
FIG. 1. "Grid" model of surfaces. Left-r real 2-data points. Center- Fine grid o discrete Z-estimates. 
Right- Linear interpolation between grid points for points along contours. 
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Modeling Irregular Surfac s* "i 
The functional surface-modeling technique, an efficient ba(is for 
automated contouring, allows any prescribed standard de iation. 
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(Abstract on next page) I 

H E  CONTOUR MAP has long been recognized 
T c u r a t e  visual representation of discretely mea 
Hand production of contour maps, however, is a 
cess. The utilization of computer graphics capabili 
more accurate, less subjective, and less costly tha 
The development and use of the currently employed 
cartography are recorded in Light's excellent bibliogra 
work of Light and Biggin.'s2 

The problem considered in this paper is the develop 
improves the practicing photogrammetrist's surface 
contouring capabilities. 

Up to this time automated cartography has required 
creation of a fine grid of equally-spaced, discrete elev 
randomly located elevation  observation^.'^^^^ This gr 
called a digital terrain model ( D T M ) .  The contour lines 
ing and interpolating between the points in the DTM 

An alternate approach for surface modeling has rec 
-a mathematical representation of surfaces. Fourier S 
equations of topography," and others have all been i 
several reasons, none of these functions have been 
reason that the functional approach has not been a 
been employed as only a more sophisticated way 
ing; and it has been found to have a much greate 

* This work was supported by the U. S. Army Topographic Command, Was 
pears in JLJ Consultant's Report No. 7102 dated 28 October 1971, final report 
71-71-3007. Manuscript submitted April 1972; revised December 1972. 
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FIG. 2. Contours of test function extracted numerically. 

pared to conventional methods. This reason and the associated problems that these 
surface function approaches: (1) were not applicable to arbitrarily large data sets, 
( 2 )  did not give consistent results in elevation and partial derivatives along the 
boundaries of adjacent data sets, and (3 )  usually fit the data exactly, giving rise to an 
unrealistically rough surface, have made these previously investigated surface 
function methods unacceptable as the basis for an automated contouring program. 

In light of these difficulties a new sequential continuous function surface model- 
ing technique was developed. The surface function model is a sequential two- 
independent variable interpolation procedure which is an extension of a sequential 
one-independent variable interpolation procedure developed by the authors for 
production of continuous lines in a two dimensional space.6 Contour lines can be 
extracted from the function surface model by using a new technique developed by 
the authors, called CONTUR.' CONTUR is based on analytically or numerically 
solving the functions representing the surface for contour lines of interest (see 
Figure 2) .  

ABSTRACT: A two-independent variable interpolation procedure has been 
developed for modeling irregular functions of two variables. This method 
represents the surface as a family of locally valid mathematical functions 
which join together continuously. This surface modeling technique has 
been found to be an efficient and accurate mathematical basis for auto- 
mated contouring. 

CONTINUOUS FUNCTION SURFACE MODEL 
The continuous-function surface model8 is based on a set of locally valid poly- 

nomials of the form 

The base plane of the original elevation observations is divided into square regions 
(see Figure 3).  Without loss of generality, the length of the sides of the square 
regions can be chosen as unity because simple scaling can produce this result. A 
best-estimate of the elevation and slopes at the comers of each of the unit-square 



Frc. 3. Continuous-function surface model. Left- Least-squares fits to local subsets of the original data. 
Center- ( x ,  y) unit-square regions of validity for local polynomial surface models. Right-Contour lines 

M,N 
from the surface function Z = 6,,, Z"',". 

m.n 

regions is calculated by least-squares fitting a local subset of the original data with a 
plane, e.g., utilizing the standard weighting least-squares procedure: 

where 2, z,, and 2, are best estimate values for the elevation and slopes at a corner 
of a unit square region. O is a n x 1 vector of a local subset of the original data, A is a 
matrix of partial derivatives defined as 

xi, yi is the x,y location of the i-th elevation data point, W is a n x n weighting matrix 
defined as 

where wi is a relative weight assigned to the i-th elevation data point. 
The terrain above each of the unit-square regions is represented by a surface 

function of the Form 1. The coefficients C,, for the polynomial valid over each unit- 
square region are determined from the best estimate values so that neighboring 
surface functions join continuously. The continuity in elevation and slope along the 
mutual boundary of validity between two neighboring unit-square regions is as- 
sured by mathematically requiring that the neighboring polynomial surface func- 
tions reduce to exactly the same function along that mutual boundary. The differ- 
ence in slope perpendicular to the mutual boundary of validity between the two 
neighboring unit square regions is minimized by requiring the neighboring poly- 
nomial surface functions to agree exactly in slope perpendicular to the boundary at 
the end points of the boundary. Considering Figure 3 and the definitions: Zm,n is 
the polynomial surface function valid over the unit square region whose lower left 
corner is located at x = m, y = n, Zm,nJ,=, is the one dimensional polynomial in x 
found by putting y = n in the two-dimensional surface function Zmjn, Z?,"((,,,) is the 
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partial differential of Zm,n with respect to x evaluated at the point x = m, y = n, e.g., 
the x-slope of the surface function at the point x,y. Then along the mutual boundary 
of validity between Zm3" and Zm*n+l, e.g., the line y = n + 1 from x = m to x = m + 1, 
the conditions stated above can be interpreted as 

for elevation continuity. 
Note that continuity of slope along the boundary 

follows directly from the elevation continuity. 

for agreement in slope perpendicular to the boundary at the end points of the 
boundary. 

One of the lowest order polynomials which can satisfy these two conditions along 
all four boundaries of a unit square region is: 

The choice of the last term is somewhat arbitrary because the (3,2), (1,3), (2,3) or 
(3,3) term could have been utilized. The total number of coefficients is the impor- 
tant parameter. The two conditions stated above applied at all four boundaries of a 
unit square region result in twelve conditions on an equations of the Form 1. In 
order to satisfy these 12 conditions, 12 constants are necessary in the final poly- 
nomial surface function chosen. Obviously, the choice of the 12th term is arbitrary 
because any of the five possibilities is acceptable. 

The 12 conditions which must be imposed on the surface Function 3 in order to 
meet the two stated conditions along all four boundaries are simply that the surface 
function agree in elevation and slopes with the best estimate values at all four 
corners. Calculation of the coefficients Cij for a given unit-square region, from the 
elevation and slopes at its four comers is accomplished by: 

where C is a 1 x 12 vector of the coefficients C,,, A is a 12 X 12 matrix containing 
elements depending upon the x,y positions of the four corners of this unit-square 
region, consistent with Equation 3, Z is a 12 x 1 vector of the best estimate values 
of elevation and slopes at the four comers. 

The matrix A contains only the relative x,y location of the four comers of the x,y 
unit-square region of validity. By defining a local roving coordinate system, cen- 
tered at the lower left comer of the x,y unit-square region under consideration, the 
matrix A is the same for all of the regions over the entire data set. This fact means 
that the matrix A need only be computed and inverted once and then stored. The 
final coefficients for each locally valid polynomial can be found by simply multi- 
plying the stored matrix times the appropriate best estimate values. Having to 
invert the A matrix only once results in a large savings in a computer run time. 

The total functional relationship representing the surface would be: 

where 



l f o r m < x < m + l a n d n < y < n + l  a,,,, = 0 for all other x and y. 

The final but most important requirement of the surface model is that 

where r is the total number of measurements and cr is the 2; observation's measure- 
ment error. Equation 6 insures that the standard deviation of the functional model 
from the original observations is within their measurement error. By choosing the 
size of the regions of validity smaller or larger, so that correspondingly less or more 
area is covered bv the same mathematical function. the agreement between the - 
total surface function and the original elevation data will increase or decrease. 
Therefore the choice of the size of the unit-square regions of validity determines 
the standard deviation of the functional model from the original data. 

The contour lines of altitudes of interest can be extracted from the surface model 
utilizing the CONTUH method previously mentioned. Points along contours of 
interest can be found by simply analytically or numerically solving for them. The 
specific logic involved in finding and plotting these points is not the subject of this 
paper; the interested reader can find a complete description in Junkins and 
Jancaitis, 1971(a). 

APPLICATION OF THE METHOD 
A prototype computer program was written in Fortran IV for a CDC 6400, based 

on the continuous-function surface model. The program was written to handle the 
special case of equally spaced elevation data. It should be noted that the method is 
not restricted to equally spaced data, only this program is. Equally spaced original 
data allows the use of a local roving coordinate system in the calculation of the 
least-squares fits Equation 2. As in Equation 4 above, the matrix inverted in a least- 
squares solution is a function of only the x,y positioning of the data. For equally 
spaced data the x,y positioning of the original data relative to the local roving co- 
ordinate system is always the same, so that only one matrix was computed, inverted 
and stored. The best estimate values were calculated for each region by simply 
multiplying the stored matrix times the appropriate observation column. For this 
application two least-squares fits were calculated, each to a different subset of five 
local elevation observations, and the best estimate values were calculated by 
averaging the results of the two least-squares fits. 

Points along contours of interest were found by root solving the functional model 
using a two variable Newton's Method. A savings in the amount of core storage re- 
quired was obtained by contouring and plotting each region as its coefficients were 
found. In this way only a small subset of the entire data array needed to be in core 
at any given time. Also, as the contour lines are plotted as they are calculated, 
neither the coefficients Cij nor the points along the contours had to be saved. 

The program was run using a set of 1,600 equally spaced UNAMACE data points 
supplied by TOPOCOM. The elevation data ranged from 20 to 340 meters with an 
estimated noise level of 5 meters. 

The data was divided into 324 and then 121 x,y unit-square regions of validity. 
Figures 4 and 5 are the computer output for these two applications respectively, 
contoured every 20 meters. Figure 6 is the program output using the lower left 
subset of 400 data points, divided into 81 x,y unit square regions of validity, con- 
toured every 5 meters. The computed standard deviations of the three cases were 
5.4, 7.2 and 5.4 meters, respectively. 
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FIG. 4. Function-surface model program. 324 FIG. 5. Function-surface model program. 121 
( x ,  y) unit-square regions of validity, 1,600 data- ( x ,  y) unit-square regions of validity, 1,600 
point set, 0.55 minute, 20-m contour interval. data-point set, 0.35 minute, 20-m contour 

interval. 

FIG. 6. Function-surface model program. 64 
( x ,  y) unit-square regions of validity, 400 data- 
point set, 0.2 minute, 5-m contour interval. 

All th ree  of these  plots exhibit  the following properties: 

A lack of high-frequency oscillations usually found in digital contour plots of noisy- 
data; 
Excellent trend definition due to the high degree of contour parallelism along the 
ridges and drainage patterns, 
A lack of unrealistic "small peaks and depressions" which are often evident in com- 
puter plots of noisy data, 
Excellent agreement in elevation and slope between neighboring regions of validity, 
demonstrating that this method will give consistent results along the boundaries of 
adjacent data sets and, 
Smooth, continuous slope contours without the use of any contour smoothing routine. 

The computer  run times for these  three cases were  0.55,0.35 a n d  0.20 minutes, 



FIG. 7. TOPOCOM contouring program. 
1,600 data-point set, 0.75 minute, 20-m con- 
tour interval. 

FIG, 8. TOPOCOM contouring program. Edited 
and smoothed 1,600 data-point set, 0.74 minute, 
20-m contour interval. 

FIG. 9. TOPOCOM contouring program. Edited 
and smoothed 6,400 data-point set, 1.17 minutes, 
20-m contour interval. 

respectively, on the University of Virginia CDC 6400 computer. A CALCOMP 570 
plotter was used to plot the contour maps. It is important to note that the math- 
ematical discontinuity in slope perpendicular to the boundaries of the regions of 
validity is not visible in any of these plots, supporting the arguments that this dif- 
ference is effectively minimized. 

Figures 7,8 and 9 are computer outputs of TOPOCOM'S state-of-the-art Contouring 
P r ~ g r a m . ~  Figure 7 is TOPOCOM'S output using the same 1,600-point data set used 
to produce the continuous function results in Figures 4-6. Figure 8 is the result 
using a 1,600 point data set produced by editing and smoothing the original 1,600 
point data set. Figure 9 is the result, on an edited and smoothed 6,400 data point set 
over the same region. The computer run times for these three figures were 0.75, 
0.74, and 1.17 minutes, respectively, on an IBM 7094. 
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Comparison of these results shows that the mathematical surface modeling tech- 
nique gives contours of superior quality to those determined using conventional 
techniques on the original data. This is evident not only in smoothness and paral- 
lelism of contours, but also in the ability of the modeling techniques to reliably 
predict the surface between data points. Comparison of Figures 4 and 9 reveals that 
the mathematical surface model reasonably predicts altitude and slope between the 
original data points. 

CONCLUSION 
The functional surface-modeling technique has been shown to be an efficient 

basis for automated mapping. The flexible nature of the method allows a given data 
set to be modeled to any prescribed standard deviation. 

This method does not embody any of the difficulties associated with conventional 
methods for approximating surfaces using functions. The family of locally valid 
surfaces fit together in a smooth manner and interpolate between the original data 
to provide a realistic and accurate mathematical model of topography and are an 
efficient basis for contour determinations. 

With the development and application of a functional surface model the authors 
offer an alternative method for the basis of automated contouring which provides 
an accurate and aesthetically pleasing product from noisy data. 

The authors gratefully acknowledge the comments and criticisms of Messrs. Don 
Light and Merle Biggin of USATOPCOM. 
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Proceedings of Canadian Symposium 

The Proceedings of the Discussion o f  Man-Machine Interface in Photogranz- 
me t ry ,  held at the Department of Surveying Engineering, University of New Bruns- 
wick, Fredericton, N.B., Canada, on 7-9 August, 1972 are now available. They 
may be ordered for Can. $5.00 (plus postage) through the above address. The 
200 pages of the booklet contain eight up-to-date papers on topics related to the 
on-line use of computers in photogrammetry, as well as transcriptions of the lively 
discussions. 


