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A Tensor Approach to 
Block Triangulation 
A program has been written to perform all computations required for the 
simultaneous adjustment of strips and blocks of 24 photographs or less 
using a 32K computer and operating entirely within its central memory. 

INTRODUCTION 
T HE UNITED STATES Department of the Interior, Bureau of Land Management 

(BLM), Division of Cadastral Surveys, has legal responsibility for the survey 
and resurvey of the public lands of the United States for purposes of identification 
and description. In support of this mission the BLM is continuously engaged in the 
improvement and modernization of cadastral survey methods to obtain greater 
precision, improved efficiency, and savings in time, money, and manpower. 

Analytical aerotriangulation methods have been among the most promising of 
the new techniques adopted by the BLM for this purpose in recent years. Following 
an evolutionary period during which analytical systems developed by the Coast 
and Geodetic Survey and the National Research Council of Canada were used, the 
specific requirements of the BLM were determined and a new analytical system was 
developed which combined many of the best features of the two existing systems 
plus a number of new features designed to satisfy the particular needs of the BLM. 

ABSTRACT: A conq~uter  progrcini wus written to  perfornl (111 com)~tctutions 
required for the simultuneous udjustn~eizt ofsnlc~ll  strir~s or blocks of pho- 
tographs using u 32K com1)uter. Vector c~lgebrc~ zoc~s used extensively in the 
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adjustment method adopted is based on  tlze l~rinciple qf collinet~rity. I t  
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Foremost among BLM requirements was the development of a relatively small 
strip and block adjustment program which could be used on small to medium sized 
(32K) computers; and from which greater precision could be obtained than was 
possible using existing polynomial  method^.^ 

For this purpose a simultaneous adjustment method based on the principle of 
collinearity was adopted, and a computer program was written to perform all com- 
putations required for the adjustment of a strip or block of up to 24 photographs ar- 
ranged in not more than four strips. 

Vector algebra was used extensively in the analytical development of the com- 
puter program, with vector equations being expressed in tensor form, using Ein- 
stein's summation convention. Derivations of the equations used, and the analyti- 
cal procedures employed are described herein. 

OBJECTIVE OF STRIP OR BLOCK AEROTRIANGULATION 

The primary objective of strip or block aerotriangulation is the precise determi- 
nation of the ground coordinates of a set of points whose images appear on a strip or 



block of near-vertical aerial photographs using, as a basis for determination, the 
true ground coordinates of a relatively small subset of the point set, the approxi- 
mate ground coordinates of the remainder of the point set, and a well-defined, 
relative-position relationship among all points in the set. 

A BRIEF DESCRIPTION OF THE ADJUSTMENT PROCESS 

The simultaneous adjustment of a strip or block of photographs, as performed by 
BLM, can be described from a physical point of view as a simultaneous, least- 
squares adjustment of the aerotriangulation network to agree as closely as possible 
with established ground control. 

The aerotriangulation network consists of all lens-image-object rays through all 
control points, pass points and tie points in the block. It imposes a constraining 
influence which tends to maintain the proper relative-position relationship among 
these points, as established by photogrammetry, in such a way that, as the network 
is adjusted to fit ground control, all other points approach their true ground posi- 
tions. 

The adjustment of the aerotriangulation network is accomplished mathemati- 
cally by holding unchanged the known ground coordinates of all control points, 
and applying position corrections to all other points consistent with the relative- 
position constraints imposed by the network. 

Corrections are computed for a set of approximate ground coordinates of all pass 
points and tie points imaged on the block of photos, and for a set of approximate 
coordinates and orientation angles of the camera lens at each exposure station. 

A set of observation equations (linearized equations of collinearity) which define 
the mathematical relationship between selected ground objects, their photographic 
images, and the camera lens, the positions and orientations of which are, for the 
most part, only approximately known, are formed and solved by least-squares 
methods to obtain the set of corrections for the approximate values that most nearly 
satisfy all of the observation equations (in the least-squares sense). 

An iterative procedure is employed by which the corrections are computed, 
applied to the initial approximations, and a new set of corrections computed. This 
process is continued until the magnitude of the corrections diminishes to a prede- 
termined level. 

DATA REQUIREMENTS FOR BLOCK ADJUSTMENT 

The data required for a simultaneous strip or block adjustment, as performed by 
BLM, includes the following: 

Precise three dimensional rectangular Cartesian ground (object space) coordinates of 
all control points, 
Approximate ground coordinates of all pass points and tie points needed for block for- 
mation, 
Refined vhotographic image coordinates of all control points, pass points, and tie points 
needed for block-formation, and 
Approximate ground (object space) coordinates and orientation angles of the camera 
lens at the time of exposure of each photograph. 

SOURCES OF DATA 

Ground coordinates of control points are obtained by survey or from published 
descriptions of triangulation stations and bench marks. Approximate ground coor- 
dinates of pass points and tie points are obtained from preliminary absolute orien- 
tation computations or from other strip adjustments. Refined image coordinates are 
photo coordinates of image points (referred to the photo center of the photographic 
plate) which have been measured with a comparator and corrected for film shrink- 
age, atmospheric refraction, and lens distortion. 
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Approximate ground coordinates and orientation angles of the camera lens at the 
time of exposure of each ~ h o t o  are computed by resection using the ground coor- 
dinates and image coordinates described above. Resection computations are in- 
cluded in the block aerotriangulation program. 

DATA REQUIRED FOR SUBSEQUENT COMPUTATIONS 

During the block-adjustment phase of the computations the only points consid- 
ered are the control points, pass points and tie points required for block formation. 
After completion of the adjustment phase, ground coordinates are computed for all 
other points of interest. For this purpose refined image coordinates are needed for 
all the other required points whose images appear on two or more photographs. 

COMPUTATIONAL RESULTS 

Upon completion of the block-adjustment phase, the ground coordinates of all 
pass points and tie points used to form the block have been determined. Also the 
ground (object space) coordinates and orientation angles of the camera lens have 
been determined for all exposure stations. Subsequent computations include the 
determination of ground coordinates of all other points of interest not considered in 
the adjustment phase. For an evaluation of precision, the final results include 
ground coordinate residual values for all control points, image coordinate residual 
values for all image points, and the root-mean-square values (RMS) of all image 
coordinate residual values. 

An outline of the aerotriangulation routine is presented next and is followed by 
derivations of equations used and descriptions of various analytical procedures 
employed throughout the computational processes. Tensor notation and Einstein's 
summation convention appear throughout. The range of values of free indices and 
repeated indices are k=1,2 and i,j=1,2,3 unless otherwise indicated. 

Tensor equations are presented in expanded form in Appendix I, and partial 
derivatives are evaluated in Appendix II.* 

DATA INPUT PHASE 

The aerotriangulation process is initiated with the input of ground coordinates, 
x i i  ( i  = 1,2,3), and refined photographic image coordinates, ykl' (k  = 1,2), of all con- 
trol points, pass points and tie points needed for block formation, in addition to the 
focal length of the camera lens f and the various weight factors to be applied. 

Also needed are the approximate ground coordinates x i c  and the orientation 
angles ai of the camera at each exposure station. These values are computed for 
each photograph by resection in the manner described below, using the ground 
coordinates and refined image coordinates of six selected pass points on each 
photo. 

RESECTION PHASE 

Resection describes the mathematical process used to compute the angular ori- 
entation of a photo coordinate system relative to the ground coordinate system, and 
the ground coordinates of the spatial point of intersection of the bundle of lens- 
image-object rays at the focal point of the camera lens. 

A set of initial approximations for the position of the camera lens, in terms of 
ground coordinates, and the angular orientation of the lens axis, in terms of orienta- 

* Appendices included in the original paper have been omitted for reasons of brevity: Tensor equa- 
tions expanded; Rotation matrix and its partial derivatives; and Notation. Interested readers may obtain 
this material from the author at USDI Bureau of Land Management, P.O. Box 3861, Portland, Oregon 
97208.-Editor. 



tion angles, are computed for each photograph using Equations 1-6: 

xIC = x I 3  

X2c  = x23 

a ,  = 0 

a, = 0 

a3 = arc cos [ ( x k 2  - x k l )  ( yk2 - Y  
Dd " ' I  

in which 

f = focal length of camera lens, 
xi1 = ground coordinates of point 1, the center pass point along the trailing 

edge of the photograph, 
xi2 = ground coordinates of point 2, the center pass point along the leading 

edge of the photograph, 
xi3 = ground coordinates of the pass point nearest the photo center, 
yil  = refined photographic image coordinates of point 1, 
yi2  = refined photographic image coordinates of point 2. 

Using these initial approximations, a system of equations is formed and solved 
for a set of corrections which are applied to the initial values to obtain improved 
approximations. Two equations, (Equation 9), in three linear corrections Ax," and 
three angular corrections Aai are written for each of the six selected pass points: 

in which 

ci  = cos a i ,  and si = sin ai. 

A system of 12 equations is thus formed and solved (by least-squares methods) for 
these six corrections, which are then applied to the initial approximations after 
which the computations are repeated. This process is continued until the magni- 
tude of the corrections diminishes to a specified value at which time a reasonably 
accurate set of values for the position and orientation of the camera lens has been 
obtained. 

The resection computations are continued until a complete set of approximate 
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values has been determined for all ~hotographs in the strip or block. Upon comple- 
tion of the resection phase the adjustment phase is begun. 

ADJUSTMENT PHASE FORMATION OF SYSTEM OF OBSERVATION 
EQUATIONS FOR BLOCK ADJUSTMENT 

The adjustment phase begins with the formation of a system of observation equa- 
tions (linearized equations of collinearity) which describe the collinear condition 
of all lens-image-object rays through all of the control points, pass points and tie 
points needed for block formation. Using the approximate values obtained by 
resection, plus the ground coordinates and refined image coordinates of all ground 
points which were input initially, two equations (Equation 14) in six linear correc- 
tions,  AX,^ and Axlc, and three angular corrections, Acti, are written for every lens- 
image-object ray: 

in which 

and y k l  represents the refined image coordinates of point P on photograph C. This 
usually results in the formation of a very large system of equations, two equations 
in nine unknowns for every selected image on every photograph. 

COLLINEARITY WEIGHT APPLIED TO OBSERVATION EQUATIONS 

Because control points are nearly always paneled, their photographic images are 
generally more sharply defined than non-targeted images; hence, their image coor- 
dinates can be more precisely measured. Also, ground coordinates of control points 
are more precisely known than ground coordinates of non-control points. It follows, 
therefore, that the subset of observation equations describing the collinear condi- 
tion of lens-image-object rays through control points tend to be more accurate than 
the observation equations that describe the collinear condition of rays through 
other points. 

The potentially beneficial effects of control-point equations upon the adjustment 
are minimized, however, by the disproportionately greater number of non-control- 
point equations. Coefficients of control-point equations are therefore multiplied by 
a weight factor which increases the influence of control-point collineation upon the 
adjustment of the aerotriangulation network. 

FORMATION OF SYSTEM OF NORMAL EQUATIONS 

AS an object is usually imaged on several photographs, the number of observa- 
tion equations invariably exceeds the number of unknown corrections. Least- 
squares methods are therefore employed to reduce the system of observation equa- 
tions to a system of normal equations which can be solved for the set of corrections 
that will most nearly satisfy all of the observation equations (in the least-squares 
sense). 

POSITION WEIGHT APPLIED TO NORMAL EQUATIONS 

The primary objective of block aerotriangulation, as was previously stated, is the 
precise determination of the ground coordinates of a large number of points whose 
positions are only approximately known. This is achieved through block adjust- 
ment by adjusting the aerotriangulation network to fit ground control as closely as 
possible. Simultaneously, through the constraining influence of the aerotriangula- 
tion network that maintains a proper relative position relationship among points, 



all other points are moved into their proper positions in relation to the control 
points and to each other. 

The adjustment of the aerotriangulation network to fit ground control is ac- 
complished here mathematically by multiplying" the normal equation matrix diag- 
onal coefficients of control point ground coordinate correction terms by a weight 
factor to minimize the magnitude of control point position corrections. Position cor- 
rections are therefore largely limited to non-control points. These corrections are 
equal to the changes in position necessary to move the non-control points into their 
proper positions, as defined by the system of equations. 

SYSTEM OF NORMAL EQUATIONS SOLVED TO OBTAIN CORRECTIONS 

The system of weighted normal equations is now solved to obtain corrections to 
be applied to all approximate values used in the formation of the observation equa- 
tions. This includes corrections for the approximate ground coordinates of all pass 
points, tie points, and exposure stations, and corrections for the approximate orien- 
tation angles of the camera lens at all exposure stations. 

The corrections are then applied to obtain an improved set of approximations and 
the computations are repeated. This process is continued until the magnitude of 
the corrections diminishes to a predetermined level, at which time the corrected 
values are accepted as the final results of the block adjustment. 

INTERSECTION PHASE 

During the adjustment phase the only points considered are control points, pass 
points, and tie points needed for block formation. The ground coordinates of all 
other points of interest whose images appear on two or more photographs are ob- 
tained from subsequent computations. Each point is considered independently. 
The refined photographic image coordinates of a point on all photos on which its 
image appears are needed for these computations, and are input at this time. 

Using this set of image coordinates in addition to the ground coordinates and ori- 
entation angles of the camera lens at each exposure station (computed during the 
adjustment phase), a set of equations in terms of the unknown ground coordinates 
of the point of interest are formed and solved by least-squares methods as de- 
scribed next. Two collinearity equations (Equation 16) in the unknown ground 
coordinates xiP are written for each image: 

A system of 4 to 18 equations in the three unknowns are thus formed as an object 
can appear on two to nine photographs. Employing least-squares methods, the 
system of collinearity equations is reduced to three normal equations and solved 
for the three unknown ground coordinates that most nearly satisfy all of the 
collinearity equations (in the least-squares sense). The ground coordinates of an 
unlimited number of points can be computed in this way. 

PRECISION EVALUATION PHASE 

An indication of the degree of agreement or lack of agreement between various 
computed values and known or measured values is desirable for assistance in 
evaluating the computational precision obtained. Three indicators are computed 
for this purpose. They are: the ground coordinate residual values for all control 
points, the image coordinate residual values for all image points, and the RMS val- 
ues of all image coordinate residual values of all points used for block formation. 

Ground coordinate residual values are differences between computed ground 
coordinates and surveyed ground coordinates of control points. The computed 

* Although a value is added in least-squares theory, a corresponding result is achieved here by mul- 
tiplicution with some computational simplification.- Editor. 
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ground coordinates used for this purpose are obtained by intersection using the 
camera orientation angles and the exposure station positions computed during the 
adjustment phase, and are compared with the true ground coordinates which were 
input initially. 

Image-coordinate residual values are differences between computed image coor- 
dinates and refined image coordinates of an object on a particular photograph. 
Computed image coordinates ykl' are obtained using the following equations: 

Two image coordinates are computed for each image of an object on each photo on 
which the object appears. These values are compared with the corresponding 
refined image coordinates which were input initially. 

Ground-coordinate residual values and image-coordinate residual values of con- 
trol points are sensitive to the weight factors applied to enforce the collinearity and 
position of control points. Large collinearity weight factors reduces image-coor- 
dinate residual values of control points and, if combined with a large position 
weight factor, not only forces agreement with ground control but also reduces 
ground-coordinate residual values, whether or not the ground coordinates are cor- 
rect. 

Image-coordinate residual values are recorded and the root-mean-square resid- 
ual value is computed for the entire block. This computation concludes the block 
aerotriangulation process. 

DERIVATIONS OF EQUATIONS AND DESCRIPTIONS 
OF VARIOUS ANALYTICAL PROCEDURES 

EQUATIONS OF COLLINEARITY 

The analytical aerotriangulation system adopted by the Bureau of Land Manage- 
ment is based on the projective-geometry principle of collinearity. Equations of 
collinearity are applied in analytical aerotriangulation to enforce the condition that 
the camera lens C, a ground object P, and its photographic image I, are collinear; 
i.e., that all three points lie on the same straight line (Figure 1). This condition is 
illustrated in Figure 1. The equations of collinearity appear in various forms 
throughout the analytical processes, and derivations of these equations are consid- 
ered next. 

The collinearity equations in the most general form can be derived using vector 
algebra in the following manner. The coordinates of point C and point P in a rectan- 
gular Cartesian ground coordinate system (object space coordinate system) are x,' 
and x,' (i=1,2,3), respectively. The coordinates of points C, P, and I are y,' , y,", and 
y,' in a rectangular, Cartesian, photographic-image coordinate system (image-space 
coordinate system). - 

In terms of image-coordinate components, the vector V from point C to point P 
can be written in the form, 

A 

v =  (y,'- Y , ~ ) & ,  (18) 

and the vector 2 from point C to point I in the form, 
A 

v = ( YZ' - Y Z (  )&, (19) 

in which the 6 ,  are unit vectors in the directions of the Ydmage coordinate) axes. 
If the three points C, I ,  and P are collinear, the vectors V and ;are related by the 

equation 
4 v =  x5 (20) 
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FIG. 1. Collinearity of a ground object P, its photographic image I and the camera lens C .  

in which h is a constant multiplier. In terms of components, this equation can be 
written in the form 

The ground-coordinate system and the image-coordinate system are related by 
the transformation equations 

in which the tij are direction cosines of the angles measured from each of the coor- 
dinate axes of the ground-coordinate system to all three coordinate axes of the 
image-coordinate system, and the d, are translation terms representing the dis- 
placement of the origin of the Xi coordinate system with respect to the origin of the 
Yi coordinate system in terms of y, coordin~tes. 

Applying this transformation, the vector V can be expressed in terms of ground 
coordinate components, 
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V = t . . ( x j "  - X j ( ' ) ; i .  (23)  

Substituting the right hand side of Equation 23 for the left hand side of Equation 
21, the equations 

t i j (x jp  - x : ' ) ; ,  = A(yil - yi(')hi (24) 

are obtained. Equating corresponding components: 

t l j (x j"  - x j " )  = A (  yll - y,") ( 2 5 ~ )  

t,j (x j"  - x;')  = A ( y ,I - y,") (25b) 

tS j  ( x j '  - x l ' )  = A ( y3' - y3( ' ) .  (25c) 

If the left side of Equation 25a is now divided by the left side of Equation 25c, 
and the right side of Equation 25a is divided by the right side of Equation 25c, we 
obtain the equation: 

A similar division of Equation 25b by Equation 25c poduces the equation: 

If the photocenter is selected as the origin of the image-space coordinate system, 
the coordinates yl",y," and y,' can all be set equal to zero and y3' = f ,  the focal 
length of the camera. It is also convenient at this point to use the superscript P in- 
stead of I to represent the image coordinates of point P,  i.e., y,' = yil. 

Substituting these values for the corresponding coordinates in Equations 26 and 
27, we obtain: 

In partially expanded form, 

Equation 28 can also be expressed in the form: 

and 

x j p  ( yk1't3j + ftkj) = ~j(' ( yk1't3j + ftkj) (31)  

which is the form used for intersection. Equation 28-31 are variations of the famil- 
iar equations of collinearity. 

COORDINATE TRANSFORMATIONS 

Equations 28-31 seem to be nonlinear functions of the 17 variables xi",xif',ykP 
and t i j (k=1,2) .  Actually only 11 independent variables are in these equations, 
however, because the nine t i j  terms are themselves functions of only three 
variables-the angles ai through which the Xi coordinate axes would have to be ro- 
tated about themselves if they were to be oriented parallel to the Y i  coordinate 
axes. 

The t i j  have been previously defined as direction cosines. They first appear in 
Equation 22, the transformation equations used to express the image space coor- 
dinates y i l  of a ground point P in terms of ground coordinates xi". 
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The t i j  can also be described as elements of a rotation matrix [tij]. They can be 
evaluated in terms of the angular rotations ai by taking the product of the three rota- 
tion matrices that would transform ground coordinates into image coordinates by 
increments, comparable to rotating pairs of X-coordinate axes about the third X axis 
through the angles ai, one rotation at a time, until the Xi axes are parallel to the Yi 

axes (Figure 2). 
After rotation the transformed xi coordinates xi' can be equated to corresponding 

yi  coordinates: 

in which ci = cos ai and si = sin ai. The product of the three rotation matrices is 
the rotation matrix [ t i j ]  

The angles ai correspond to the angles w, 4, K in more conventional notation. 

LINEARIZATION OF COLLINEARITY EQUATIONS 

Two collinearity condition equations (Equation 30) are written for each selected 
photographic image. This will obviously produce a very large system of equations 
upon being multiplied by the number of images in a block of photographs. The 

FIG. 2. Positive directions of the rotations of the axes. 
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solution of this system of equations is the primary objective of subsequent mathe- 
matical processes. 

In order to solve the system of equations most efficiently, Equations 30, which 
are nonlinear, must first be linearized so that the methods of linear algebra devel- 
oped for handling large systems of linear equations can be applied. 

If the functions of Equations 30 have continuous partial derivatives in a suf- 
ficiently large neighborhood of points xiC', xi1', yil', ai to include a reasonable range 
of values xif' + Axi", x i p  + Ax,' ,  yil' + Ayil', ai + A a i ,  linear approximations can be 
derived by a Taylor series expansion: 

in which 

Equations 34 are linear in the corrections Axi(',  Axil1, Ayil' ,  Act,. The constant term Fk 
and the coefficients of the corrections terms are given by Equations 10 to 13 and 
Equation 15. 

For each image on each photograph two linear equations (Equation 34) can be 
written in the unknown corrections Axif', Axil', Ayii' ,  h a i ,  with constant coefficients 
evaluated using the approximations x i f ' ,  xi1', yil' ,  a i .  Equations 34 and 35 express the 
collinear condition of all lens-image-object rays in a block of photographs in most 
general terms. For special purposes these equations are modified by evaluating 
those variables that assume predictable values. 

RESECTION 

If the coordinates of three or more ground points appearing on a photograph are 
known, and if the refined image coordinates of the corresponding photographic 
images are known, the position in terms of ground coordinates xif '  (object-space 
coordinates) and the orientation angles ai of the camera at the time of exposure can 
be computed by resection using a special forms of Equations 34 and 35 (Figure 3). 

For resection purposes it is assumed that all ground coordinates xi1' and all image 
coordinates yil' remain unchanged, whereupon the corrections Axi" = 0 and 
Ayif' = 0. If these values are substituted into Equations 34 and 35, the resection 
equations are obtained: 

EQUATIONS FOR BLOCK ADJUSTMENT 

For strip and block adjustment purposes it is assumed that only the image coor- 
dinates y i p  do not change. Hence, only the image-coordinate correction terms Ayil' 
of Equations 34 and 35 are set equal to zero. In this way a set of observation equa- 
tions is obtained in the form desired for the adjustment phase of the computations: 

Two linear observation equations (Equation 37) in the nine unknown corrections 
Axi", Axi", hai are written for each selected image on each photograph. 

Only those points needed to form the strip or block are considered at this point in 
order to minimize the number of equations to be solved simultaneously. These 
include pass points, tie points, and control points. All other points are considered 
in subsequent computations. 



FIG. 3. Simplified geometric relationships used to obtain the initial resection approximations. 

SOLUTION OF SYSTEM OF NORMAL EQUATIONS 

The system of normal equations is solved for the corrections which most nearly 
satisfy all of the observation equations. This operation requires more computa- 
tional effort than all other operations combined. Several methods for solving large 
systems of linear equations have been used. These include the Gauss-Jordan elimi- 
nation method, the Cholesky elimination method, and a combination of parti- 
tioning, elimination and intersection. For small blocks (24 photos or less) the dif- 
ferences in numerical results obtained using these various methods apparently are 
not significant, as they might be for larger blocks where roundoff error can become 
a problem. Differences in processing time required by the various methods are also 
small. 

TEST MODELS USED FOR VERIFICATION OF RESULTS 

To test the precision of the analytical solution and the performance of the com- 
puter program, several topographic tests models were created on which strip and 
block adjustments were performed, as discussed next. 

An area was selected on a topographic map and subdivided into a grid repre- 
senting photographic coverage. For each photographic area, pass-point locations 
and exposure-station locations were selected and assigned object-space coordi- 
nates and orientation angles. A small number of control points were also selected, 
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and object-space coordinates assigned. With these assigned coordinates and orien- 
tation angles, a set of image coordinates of all pass points and control points were 
computed using the equations of collinearity (Equation 28). Subsequently, random 
errors from 0 to 100 feet were introduced into the ground coordinates of all pass 
points producing a set of approximate ground coordinates. 

Strip and block adjustments were then performed using as input the computed 
image coordinates, the approximate ground coordinates of pass points, and the as- 
signed ground coordinates of control points. In every instance the assigned ground 
coordinates of all pass points were obtained from the strip or block adjustment with 
image coordinate residual values and ground coordinate residual values ap- 
proaching zero. Also, the assigned exposure station positions and orientation 
angles were obtained. 

A number of real strips and blocks with excess control have also been adjusted, 
withholding varying numbers of points of known position for the purpose of com- 
paring computed coordinates of those points with surveyed coordinates. Excellent 
agreement has always been obtained. 

SUMMARY 
A computer program has been written to perform all computations required for 

the simultaneous adjustment of strips and blocks of 24 photographs or less using a 
32K computer and operating entirely within central memory. Excellent results 
have been obtained from all tests of analytical precision and program performance. 
The average computational time required for the adjustment of a 24-photo block is 
approximately 30 seconds using a CDC 6400 computer. 
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