' = filwfi — AX*Q,- A X', (18)
Subtracting Equation 18 from 17 and rearranging slightly,
n'wiwy = v'wy — friwefs + AXYQ-AXY — AXHFQ,- AXE
Now,

U;:rKU-; (Al ‘:AX* + f-_’)tw-_g(A-_a' A X + fzj

fowafs — AXFQ-AX* + AX*Q,-AQ™,

Therefore,
v'wiw, = v'we — v.'Kv.. (19)
Finally,

= (I — A:Q7'As'ws) (A2 AX™ + o).

F

That 1s,
Kv, = wy(A,- AX™* + f)
w, 'Kvy = A:-AX* 4+ [,
or
As-AX™* = w, ' K,y — fo.
Thus,

= A AX* + fo = w'Kv, (20)

where v’ is the vector of residuals of the omitted observations based on the estimate
AX'* of the unknowns AX. The matrix K is symmetrical and features in most of the
correction terms and, as it is usually of order less than 4 X4, it is easier to evaluate
than Q!

It is a simple matter to rewrite the foregoing equations to allow for the addition
of further observations to the original set. An example follows to illustrate the appli-
cation of the correction formulae derived in this paper.

WORKED EXAMPLE

Consider the following trilateration network measured on a photograph for the
determination of the plate coordinates of the photo-points 4 and 25. The measured
distances, in millimeters, are shown in Table 1 and are shown diagrammatically in
Figure 1.

TasLE 1. MEASURED [NSTANCES
IN MILLIMETERS
: T — =

_ Poinls | Measuved | Points Measured
A | B Distance | | Distance
112 |1-1, 200, 3818 11 113 | 2002035
11 12 211.6378 112 113 2017720
13 | 114 211.4608 1 14 2117908
114 4 153.7319 13 4 150. 1145
112 4 145.6553 11 4 149, 2856
4 | 25 110.0078 111 25 239 0362
112 25 236.1424 113 25 | 102.4410

114 25 109.0322

L 1. 1. Trilateration figure used in the example.
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A= I'--U. TOG8  0,0000 0,0000 0,7074 0,7068 0,0000 0,0000 0,0000 0, 0000
0, 0000 0,7076 0,7067 0,0000 0,0000 0,0000 0,0000 O0,0000 O0,0000
1. 0000 0, 0000 0, 0000 0,0000 0,0000 0,0000 0,0000 0,0000 O0,0000
0, 0007 1.0000 =0, 0007 0,0000 0, 0000 0,0000 0,0000 0,0000 0,0000
0, 0000 =0, 0001 1, COVO 0, 0001 =1, OO0 0, 0000 0, 0000 0,0000 0,0000
0, 0000 0, 0000 0,0000 1,0000 O0,0002 O,0000 0O, 0000 O,0000 O,0000

0
0, 0000 0,0000 0,0000 0,7096=0,7046 =0,7096 0,7046 0,0000 0,0000
0, 0000 0.7266 0,6871 0,0000 0, 0000 =0, 7266 =0, 6871 0, 0000 0, 0000
0.7091 0,0000 0,0000 O0,0000 0,0000 O0,7051 -0,7091 0,0000 O0,0000
0, 0000 0,0000 0,0000 0,0000 0,0000 0,6879 0,7258 0,0000 0,0000
0, 0000 0,0000 0,0000 0,0000 0,0000-1,0000 ~0,0065 1,0000 0,0065
0, 0000 0, 0000 0,0000 O0,0000 0,0000 O,0000 O,0000 O,8898 O0,4563
0.4344 0. 0000 0,0000 0,0000 0,0000 0,0000 O0,0000 0,9008 -0,4344

0, 0000 -0, 0091 0,9%999 0, 0000 0,0000 0,0000 0.0000 O, 0‘091 =0, 9999
0, 0000 0, 0000 o0, 0000 -0, 0054 <), 0000 0, 0000 0,0000 0,0084 1,0000
-~

1716, 2. The A-matrix of the example for use in Equation 1,

The matrices of Equation 1 for this example may be written as in Figure 2 and as
follows:

AX = (dyis dang dyng doyg dyis dey dyy dasg dysg)!
U = (T112—111 T111-118 P111—112 112118 P113—114 P111—114 P114—d P113—t Prao—y Piii—4 Ti-2p
Di11—n5 T112—25 P113—25 Vir1—25)"
(X) = ((Xa1) (F111) (Nua2) (Vu2) (Xuas) (Fuas) (Xaaa) (Vuna) (X0) (V) (Xas) (V)

that is,
(X)=1(0.00.0 0.0 211.6365 211.7694 211.4960 211.7903 0.0347
102.6991 108.3506 212.7039 109,0621)%

f=(1.6 04 —1.3 —2.5 0.5 —0.5 —0.9 3.1 —1.3 2.6 —0.7 —1.7 2.6 —2.9—1.0)¢,

expressed as wm. The weight matrix w= I and accordingly, the Q! matrix is shown
in Figure 3.
The estimates of the unknowns from Equations 6 and 4 are

X = (X)+ AX* = (0.0000 0.0000 0.0000 211.6365 211.7694 211.4960 211.7903
0.0347 102.6991 108,3506 212.7039 109.0621)*.

As X=(X), it follows immediately that the vector of corrections for the measured
distances v =f. The standard deviation of the distance measurement of unit weight is
then

oo = [v'wv/(n — m)]} = 2.88 um.

If it is now supposed that the distance between points 112 and 25 is doubtful and
that we wish to obtain a new estimate of the unknowns from the other fourteen

Q-l = 0, B34 -0,152 0,362 =0,152 0,462 -0,287 0,410 -0,237 0,410
0.766 -, 491 =0, 105 -0, 351 0,152 =0, 031 0, 085 ~0. 374

1,150 0, ] 901 -0, 08 0,406 <0, 0599 0, B4T

. 0,773 0,342 0,144 -0, 118 0,077 0,231
I'1G. 3. The @ ' matrix for the example. 1,244 0,182 0,457 -0, 148 0,955
0,530 -0, 142 0,247 =-0_144

qQlaq), 14y 0,835 -0,117 0,393

o 0,515 -0,126

1.213
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K= I[1-(0.434 0.0 0.0 0.0 0.0 0.0 0.0 0,901 -0, 43-1)Q"” 043471771
0. 000
0, 000
0. 000
0. 000
0. 000
0. 000
0. 901
-0. 434
K = [1 - (-0.029.0.175 -0, 317 ~0. 097 =0, 340 0, 160 ~0. 098 0. 416 0. 462)[ 0. 434) 17
0. 000
0. 000
0. 000
0. 000
0. 000
0. 000
0.901
0. 434)

FiG. 4. Evaluation of K for the example.

distances we rearrange 4 so that 4; from Equation 7 may be written as
As = (0.4344 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9008 —0.4344).

The terms fo = (2.6) in pm and v = (v19-25). We have here that wo=w, "= I.
The correction procedure now revolves round the evaluation of K as

K = w,(I — 4.Q 'A,'w.)!
evaluated as shown in Figure 4 or
K = (1—0.563)"! = 2.229.
The new estimates of the unknowns may now be calculated as
X*= X4 AX*+ O 14:'Kv,

as shown in Figure 5, and the coordinates of the points are shown Table 2.

Xra

=

211.
211,
211,
211,

0.
102.
108,
212,

109,

6365
7694
4960
7903
034

6991
3505
7039
0621

+ Q_l

L}

cepposeoe

. 434

000
000
000
000
000
ano
901

434 ]

2.229x2.6pum =

(211.
211,
211,
211,

0.
102,
108,
212,

109,

6365
7694
4960
7903
0347
G991
3506
7039
0621

.

Fri. 5. The new estimates of the unknowns.

+

.

Po.
+1.)
-1,
-0.6
-2,
+0,
-0.
+2.
-2.

Hm

TasLE 2, Point COORDINATES FOR X'*,

Point | Xmm Y

111 0, 0000 0.0000

112 | 0. 0000 211.6363

13 ‘ 211.7704 211.4942

114 211.7897 0.0327
4 102, 7000 108.3500
25 | 212.7063 109 ,0594
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Q"A;mzq" = [o.002 -0.008 0.022 0.006 0.622-0,011 0.007 -0, 029 0, 032)
0.069 ~0.126 -0, 039 =0.136 0, 064 -0. 039 0,165 -0, 185
0,230 0,070 0,246 -0.117 0.071 -0.301 0. 335

0.022 0.075 -0.035 0.021 -0.093 0.102

0.263 -0,125 0,056 -0, 321 0, 357

0,059 -0.026 0,153 -0, 170

Ay = gy i#j 0. 022 -0, 093 0,103
0.395 -0, 438

L 0, 4806

Q= [0.836 ~0.164  0.381-0.146 0,484 -0.295 0.417 -0.266 0. 442)
0.835 ~0.617 -0.145 -0. 517 0.216 =0.070 0. 250 -0, 564

1.380 0.303 1.147 -0.215 0.477 -0.400 1.222
0.795 0.417 0.109 -0.097 -0. 016 0.
1.507 -0.317 0.533 -0.470 1.202

#j 0.589 -0.178 0.400 -0. 314
0.857 -0.210 0.496

0.910 -0, 564

1. 699

FrG, 6. Evaluation of Equation 11,

Applying Equation 11 we find the correction term and Q! as indicated in Figure

6.

The vector of corrections to the z —k observations used in the solution for X'* is
given by
iy = fl -+ .11'[\.\.’*.
That is,
v, = (25 —0.2 =15 —1.506 —1.1 —1.0 2.3 —0.4 2.8 0.7 —0.8 —2.0 —1.7)4,
expressed in pm. The correction to the discarded measurement with respect to the
revised adjustment is given by Equation 20 as v’ = 5.8 wm.

Finally, the standard deviation of the distance measurement of unit weight de-
rived from the revised adjustment is calculated from

I

oo = [viwwi/(n — k — m)]} = [(Vwv — va'Kvs)/(n — k — m) ]!

!

gy = 2.63 um (n=15ktk=1,m = 9).

In the example, it will be noted that dxi, dyi, and dxs have been set equal to zero.
This is possible without altering the generality of the solution.

A complete readjustment of the 14 observations of 4, will lead to exactly the same
results for Oy !, X'*, vy and ¢ as have been obtained from the application of the
correction terms mentioned earlier in this paper.
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