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Linear Least-Squares Interpolation 
With filtering, the method has numerous applications in computational photo- 
grammetry. 

ABSTRACT: Linear interpolation and filtering by  least squares i s  a general and 
flexible method which m a y  be used i n  m a n y  problems of computational photo- 
grammetry. T h i s  i s  a concise, but complete, presentation including a n  interpre- 
tive photogrammetric demonstration, evaluation and analysis. Consideration i s  
given to the effects of theoretical assumptions i n  practice, of the number of 
reference points and of the choice of trend surface and covariance function,  wi th  
simulated test results. Some of the areas considered include: compensation for 
j i lm and lens distortion, external horizontal and vertical block adjustment,  prob- 
lems in digital terrain model ( D T M ) ,  and use of S ide  Looking Radar ( S L A R )  
imagery.  Further research i s  presently continuing o n  D T M ,  S L A R  and other 
remote sensing records. 

P ROBLEMS OF interpolation, and to  a lesser extent extrapolation, exist in many a 
field of applied science and engineering. For such problems, an effective linear 

method using least squares has been frequently used. Although i t  has been known for 
many years and has been considerably applied t o  problems in geodesy,? its use in 
photogrammetry has been rather limited. I t  was not until recently2*'j tha t  this method 
was applied t o  some photogrammetric problems. The  English-speaking photogram- 
metric community, however, remains largely either unaware of, or unfamiliar with, 
the method. Because of the general nature of the method, its excellent potential appli- 
cations to  several phases of computational photogrammetry, and the expressed desire 
of many for an expos& the authors have endeavoured here to meet this need. They 
wish to  emphasize tha t  the basic concepts and relationships involved in the method 
are not new and have been long known in the field of stochastic processes.l However, 
they have attempted to  make the presentation in a form appealing to  practicing 
photogrammetrists using their own interpretive demonstration mostly from photo- 
grammetry. 

Interpolation problems exist in many aspects of computational photogrammetry. 
For example, after strip and block triangulation, correlated residuals (or in conven- 
tional terminology, residuals with sy s t ema t i c  behaviour) may exist a t  the control 
points, thus requiring interpolation a t  the pass points. Preprocessing photo-coordi- 
nates for sy s t ema t i c  effects, particularly lens distortion and film deformation, is 

* Dr. Kraus is with the Institut fiir Photogrammetrie, Stuttgart, W. Germany, and Dr. Mikhail is with 
Purdue University, Lafayette, Indiana, U.S.A. The latter was a visiting professor (under a NATO Post- 
doctoral Fellowship) a t  the Institut in Stuttgart when this paper was written. 
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another operation where interpolation is necessary to  estimate values a t  points other 
than those used to control the systematic effect in question. 

Problems of contouring and profiling in the digital terrain model also apply inter- 
polation techniques. Interpolation may also be utilized in cadastral photogrammetry 
in detecting and isolating gross errors in block adjustment, in improving methods of 
field calibration of cameras, and in several phases of remote sensing. A t  the present 
time many of the above-mettioned situations are handled by using polynomials of 
varying degrees. Although the use of polynomials may be adequate for some prob- 
lems, they are neither general nor flexible enough to adapt for all situations. If poly- 
nomials, or other mathematical eaa t ions ,  are not used (for example for external 
block adjustment), one is often forced to  use relatively more involved procedures in 
the block triangulation phase. With a general and flexible method of interpolation 
one can use less complex techniques of triangulation and treat the strip or block 
afterwards. 

Although least squares interpolation has many advantages, we must point out, 
however, that  for some situations other interpolation methods, such as sliding- 
average, piece-wise polynomials,~ may yield good results. The  method to  be pre- 
sented here is statistical (non-parametric) and not functional (parametric). There- 
fore, aside from the regular considerations of sample size, there are no restrictions on 
it, and its form does not change from one problem to another. T o  have an  apprecia- 
tion of the method, we first introduce some basic assumptions and definitions which 
are necessary for the derivation tha t  follows. 

BASIC DEFINITIONS AND ASSUMPTIONS 

The problem of linear interpolation addressed here begins by a given field of 
reference points (stochastic field), a t  each of which certain information is known. The  
solution of the problem is obtained by interpolating the information a t  points other 
than reference points. The  information a t  each reference point is considered to be 
composed of two classes of random variables. The  first class which we shall call the 
s-components, is composed of correlated stochastic variables (Figure 1). This is an  
important characteristic because interpolation would not be meaningful if the s-com- 
ponents a t  different reference points were uncorrelated. For a given experiment (or 
one realization of the stochastic field) the s-component a t  any one point is frxed and 
remains fixed as measurements are repeated a t  tha t  point. However, if the experi- 
ment is itself repeated (many realizations of the stochastic field) the s-component 
would vary randomly from experiment to another (Figure 2) .  

I t  is this component which represents the rather misleading term called syste- 
matic effect. (Fortunately the letter s stands for both terms to assist the reader in 
associating i t  with what has conventionally been used). The  second group which will 
be termed the r-components, represents the conventionally known observational error 
and will vary randomly as measurements are repeated whether a t  the same point, a t  
different points, or as  the entire experiment is repeated. Figures 1 and 2 show the 
two components and their relationship, on which more elaboration will be given sub- 
sequently. T o  aid in visualizing the difference between the two components defined 
above we use as  a conceptual model the problem of film deformation (Figure 3). 

For a given aerial film one may have several frames of exposure m for which cor- 
rection for film deformation is to be performed. Supose that  we have a good number n 
of reseau points which will be used to control film deformation. Given one aerial pho- 
tograph the position of the reseau points on the film are fixed. The  set of residuals a t  
these points, being one realization of a stochastic field, are correlated from one reseau 
point to another (and are in a sense deterministic). But  they vary from one photo- 
graph to another and this variation is in fact stochastic. This is what has been termed 
the s-component. T o  illustrate the r-component, we take one photograph and re- 
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Reference or Trend 

FIG. 1. The s- and r-components. 

r -  variation s- variation 

FIG. 2 .  Variation of the s- and Y-components. 
FIG. 3. Conceptual model: film deformation in m 

photographs. (Theoretical limit m-+ m ) 

measure the coordinates of one point many times. If we take, for simplicity, the 
vector lengths of the differences between the measured positions and calibrated posi- 
tion we will find that  they vary randomly. This variation is the r-component. I t  also 
changes from point to point on the same frame and from frame to frame. 

In  order t o  make the application of this method to  photogrammetric problems 
possible we must recognize a few assumptions: 

(1) The r- and s-components are independent random variables with zero means, i.e., 
E(r) = 0 and E(s) = 0; (E(.)  means expectation or mean). 

(2) The s-component in a given field of points forms regions of varying sign relative to (i.e., 
above and below) a reference surface. This is illustrated in Figure 1 where a reference 
surface is determined to replace the original datum with respect to which the given 
values were all of the same sign. The reference surface represents the trend in the 
stochastic field. I t  is an important step to shift to this surface, otherwise the method 
would not be efficient. 

(3) The regions described in (2) above need not be of specified or known form or extent. 
What is important is that  both positive and negative regions exist in a more or less 
random fashion. 

(4) While the s-component may be of the same sign in any finite region the r-component is 
strictly random. (Any two points no matter how close are as likely to have two r-com- 
ponents of different sign as of the same sign). 

(5) The number of repeated experiments, m, (such as the number of photographs in the con- 
ceptual model, Figure 3) is assumed to be infinitely large to allow for theoretical deriva- 
tion. 

Because both s and r are two independent random variables, then their sum is 
also a random variable. Thus, 

with E(1) = 0 
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is the random value a t  each point of the given field. From this value, we first define 
the variance a t  any point p as 

and the covariance between two points p and q as 

1 "  
o,, = Lim - l,,klgk 

m+m ??Z k-1 

where m represents the number of repeated experiments. In  the following derivation 
we shall assume that  necessary variances and covariances for the random variables 
involved are available. This is, however, one of the most important practical aspects 
of the method and a detailed discussion of how these variances and covariances are 
obtained will follow the derivation. 

STATEMENT OF THE PROBLEM 

There is given a stochastic field of reference points, P I ,  P 2 ,  . . . P, a t  each of 
which is given a vector of random values 21, 12, - . , Z,.,* respectively (Figure 3). 
The size of each vector Z,, depends on the dimensionality of the interpolation problem 
(i.e., one- two- or multidimensional). Each element 1 of any vector is composed of 
the two r and s components as  given by Equation 1. 

At  a point P,, other than the reference points, a n  estimate of the s-components s,, 
is required such that  all 24, i =  1, 2, . . , n, of the reference points contribute to that  
estimate. Although s, can be written as a general function of all Z i ,  we shall concern 
ourselves with linear functions, hence linear interpolation. As we are seeking a value 
for s only, we are in fact filtering the r-component. 

From a practical veiwpoint, each l i  can be made of one, two, three or more ele- 
ments depending on the dimension of the interpolation problem. Without much loss 
in generality, and for ease in derivation, we shall concern ourselves with one-dimen- 
sional case first then extend the results to others. 

DERIVATION FOR ONE-DIMENSIONAL INTERPOLATION AND FILTERING 

In  this case 3, (at ~ o i n t  P,) is a scalar which may be expressd by a linear func- 
tion of 1, as 

3, = a111 + a212 + + a,l, (4) 

where ad are as yet unknown coefficients. I n  matrix form, 

3, = at2 

where a and 1 are two nX 1 vectors. There are obviously infinite estimates 3, depend- 
ing on the choice of a. Of all these we choose a particular estimate for which the vari- 
ance is minimum. If the actual value is denoted by s, (which is also called hypothet- 
ical measurement8), the deviation of 3, would be (see Figure 4) 

This deviation v, is a random variable with a zero mean. If the covariance matrix 
of the vector [s, I t ] '  is denoted symbolically by 
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FIG. 4. The interpolated surface. 

where a,: is the variance of the s-component of I,, cl,* = caultt is an  n X 1 covariance 
vector relating the elements of the vector 2 to  s,, and Cllt is an n X n  covariance matrix 
for the elements of 2. 

These matrices are assumed, for the moment, to  be defined and that  c and C are 
known. Following the derivation, we shall discuss how these matrices can be ob- 
tained in practice. Applying the law of propagation of covariance to Equation 6, 

which, in view of Equation 7, becomes 

The  value a.,2 is the variance due to getting an estimate 3, instead of s,, and which 
is to be minimized. T o  get its minimum we equate its derivative with respect to a 
to zero. Dropping the subscripts for convenience (and without ambiguity) we have 

C U - C = O  (9) 

Substituting Equation 10 into 5 we get the desired estimate 

Equation 11 is the basic relationsip for one-dimensional interpolation problems. 
Note that  2 is simply the vector of values a t  the reference points which need not be in 
one-dimensional space. In other words, although Equation 11 applies to one-dimen- 
sional interpolation problems, the field of reference points can be one, two, or multi- 
dimensional as long as only one value ti is attached to each point i. Thus, equations 
of type 11, and extended versions to follow, apply to reference points (stochastic 
fields) of any dimension. 

EXTENSION TO TWO- AND THREE-DIMENSIONAL INTERPOLATION AND FILTERING 

Equations similar to 11 can be derived for two- and three-dimensional cases which 
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we give here without derivation. For the two-dimensional case, 

and for three-dimensional case, 

czzt czut C,, C,, CZU Czz - I  I ,  [:I Su 2 = [.& cuut c,z][cuz cuu c,.] [;I. 
czzt czut czzt Cz, Czu Czz 

I n  the above two equations, i,,, S,,, 3,, are the estimates of the x, y, and z s-com- 
ponents of I a t  point u, c,,, c,,, c,, are the autocovariance vectors between the com- 
ponents of the point of interest u and the corresponding components of all n known 
points, c,,, c,,, c,, are the cross-covariance vectors between the components of the 
point of interest u and the other components of all n points (e.g., c,, is the cross- 
covariance vector between the x-component of u and the y-components of all n 
points), C,,, C,,, C,, are autocovariance matrices for the components of the given n 
points, C,,, C,,, C,, are cross-covariance matrices between pairs of components of 
the given n points, and I,, I,, 1, are the vectors of quantities a t  the reference points, 
for the x-, y-, and z-components, respectively. 

The  use of Equations 11, 12, and 13 is rather straight-forward once the elements 
of covariance matrices c and C are known. 

DETERMINATION O F  NECESSARY VARIANCES AND COVARIANCES 

The elements of the matrices c and C may be evaluated, either from theoretically 
known functions, or by estimation from the sample, or by empirical means. I n  any 
event, a so-called covariance function is used. Let us first discuss the construction of 
a covariance function from the given data. 

T h e  Covariance Function. For the one-dimensional case, using the given I ,  a t  the 
reference points a sample, variance may be cornputed by (assuming that  the ergodic* 
property applies) 

Two points may be noted here; first, all 1; are independent, and second, the larger 
the value of n the closer is the sample variance V to the population variance a2 
(defined by Equation 2) with the limit being reached when n+m. Using the two parts 
of li from Equation 1, Equation 14 becomes 

Because of assuming tha t  s and r are independent, and n large, the last term may be 
dropped and Equation 15 may be written, with obvious correspondence in terms, as 

In  a manner similar to  the definition of covariance in Equation 3, we introduce 
here a sample covariance between two reference points P ;  and Pj.  As we have only 
one set of n observations (li, i= 1, - , n) one a t  each of n points, covariances as 

* Ergodic property allows the use of values a t  different points in a field in place of many values a t  one 
point which requires many realizations. 
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defined in Equation 3 cannot be computed. Therefore, for any two reference points 
Pi and Pj which are separated by a distance d, we take the mean of all possible prod- 
uct pairs lili with distances in the interval d +Ad, as the covariance between li and l j .  
The increment Ad is rather arbitrary as i t  simply fixes the interval for which d is a rep- 
resentative distance. Thus the covariance a s  a function of distance may be defined as 
(again assuming that  ergodic property applies) 

I t  should be noted that  the value of the covariance would approach zero as  d 
increases indefinitely, and will do so only after introducing the reference or trend sur- 
face. We should also say that  this is true under the assumption that  the covariance 
function depends only on distance. 

Using Equation 1, we expand Equation 17 : 

Under the assumptions given earlier and large n,i, one may neglect the last three 
terms of Equation 18, as they approach zero when n approaches a. Thus, Equation 
18 reduces to 

Using Equation 19, a number of covariances corresponding to different distances 
may be computed from the data associated with the reference points. The results can 
I,e represented schematically by a graph as shown in Figure 5. 

FIG. 5. The covariance function. 

An appropriate equation, such as the Gaussian function shown in the fig,ure, may 
be fitted to the data. If a Gaussian curve is used, its equation will be: 

C(d) = C(O) exp (- k2d2) (20) 

with two coefficients, C(0) and k, to be evaluated. Such an Equation 20 is called the 
Covariance function. Of importance is the term C(0) because i t  represents the co- 
variance of pairs of points which are infinitely close (with the limit of zero distance). 
If the data li contain only s-components, C(0) will be equal to V. If, however, both 
s- and r-components exist, then C(0) will be equal to V8 only, and from Equation 16 
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one may then compute an a prior; variance of the r-component as  

In  Equation 21, V would be computed directly from the data l i  whereas C(0) 
would be determined when the covariance function is evaluated. I t  is of fundamental 
importance in estimating the covariance function from the given data that  the 
number of reference points must be reasonably large. If this is not true, then i t  would 
be better to use an empirical covariance function. Such an empirical function may be 
obtained from experience with previous similar problems, or from simply knowing 
something about the behaviour of the problem. 

Once the covariance function is available, the elements of c and C can be com- 
puted from it. For c ,  the distances from the point to be interpolated P, and each 
reference point Pi are computed and each used in the covariance function to com- 
pute the respective covariances. For C, the variance V as computed from Equation 
14 is used along the diagonal, and the covariance between any two reference points is 
evaluated from the covariance function using the distance between the two points 
as  argument. 

THEORETICAL EVALUATION OF THE METHOD 

An attractive feature of the method is that  each reference point can be used as 
an unknown point and an estimate S,, with a minimum variance, can be computed. 
If all Ji are computed and collected in a vector i, a vector of estimates, ?, for the 
r-component may be computed from 

P = 2 - 3 .  

Referring to  Equation 11, the i-th element of O is 

S i  = citC-'2 

in which 

If we construct a matrix Z whose columns are ci, we get 

C(0) C(P1P2) . . . c ( m )  
C(0) . . . C(P2P,) 

(symmetric) 

indicating that  the difference between C and ?? is only in the diagonal elements. On 
the basis of this analysis, Equation 22 becomes: 

- 
r̂ = 1 - CtC-'2 = (C - Z)C-. '~ 



Remembering that  V - C(0) = Vv, thus (C -z) = V ,  -1 and 

which is the vector of estimates for the P-components a t  the reference points. This 
vector represents the values a t  reference points which are filtered out while interpolat- 
ing the s-component. 

I t  is interesting a t  this point to carry the analysis further. Assuming that P i  have 
zero mean, a variance u,2 may be computed from P by 

This variance is an a posteriori estimate for V, which is known a priori from the 
covariance function. If there are no errors in estimation (i.e., getting f for s) then 
u+2 would be equal to V,. As this is usually not the case, the relative magnitudes of 

and V may be considered as an indication of how well filtering was done. 
As an example, with a one-dimensional interpolation problem, the a prior; vari- 

ance V, (from the covariance function) was 0.0026, whereas the estimate after inter- 
polation was a+2 = 0.0019. This implies that the variance of the r-components filtered 
out during interpolation is about 73 percent of the a priori value. Told in terms of 
standard deviation, the ratio would be 86 percent, a value which is rather good. I t  
should be mentioned that such evaluation indicates the overall adequacy of the 
method including the covariance function used. I t  is in a way similar to using the 
reference variance in least squares adjustment to evaluate both the model and the 
given data. 

In this section we shall discuss the practical significance of the different assump- 
tions made, using numerical examples. 

THE NEGLECTED TERMS 

Equations 15 and 18 include terms which were neglected in the process of deriv- 
ing the final relationships, Eqpations 16 and 19. I t  is worthwhile to evaluate the rela- 
tive magnitudes of these terms to give some indication of their effect. Of course, the 
s- and r-components are not known a priori and can only be approximated by i and 
P, which are only estimates. In one particular application, the following numerical 
values were obtained (see Equation 15) : 

and (2/n) CSP=0.0020, which is more or less a representation of the term dropped 
from Equation 15. This is about 20 percent of V and is not insignificant. For the same 
interpolation problem the covariance for the distance interval O<d<600 m was 
computed from Equation 17 as C(d) =0.0057. After computing the S and P, the last 
three terms of Equation 18 were evaluated, using these estimates, as: 

These are approximations for the terms neglected while deriving Equation 19 from 18. 
The largest of these is about 14 percent of the value of the covariance. 

We have purposely chosen one of the extreme cases in order to point out the im- 
portance of remembering the basic assumptions of the method. In the above example 
we had a relatively small sample of (reference) points and, more importantly, the 
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variation in the field relative to the chosen reference surface did not adequately 
represent random variation. Stated another way, perhaps the trend surface was not 
well accounted for. And we must not forget that  we used the a posteriori computed 
3 and 3, which include errors of estimation. 

EFFECT O F  T H E  NUMBER O F  REFERENCE POINTS 

T o  investigate how the interpolated surface changes as  the number of reference 
points is altered, we performed a small simulation test of a one-dimensional problem. 
Figure 6a shows the result of interpolation when a field of 112 reference points are 
used. Figures 6b and 6c show the corresponding results when one-half and one-fourth, 

FIG. 6.  Top (6a)-Interpolation with n points. 
Center (6b)-Interpolation with n / 2  points. Bot- 
tom (6c)-Interpolation with n / 4  points. 

respectively, of the points were used. A comparison of these figures indicates that  the 
method works well and is flexible a t  least for this one s-t of data. 

We said earlier that  i t  is important to shift the data to the trend surface before 
interpolation and filtering (see Figures 1 and 4). The  choice of a function for that  
surface is not essentially difficult in practice, once one studies the nature of the inter- 
polation problem a t  hand. In  general, the function should have relatively few terms 
or coefficients. Furthermore, if prior knowledge is available about a particular type 
of deformation in the given field, one can choose the trend surface function to 
account, a t  least partly, for that  deformation. For example, film deformation often 
causes affine distortion of a triangulated block, and therefore one may choose an  
affine transformation for the trend surface in performing external block adjustment 
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by the present method of interpolation. We realize of course that a particular trend 
surface would probably be best suited for a particular problem. However, a study on 
the effect of different references surfaces is considered beyond the scope of this paper. 

CHOICE OF COVARIANCE FUNCTION 

This is another important aspect of the estimation problem as all the variances 
and covariances depend on the proper choice of the covariance function. The func- 
tion therefore must reflect the characteristics of the problem to be solved. For 
example, the Gaussian function is often used where the field (and the surface to be 
estimated) is continuous. I t  is not, however, suitable for use if the field has discon- 
tinuous first derivatives (i.e., with singularities). In such instances, an exponential 
function would probably be more suitable (C(d) = C(0) exp (--a)). The coefficients 
of these functions are determined by least squares fitting to the given data. Of course, 
in other fields (e.g., geodesy) theoretical covariance functions are known. 

T o  have an appreciation of the importance of the covariance function, a simulated 
one-dimensional interpolation problem was set-up. Figure 7 shows the empirical 
covariance functions used, limiting consideration to Gaussian and exponential func- 
tions only. Figure 8 shows several interpolated profiles corresponding to different 

FIG. 8. Interpolated profiles 
corresponding to Figure 7. 

FIG. 7. Experimentation with different covari- 
ance functions. The solid line is Gaussian with 
C(O) =0.9 V. the dotted line is Gaussian with 
C(O~ =0.5 v'and the dashed line is Exponential 
with C(0) = V. 

covariance functions with different ratios between V and C(0). Points to note here 
are : 

(1) Gaussian function produces continuous estimated profiles while t h e  exponential func- 
tion leads t o  profiles which exhibit slope changes (sharp peaks) a t  the  locations of the  
reference points. 
(2) I f  C(0) = 1 t h e  estimated profiles pass through the  reference points (i.e., no filtering). 
(3) As C(0) gets smaller relative t o  V, the  profiles in general get farther away from the  
reference points (i.e., more filtering). 

The method of least squares interpolation and filtering has been applied to a 
number of photogrammetric problems during the past two or three years. We shall 
give some examples and refer the reader to open literature for others. The objective 
here is to give an indication of actual results obtained using the method. 
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CORRECTION FOR FILM AND LENS DISTORTION 

Photo-images undergo positional shifts due to the distortion characteristics of the 
taking lens, and the deformation of the emulsion and film. As relatively simplified func- 
tional models are used (e.g., applying collinearity equations), the photo-coordinates 
are therefore modified to account for these image shifts. The present method of inter- 
polation can be effectively used for this purpose. Because the results of this applica- 
tion have already appeared in available literature we shall not duplicate i t  here. For 
lens distortion correction one may consult Reference 5, whereas Reference 3 deals 
with the question of film deformation. 

After block triangulation, particularly by relatively simplified methods (such as 
Anblock), residual vectors remain a t  the ground control points. Residuals a t  different 
points invariably include portions which are correlated (s-components), while the 
remaining parts are usually uncorrelated (r-components). I n  order to account for 
these correlated residuals and to compute corresponding quantities a t  the pass 
points (i-components) without the r-component, least-squares filtering proved to be 
an excellent procedure. As an example, Figure 9 shows a photogrammetric block with 
the residuals after triangulation a t  42 horizontal control (reference) points. Using a 

FIG. 9. External block adjustment. Residuals given FIG. 10. ?-Components a t  control points are shown 
a t  n =42 horizontal control points. by solid spots and pass points by open circles. 

Gaussian covariance function (see Equation 20) the values C(O)=0.72 V=1.00 
and k =0.00086 m2 were estimated from the data. Both X and Y components were 
estimated independently and separately and then combined to plot horizontal 
vectors. Figure 10 shows the estimated S for both the control (reference) points 
(designated by solid circles) and the interpolated pass points (open circles). Figure 
11 shows the remaining ? = 1-3 component of the residuals a t  the control points. I t  
can be easily ascertained by comparing Figures 10 and 11 how the 3- and 9-compo- 
nents vary in appearance and behavior. Although the S-components are quite corre- 
lated, the ?-components are obviously random. 

APPLICATION TO DIGITAL TERRAIN MODEL 

The method appears to have potential for application to problems in digital ter- 
rain model. Contouring is one such problem which is under investigation a t  the pres- 
ent time. Some results have already been achieved and the reader may consult refer- 
ence (4) for details. 



FIG. 11. t-Components at  control points. 

A very interesting and recent6 application has been attempted on a strip of SLAR 
imagery. For a flat area with a number of horizontal control points the positions of 
additional points were to be computed by interpolation using SLAR imagery. How- 
ever, as of the time of this writing, the results obtained were not conclusive. The 
SLAR imagery exhibited certain characteristics, such that questions regarding sta- 
tionarity of the field and the choice of proper covariance functions arose. The answers 
to these questions require further study which is presently continuing. 

The method of linear least-squares interpolation is a useful procedure to apply for 
a variety of problems in photogrammetry. I t  possesses some desirable features which 
include 

(1) I t  is rather versatile and does not generally depend on the problem to be solved; 
(2) I t  is a statistical estimation process which is general enough to be applied to different 

problems of interpolation and filtering; 
(3) I t  readily accounts for the random measuring portion by filtering i t  out  and interpolat- 

ing only the component of interest; 
(4) Although a reasonable size of the sample of reference points is advisable, there are no 

particular restrictions on the disposition of these points provided the covariance function 
is known ; 

(5) In  areas of no reference points, the method yields zero interpolated values which is 
quite logical. This is unlike interpolation by fitting of mathematical functions where one 
may obtain grossly unrealistic values in such areas of no control. 

The introduction of this interpolation method to photogrammetry is rather recent 
and therefore more study and experimentation would be fruitful. Of the many possi- 
bilities, we mention the writing of the covariance function in terms of point positions, 
in two and eventually in three dimensions, instead of the current practice of using 
only distances. Actually, the whole subject of proper covariance functions for differ- 
ent photogrammetric problems remains to be one of the fertile areas of investigation. 
The authors are aware of several institutions currently applying and experimenting 
with the method. 

The authors wish to thank Prof. Ackermann, of Stuttgart, for his keen interest 
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