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Least Squares & 
Non-Linear Functions 
Although most literature considers only linear condition equations, 
most practical problems are non-linear. 

INTRODUCTION 
THE METHOD of least squares is usually presented to apply to linear condition 

equations. There are a number of techniques for least squares-adjustments 
which depend on the number and type of condition equations expressing the 
functional model. 

By functional model is meant the totality of relations and assumptions which 
completely express the physical and geometric elements of the situation or event 
under study. Of the different techniques possible, we shall concern ourselves 

I 
ABSTRACT: It has been common practice to linearize condition equations I 
at the given observations and at approximations for the parameters, and 
iterating the solution by  updating parameter approximations only. Al- 
though this may well be adequate for many classical problems, i t  is no 
longer appropriate if modern unified approaches to least-squares adjust- 
ment are applied. Therefore, the adjustment technique has been extended 
to include approximations for the observations, thus allowing for the up- 
dating of all variables, parameters and observations alike. Direct non- 
linear least squares and the technique of adjustment by  "indirect obser- 
vations" are used to check the correctness of the developed relations which 
are demonstrated by  simple, but realistic, examples. 

in this paper with adjustment with the following three sets of linear condition 
equations: 

Techn ique  1. Adjustment of observations and parameters combined whose co 
dition equations take the form 

Technique 2. Adjustment of observations only, with the condition equations 

Techn ique  3. Adjustment of indirect  observations,  using the condition equations 

In the above three equations, n is the number of observations with residual 
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vector v, r is the number of redundancy or degrees of freedom, u is the number 
of parameters in the vector A, c is the number of condition equations, r s c G n 
and c = r + U, A, B are coefficient matrices and f is a column vector. 

We note that Equations 2 and 3 are special cases of 1. We also point out that 
both observations and parameters are considered in the above equations as func- 
tionally independent. There are of course other least-squares techniques which 
deal with instances of adjustment involving functionally dependent parameters. 
These applications, however, are more involved and are not considered here. 
The ideas developed in the following sections can nevertheless be extended in 
a straightforward manner to include these other cases of adjustment. 

In the introductory remarks we gave three sets of equations which were all 
linear. This is because from a computational standpoint least squares is practical 
only for such situations. (In rather rare applications one can apply it to non-linear 
conditions directly; it will be shown later how involved such an approach can 
be, even for the simplest of problems). In practice, most adjustment problems 
involve non-linear conditions, whereas directly linear conditions are quite in- 
frequent. consequently, one has to linearize and iterate the solution on all the 
variables. However, it has been so far customary in practice to iterate on the 
parameters only for applications involving Techniques 1 and 3, and to have no 
iterations at all in problems applying Technique 2. 

The only justification for this practice has been the fact that the linearization is 
performed at the given observations which are assumed to be sufficiently close to 
their final estimate to warrant no iteration. Although such an assumption may 
apply to classical problems, we need not take such for granted. As a matter of 
principle, one should treat all variables in the model equally and perform the 
linearization and iteration on all. Although this may seem to be a purely theoret- 
ical consideration, there are situations where linearization and iteration on the 
observable variables is necessary. For example, in a rather general and unified 
treatment of least squares (the presentation of which is unfortunately not possible 
here because of paper length limitation) if the parameters are treated as observa- 
tions, a lack of proper iteration would cause the method to fail. Consequently, in 
this paper we shall develop a procedure for iterating the solution, updating ap- 
proximations for observations as well as parameters. In order to follow the new 
procedure, we briefly mention current methods. 

For Technique 1, the general non-linear conditions are F(1,x) = 0, where 1 
and x are observations and parameters, respectively. With 

the linearized equations become 

Note that 1 is the vector of given values for the observations, while xO is a vector 
I 

of approximate values for the parameters. The vector of corrections A is computed 
by least squares and added to x0 and the process iterated until the last A is insig- 4 

nificantly different from 0. At this point, the vector v is computed only once. The 
same applies to Technique 3 with the exception of A being the identity matrix. 



In contrast to the above practice, a simple extension can be effected where the 
iterative process applies to both v and A. For simplicity in presentation we treat 
Technique 2 first, then the more general technique. It should be easy to recog- 
nize that Technique 3 needs no extension because the conditions are originally 
linear i n  the  observations. This is why in the numerical examples the results 
from Technique 3 are used to check those from the other two. 

LINEARIZATION FOR ADJUSTMENT OF OBSERVATIONS ONLY (Technique 2 )  

The original non-linear condition equations may be written as 

Now we distinguish between the actual numerical values of the observations 1 
and an approximate vector lo. The vector 1 remains unaltered, while l o  changes 
in value from one iteration to the next. This is different from current practice 
where 1 is always used for the linearization and no iterating is performed. At any 
iteration we have 

Linearizing Equation 4 we get 

or, with obvious correspondence in terms, 

A . A1 = -F( lO) 

A(1 + v - 1") = - F ( P )  

Then 

Conveniently, the first iteration begins by an 1: = 1 which makes f?  in Equa- 
tion 6 equal to f  in Equation 2 and the solution, v,, will be identical to that from 
the conventional practice. The second iteration, however, applies 1; = 1 + v, and 
both A and f O  take new values. 

The solution v, from the second iteration can then be used to compute an up- 
dated vector 1; = 1 + v2. Note that in every iteration a total v is computed and not 
an incremental one. This is the reason why the residual vector is always added to 
the given and fixed observation vector 1. The iterative process terminates when 
two successive vectors lo, or equivalently, when two successive vectors v differ 
by an insignificantly small value. 

To ascertain the correctness of the above technique, the method of adjustment 
of indirect observations will be used as a check. Here, the non-linear conditions 
are of the form 1 + F(x)  = O which are linearized to the form v + B A = f. The 
solution by least squares gives A which is added to an approximate parameter 
vector xO and the scheme repeated until the last A is tolerably small. The vector 
of residuals v computed at the end of iterations should be the proper least-squares 
estimate. The following examples will demonstrate the developed method and 
the check. 
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EXAMPLE 1 
Figure 1 shows a much simplified problem of an object point P which is photo- 

graphed by three terrestrial cameras. All three camera stations s,, s,, S, are as- 
sumed to lie on the XI-axis of the object space coordinate system. The X,-axis 
coincides with the optical axis of the first camera position, Sl. The three camera 
axes are parallel and lie in the same horizontal plane. All interior orientation ele- 

FIG. 1. A simplified three-photo problem. 

ments are known to be zero except for the principal distance c = 1 0 0  mm which 
is to be considered as constant. The observations 1 are the five denoted by that 
symbol on the figure; their values and standard deviations, with no correlation, 
are given in Table 1. All observations are assumed, for simplicity, to lie in the 
xl-x, plane. 

Examining Figure 1 one would agree that the mathematical model is a rather 
simple one concerning geometry in a plane. The functional model is essentially 
specified by four points, S1, S2 and S, lying on the XI-axis, and point P. Point S, 
is the origin of the coordinate system, S2 and S, are located by one coordinate 
each, and P by two coordinates. This makes a total of four elements necessary 
and sufficient for a unique determination, and with five observations we end up 
with one degree of freedom, or r =  1 .  The one condition equation among the 
observations may be written directly from the figure as 

With regard to the stochastic model, the a priori cofactor matrix (covariance 
matrix) is given by 

Ql = diag. (0.01 mm2, 0.01 mm2, 0.01 mm2, 0.0025 mZ, 0.0025 m2). 

TABLE 1. DATA FOR EXAMPLL 1. 

Observation Value Standard deviation 



TABLE 2. RESIDUAI, VECTORS FOR EXAMPLE 1. 

0.043,642,149,5 (mm) 
0.098,194,836,5 (mm) 

-0.022,639,365,0 (m) -0.022,421,679,9 (m) 
0.027,685,488,6 (m) 0.027,867,185,9 (m) 

With first approximation vector 1" = 1, the linearized condition equation according 
to Equation 6 becomes 

[-8.0(m) -18.0(m) lO.O(m) 16.6(mm) -20.3(mm)]v = -3.6(mm m). 

Solving by the method of least squares the residual vectors after the first itera- 
tion, v,, and the last (fourth) iteration, vf, are shown in Table 2. It should be em- 
phasized that we carried 10 digits only for the purpose of checking the exactness 
of the method rather than for practical considerations. 

To check the above method we solved the problem by the method of adjust- 
ment of indirect observations. The two coordinates of point P and the distances 
SlS2 and S2S3 were used as four parameters. The solution was iterated until the 
last values of the parameter corrections were all less than 10-lo. The vector of 
five residuals was identical to vf above to all 10 decimal places. 

An interesting alternative is to check the solution by Equation 6 of the prob- 
lem in Example 1. It is possible to treat the example directly as a non-linear least- 
squares adjustment problem. This means that we here minimize vtPv subject to 
the non-linear condition, or 

cp = vtPv - 2k,(-l,ls - 121, - l,ls + 1,14) --+ min. 

where k, is the one Lagrange multiplier for the non-linear condition. Replacing 
li by (li + vi) and realizing that P is a 5 x 5  diagonal matrix, cp becomes 

(P = v1v12 + ~ 2 0 2 ~  + ~ 3 0 3 '  + ~ 4 ~ 4 '  + pSvs2 + 2k,,[(11 + 01) (15 + 05) + (I, + v,) (14 + v4) + (1, + v2) (ls + vs) - (13 + v3) (14 + v4)] - min. 

Differentiating cp with respect to each vi and equating to zero we get 

These five equations together with the condition equation constitute six non- 
linear equations in six unknowns v, to v, and k,. It is possible, with some numer- 
ical scheme, to solve directly for these six unknowns. However, we can check the 
correctness of vf by a much simpler way: by computing five values for k, from the 
above five equations using the known values of v. Applying this technique, using 
vf from example 1, we get the following values for k,: 

which agree with each other to the 10th decimal place. This is a good indication 
that the procedure is correct. (It is important to note here how a complex, non- 
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TABLE 3. DATA FOR EXAMPLE 2. 

linear, least-squares adjustment can be even for a problem with one condition and 
a diagonal weight matrix!). 

EXAMPLE 2 
The two-parameter transformation equations 

relate the x-coordinates of any point i to its y-coordinates by the two parameters 
a and b. One point of known coordinates in both systems would be sufficient for 
determining a and b. Instead we have three such points as indicated in Table 3. 
Q, = S, = 0.011 for each point with no correlation between them. Considering 
the y-coordinates as constants, and the x-coordinates as observations with the 
given covariance matrix we are interested in computing a and b. 

Four condition equations exist between the six observations. It can be shown 
that these equations are: 

with i = 2 and 3 where ( X ~ ~ , X , ~ )  and (yll,yzl) are the coordinates of the first point. 
The linearized form is Av = f O  with a Q1 = 0.011. For I" = 1 we get the first value, 
v,, and then updating I" we iterate until the final residual vector vf as shown in 
Table 4. The problem was also programmed in the form v + B A = f and the final 
residual vector vfagrees with the one above to even more digits than those shown, 
which are carried to 10 places here only for reasons of checking. 

Consider the possibility of the conventional solution of Av = f (Equation 2) to 
obtain a vector of estimated observations 1 and a corresponding cofactor matrix 
Qi. One may consider that a relinearization with these new values can be per- 
formed and another adjustment solution carried out. Although this may seem to 
be correct, it will not work because Qi is always a singular matrix. To demonstrate 
this point, let us consider the data of Example 2. In the first iteration we have: 

A, is a 4 x 6  matrix with a rank of 4, 
Q, is a 6 x 6  matrix with a rank of 6, 
N, = AIQIAlt is a 4 x 4  normal-equations coefficient matrix of a rank of 4. 



After the first iteration, the computed i will be functionally depeadent with the 
consequence that Qi will have a rank of two. This leads to a set bf four normal 
equations whose coefficient matrix N, has a rank of two or less, ahd one cannot 
therefore iterate the solution with this scheme. 

LINEARIZATION FOR ADJUSTMENT OF OBSERVATIONS 
PARAMETERS COMBINED (Technique 1) 

In a manner similar to the derivation given in the foregoing s ion we begin 
with the non-linear condition equations 

Letting 1 and I" denote the actual observations and their 
purpose of linearization, xO denote approximations for the 
tions to lo, and A corrections to xO, the condition equations 

F(1"+ Al, xO+A) =O. (7) 
Linearization of Equation 7 gives 

d F aF which from Equation 5, and using A for - and B for --, becomes 
a1 ax 

and finally, 

Because we may now iterate the solution with updating 
putational procedures can be effected. The first is simply to upd 
variables in every cycle. The second is to use nested looping 
for every given value of 1, and repeating the process for other 

and the first procedure required slightly less computational effort. 
1 until the solution converges. Both methods were tried in the 

EXAMPLE 3 1 
The problem of Example 1 was reworked carrying the coordinktes of point P 

as two parameters, giving the following three condition equations: 
I 

l , x z  - cx, = 0  

1 2 - ( Z - )  = o  
l,x2 - ~ ( l ,  + l ,  - x , )  = 0 

in which c is the ~r inc ip le  distance (see Figure 1). The solution w s iterated (five 

same as vf in Example 1 to one unit in the tenth decimal place. 
t iterations) until the last A was negligibly small. The final residual ector was the 

EXAMPLE 4 
In a similar manner, Example 2 was recomputed carrying th4 parameters 

and b in the adjustment. In this instance, six condition equations 
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with i - 1, 2, 3. The approximations are a0 = 1.0, bo = 2.0 and the observations 
are those given in Table 3. The linearized equations were solved for corrections 
to approximations for both parameters and observations. After five iterations, the 
vector of residuals was computed and found to be identical to vf computed in 
Example 2 (Table 4). 

CONCLUSIONS 
Although most of the presentations on least squares limit consideration only 

to linear condition equations, the overwhelming majority of practical problems 
are non-linear. The common practice of solution by iteration on linearized equa- 
tions has been extended here to include observations in addition to parameters 
which are customarily considered alone. In doing so, distinction was made be- 
tween observational values, and approximations for the variables representing 
observations. The given values for the observations, as well as their covariance 
(or cofactor) matrix, remain unaltered all through the adjustment. 

All derived relationships were programmed and tested with simple, but realistic, 
examples which demonstrated the correctness of the derivations. It is believed 
that the account given here extends least-squares adjustment to a level which is 
applicable to non-linear conditions in a general way. The same concept has also 
been utilized for a considerably more unified approach yielding quite a complete 
treatment of least squares. The latter effort is rather lengthy and is therefore con- 
sidered beyond the scope of this paper. 
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