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Similarity Transformation 
and   east Squares 
Parameters based on the space-time formulation of special relativity are indis- 
tinguishable from those obtained if the parameters are computed by least- 
squares minimization of the residuals at the control points. 

SIMILARITY transformation is a transfor- A .  matloll of coordinates which can com- 
prise no more than a change of scale, a rota- 
tion, and a translation. One can express this 
in somewhat more sophisticated language by 
stating3 that it is a single-valued mapping of 
space onto itself which satisfies the require- 
ment that it multiplies the distance between 
any two points by the same real positive 
number. 

parameters for use as initial approximations. 
Good estimates for the parameters of the 

rotation cannot in all cases be easily deter- 
mined. This is a problem that has led to the 
development of alternate methods for com- 
puting the matrix R of the similarity trans- 
formation and to the abandonment of the 
least squares adjustment. 

S c h u t ~ ~ e v e l o p e d  a method by which four 
parameters which define the rotation matrix 
can be computed in a very simple way. This 

ABSTRACT: This article investigates three published metlzods in which 
the computation of tlze rotation matrix of a similarity transfornaation 
does not require initial estimates of the parameters. It is found that 
one method, based on the space-time transformation of special rela- 
tivity, gives results that are virtually indistingtlishable from those of 
the minimization of the residuals at the control points by the method 
of least squares. The other two are based on the initial compzitation 
of an afine transformation and in topographic applications of photo- 
grammetry they are fotind to give at best appreciably inferior results. 

In matrix form, the transformation can be 
written as a function of the three component 
transformations: 

Here, x and x' are vectors of coordinates 
(position vectors) before and after transfor- 
mation, respectively, is a scale factor, R is 
an orthogonal matrix which applies the rota- 
tion, and c is a translation vector. 

The computation of the parameters in this 
transformation can be performed by the 
method of least squares. The coordinates be- 
fore transformation are here treated as ob- 
servations or as pseudo-observations, and the 
weighted sum of squares of the residuals at 
the control points is minimized. This least- 
squares adjustment requires estimates of the 

method does not place any restriction on the 
size of the rotation; it requires only that the 
coordinates of three non-collinear points be 
known in the two coordinate systems. The 
method seems to have received less attention 
than it deserves, perhaps because the two 
publications on the method deal only with 
special applications in which an exact fit was 
made at one of the control points. However, 
this is not a limiting feature of the method. 

More recently, Oswal and Balasubraman- 
ian2 and Blaisl have given different methods, 
both based on the initial computation of an 
affine transformation. The orthogonal matrix 
is then derived from the matrix of that trans- 
formation. The second one of these two 
methods requires that the rotation be not 
equal to, and not very close to, a half-turn 
and both require a minimum of four control 
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points. These points must not lie in a plane. 
All three of these methods make a formal 

use of the method of least squares. However, 
they cannot be properly called least-squares 
adjustments because they do not minimize 
the weighted sum of squares of the residuals 
of observations. Schut minimizes the sum of 
squares of closures in certain condition equa- 
tions. Oswal and Blais do not minimize any 
function in their respective derivations of an 
orthogonal matrix from the matrix of an affine 
transformation. Consequently, the results ob- 
tained with these three methods can be ex- 
pected to differ from those obtained by the 
least squares minimization of residuals. No 
information on the possible size of these 
differences has been supplied by the authors. 

The present article serves to compare the 
results that can be obtained with these three 
methods with those of the least squares ad- 
justment. First, a short description of the 
methods is given. Use is made of this op- 
portunity to show that Schut's formulation is 
based directly on the space-time transforma- 
tion of special relativity. Also, three some- 
times less desirable features of the formula- 
tion which served their purpose in the special 
applications have been changed. Oswal's 
method has been given its theoretical basis 
This has provided also a method to improve 
its orthogonalization procedure which is not 
exact. The methods are applied to the con- 
nection of independent models of two strips 
and to the absolute orientations of these 
models. 

Because the results of the least-squares 
adjustment are of basic importance in the 
following, a short account of it must be given 
here first. 

For the purpose of this adjustment, Equa- 
tion l can be written: 

Here, the subscripts 0 and 1 indicate approxi- 
mate values and corrections, respectively. 
Both RI and R, are exactly orthogonal ma- 
trices. 

Correction equations, which are linear with 
respect to A , ,  the parameters of R, ,  and the 
components of c ,  are derived from this equa- 
tion. First, R, is written as the sum of the 
unit matrix and a skew-symmetric matrix: 

Then, products of A, and the parameters of 
R, are ommitted. The equation can now be 
written in the form: 

This vector equation represents three 
scalar correction equations with seven pa- 
rameters. Normal equations are derived from 
these equations in the conventional way and 
are solved for the parameters. 

The normal equations have the following 
interesting feature. If the origin of the un- 
primed system is chosen in the centroid of 
the control points, they fall apart into one 
equation for the scale correction A,, three 
separate equations for the three components 
of c,, and a set of three equations for the 
parameters of R, .  

The equation for the scale correction be- 
comes: 

in which x, = AoRox, w is the vector of re- 
siduals in the second part of Equation 4, the 
dot signifies the scalar product, and 2 in- 
dicates the summation over all control points. 

The three separate equations for the trans- 
lation corrections now specify that the origin 
of the unprimed system shall be transformed 
into the centroid of the control points in 
the primed system. In other words, the 
similarity transformation has the property 
that it transforms the centroid of the control 
points in one system into the centroid in the 
other system. Consequently, one should first 
shift in both systems the origin to the 
centroid. This leaves only the scale factor 
and the rotation matrix to be determined. 

A good approximate value of the scale 
factor can be easily determined, for instance 
from distances in both systems. Good esti- 
mates of the parameters of the rotation 
matrix are often less readily available. 

The elements of an orthogonal matrix can 
be written as rational functions of three or 
four parameters. This formulation is related 
to the Lorentz transformation, the space-time 
transformation of special relativity, and in 
particular to its quaternion formulation. To 
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derive the elements in this form, the qua- 
ternions can be conveniently replaced by 
certain 4 x 4 matrices. 

Let a matrix T be constructed from the 
space coordinates x, y, x and from a fourth 
parameter which shall represent the time as 
follows: 

t - - z  y x  
z t - - x  y T =  - y x t z  

The set of all matrices which can be con- 
structed in this way from four parameters 
form a system called a ring. This means that 
they obey the same rules with respect to 
addition, multiplication, and division as the 
set of all square nonsingular matrices of a 
given order. For instance, sums and products 
of matrices of this system are again matrices 
of the system. 

The Lorentz transformation is effected by 
a matrix D of the ring whose parameters 
a, b, c, and d have the property: 

The determinant of D, which is the square 
of this expression, is unity. The inverse D-* 
equals the transpose DT. 

In photogrammetry, only a space trans- 
formation is of interest. In this special appli- 
cation, the Lorentz transformation becomes a 
space rotation about the origin, the four 
parameters of D become real and the trans- 
formation can be written 

T' = DTDT . 
Because the parameter t is now a constant, 
one can conveniently specify t' = t = 0. 
Also, a change of sign of all four parameters 
of D does not affect the transformation and, 
therefore, one may specify that d shall be 
positive. 

The relations between the transformed co- 
ordinates x', y', z' and the coordinates x, y, 
z can now be found in a simple but laborious 
way by performing the matrix multiplications 
in Equation 8. This gives x' = Rx, where 

d*+a"+b"cz = 1 and d > 0 . 
A more elegant derivation of Equation 9 

is obtained by a generalization of the above 
matrix algebra which has no counterpart in 
quaternion algebra. Let the matrix obtained 
by transposing the fourth row and column of 
D be denoted by D. This matrix can be ob- 
tained from DT by transposing the first three 
columns and rows. The set of matrices con- 
structed in the same way as D forms a sec- 
ond ring. The matrices of this ring commute 
with the matrices of the first ring. 

The matrix D has, by virtue of its con- 
struction, the same fourth column as the 
matrix DT. It follows now from the rules of 
matrix multiplication that the matrices T' = 
DTD* and DDT = DTD have the same 
fourth column. Accordingly, denoting the 
fourth column of T by t ,  the transformation 
of Equation 8 can be written as the vector 
transformation 

t' = DDt = DDt . (10) 

Forming the product DD, one finds that it 
has the matrix R of Equation 9 as the sub- 
matrix in the first three columns and rows. 
The element in the fourth column and row 
is unity, and the remaining six elements are 
zero. From this, Equation 9 follows directly. 

The computation of the parameters of the 
matrix R by a direct procedure is based upon 
the four-dimensional form of the rotation, 
given by Equation 8. Postmultiplying both 
sides of the equation by D, one obtains: 

T'D = DT . 
This equation represents four scalar equa- 
tions which can be obtained by equating the 
elements in the fourth column of the two 
products. Placing all terms in these equations 
in the first part and collecting terms with the 
same parameter, this gives 

Each complete control point gives rise to 
four Equations 12, but these equations are 
not aU independent. The parameters of R 
can be computed from the equations of at 
least three non-collinear points. This can be 
done most conveniently by the method of 
least squares, minimizing the (weighted) sum 
of squares of the closures in these equations. 
A simple algorithm for this computation is 
given by Schut5. 



The special applications of this method 
contained two features, not related to the 
derivation of R, which differ from the cor- 
responding ones in the least-squares adjust- 
ment: 

a. Before computing the rotation matrix, the 
origins of the coordinate systems were 
shifted to one of the control points. 

b. After the translation, the scale factor was 
computed from the mean of the lengths of 
the position vectors of the control points in 
the two systems. 

Because Oswal's and Blais' method use the 
least-squares adjustment for the computation 
of translations and scale, a proper comparison 
of the methods requires that the same be 
done here. 

Further, in the special applications all 
position vectors were reduced to unit length 
before their components were entered in 
Equations 12. This feature was copied from 
an earlier application of the method to the 
calibration of a camera by means of star 
photographs. It is in fact a weighting that 
gives a control point a greater weight the 
closer it lies to the centroid. If a point lies 
very close to the centroid, the adjustment can 
be adversely affected. Instead, each position 
vector in the x,  y, z system must now be 
scaled to the x', y', z' system. 

THE AFFINE TRANSFORMATION 

The affine transformation can be written, 
similar to Equation 1,  as: 

Here, XA is a 3 x3  matrix between whose 
elements no conditions are enforced. The 
factor 1 serves to make A a matrix whose 
determinant eauals unitv. The elements of 
AA and the components of c can be com- 
puted directly from this equation. This re- 
quires the use of at least four complete con- 
trol points. If more points are available, the 
method of least squares can be used. The 
computation breaks down if all control points 
lie in one plane. From the matrix A ob- 
tained in this way, Oswal and Blais derive 
the orthogonal matrix R of Equation 1 .  

Oswal's procedure2 for deriving an ortho- 
gonal matrix from A consists in adding to it 
a matrix of corrections. The correction matrix 
is a function of the closures in the condition 
equations which the elements of A must 
satisfy as the elements of an orthogonal 

matrix. The closures for the rows and those 
for the columns, respectively, can be ar- 
ranged as the elements of symmetric matrices: 

V = AAT - I 
and 

W = A T A - I  . 
Oswal's formulation, of which he does not 

give a derivation, can be derived as follows. 
If the closures are small, all elements of V 
and W are close to zero and increasingly 
higher powers of these matrices will be in- 
creasingly closer to the zero matrix. As a 
result, one can obtain an orthogonal matrix 
from A by multiplying it by a power series 
in V or W with a sufficient number of terms: 

R = ( I  + aV + bVe + . . .)A 
or 

R = A ( [ +  aW + bWZ + ...) . 
If one omits all terms of the second and 

higher degree in V and W and makes use of 
the property that VR = RW, this gives: 

RTR = AT(I+ aV)(l + aV)A 
= ATA(I + aW)(Z + aW) 

- I + ( 1  + 2a)W . 
Therefore, R will here be orthogonal if a = 
-?h and if also the contribution of the 
higher-degree terms is negligible. Thus, 

Oswal employs the second one of these 
formulations. 

It follows that Oswal's procedure is not, 
as is claimed, an exact one. However, where 
necessary, the ortl~ogonalization can be im- 
proved either by the use of the formulation 
in an iterative procedure or by the inclusion 
of the second-degree term in the power series. 
In the latter instance, one has a = -%, b 
= +X. 

Blaisl has given a complete account of his 
derivation of the similarity transformation 
from the affine transformation. He prefers to 
call the transformation a similarity, as is done 
in some textbooks, especially in geometry. 
One cannot summarily reject such an abbre- 
viation, which is in common use for such 
transformations as a rotation and a transla- 
tion. However, he should then be consistent 
and speak also of an affinity and not of an 
affine transformation. 

The derivation of an orthogonal matrix 
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from A is exact and is performed in two 
steps: 

The first step is the essential feature of the 
formulation. I t  is Blais' procedure for deriv- 
ing a skew-symmetric matrix from any matrix 
A. The second step is the conventional for- 
mulation of an orthogonal matrix from a 
skew-symmetric one. If A is already ortho- 
gonal, it recovers this matrix. 

To compare the results obtainable with 
these three methods with those of the mini- 
mization of residuals by least squares, they 
have been incorporated in a Fortran program. 
Double-precision arithmetic (about 15 sig- 
nificant digits) has been used throughout 
the computations. 

Schut's method has been programmed in 
two ways: first, as published earlier but us- 
ing the centroid of the control points as 
center of rotation; second, introducing also 
the other two modifications described in the 
present paper. These two variants will he 
referred to as Schut (1968) and Schut (1972), 
respectively. 

Two variants of Oswal's method have been 
programmed also: one in which the second- 
degree terms in the power series are in- 
cluded also and one in which the method is 
used iteratively. The inclusion of the second- 
degree terms did not improve the results ap- 
preciably. The iterative procedure made the 
results converge toward those of Blais, except 
in instances of extremely large residuals 
Therefore, these two variants need not be 
reported on further. 

The program has been checked with the 
help of transformations of two regular poly- 
hedra: a tetrahedron and a cube, both with 
sides of 10,000 m and using the micrometer 
as unit of measurement. The vertices of these 
bodies have a geometrically ideal spatial dis- 
tribution and, therefore, do not cause a prob- 
lem for Blais' and Oswal's methods. The ro- 
tations used were 120" and 10O0, respec- 
tively. Using exact coordinates, all methods 
leave zero residuals at the vertices. Introduc- 
ing one coordinate error of 100 pm, a11 meth- 
ods leave the same residuals at the vertices. 
The elements of the orthogonal matrix do not 
differ before the 11th decimal place. 

The program has been used in experiments 
with the models of two strips. After inde- 
pendent analytical model triangulation, the 
models were transformed to the respective 

ground control systems and to the adjoining 
models. 

The first strip is line 1 of the block of 
fictitious data prepared in 1971 by the U.S. 
Army Topographic Command for the Work- 
ing Group on Analytic Block Adjustment of 
Commission I11 of the ISP. It contains 19 
models. A wide-angle camera with 152 mm 
focal length is postulated, with a flying height 
of 10,000 m above average terrain. For the 
present experiment, nine measured points 
per photograph were used. These points are 
located near the points of a regular grid, but 
their heights range from 200 to 2,000 m. The 
photograph coordinates which have been 
used were perturbed by random and by 
systematic errors. Each model has been 
oriented using the six available terrain points 
and each model connection has been made 
on the common projection center and the 
three common terrain points. In all these 
transformations, all control points have been 
given equal weight. 

The results obtained with the models of 
this strip are summarized in Tables 1 and 2. 
Table 1 gives root-mean-square values of the 
residuals at model scale for a base of 90 mm. 
Table 2 gives the differences between the 
orthogonal matrices derived by each of the 
three methods and those derived by the least- 
squares minimization of the residuals. These 
differences are expressed as the rotation dif- 
ferences. 

Especially notable is the fact that the use 
of the space-time transformation, with the 
modifications introduced in the present arti- 
cle, produces transformed coordinates which 
are identical with those obtained by the 
least-squares minimization of residuals. The 
rotations computed by these two methods dif- 
fer by less than 0.000,01~ (100 grads equals 
a right angle). 

Oswal's and Blais' methods leave residuals 
after absolute orientation that are several 
times larger than those for the other two 
methods and they leave rotation errors that 
range up to 0.3a. This is true even though 
the height variations are large and six con- 
trol points were used in each orientation. 

In the instance of the model connections, 
Blais' rotations are excessive and bear no 
resemblallce to the actually required rota- 
tions. Oswal never even achieves orthogonali- 
zation to better than one decimal digit. These 
failures are caused by the fact that in each 
instance the projection center and the three 
terrain points-lie close to a plane. 

The second strip is a strip flown in 1966 
at an average height of 450 m above terrain 



TABLE 1. INTERNATIONAL TEST, LINE 1. RMS OF THE RESIDUALS AFTER MODEL 
TRANSFORMATION, IN MICROMETERS AT APPROXIMATELY PHOTOGRAPH SCALE 

Via space-time transformation Via afine transformation 

Schut 1968 
using centroids Schut 1972& Oswal Blab 

Absolute orientations 
smallest RMS 14 pm 13 gm 33 pm 33 pm 

largest RMS 40 40 341 337 
mean RMS 28 27 137 136 

Xlodel connections 
snlallest RMS 12 11 Results not acceptable, 

largest RMS 101 97 see the rotations 
mean RMS 54 52 

" These results are identical with those of minimization of residuals by least squares. 

TABLE 2. INTERNATIONAL TEST, LINE 1. DEVIATION OF ROTATION FROM THAT OF 

LEAST-SQUARES ADJUSTMENT, IN GRADES 

Via space-time transfornzation Via afine transformation 

Schut 1968 
using centroids Schz~t 1972 Oswal 

Absolute orientations 
smallest dev. 0.0023 0.00000044 0.0281" 

largest dev. 0.0169 0.00000616 0.293f 
mean dev. 0.0084 0.00000309 0.122 

Sloclel connections 
smallest dev. 0.0017 0.00000008 Orthogonalization 
largest dev. 0.0112 0.00000872 not achieved 

mean dev. 0.0067 0.00000272 to one dec. digit 

" Orthogonalization achieved to 5 decimal digits only. 
f Orthogonalization achieved to 3 decimal digits only. 

over the Sudbury test area of the  National 
Research Council of Canada. A wide-angle 
camera with a focal length of 152 mm was 
used and the comparator measurements were 
made shortly afterwards. The  13 models con- 
tain from 3 to 6 ground control points located 
in a random pattern and with heights rang- 
ing from 262 to 294 m. For relative orienta- 
tion and model connection, four points were 
chosen in each triple overlap. T w o  of these 
points are located near the principal point 
and they have the largest possible spacing in 
the strip direction. This spacing is about 20 
percent of the spacing of the two wing points. 
Together with the common projection center, 
these points provide the best possible pattern 
for the use of Oswal's and Blais' methods in 
the model connections. 

The results are summarized in Tables 3 
and 4. Again, the use of the space-time trans- 
formation with the introduced modifications 
gives identically the same result as the least- 
squares minimization of residuals and the 
rotations differ less than 0.000,01g. 

Oswal's and Blais' methods give greatly 

Blab 

inferior solutions of the absolute orientation. 
In  four instances where only three control 
points are available and in one instance 
where the four available control points hap- 
pen to lie very close to  a plane, they fail to 
give a solution. Their model connections are 
acceptable, but  are clearly inferior to those 
obtained by the use of the space-time trans- 
formation. 

Oswal proposes to make model connections 
without making use of the common projec- 
tion center. In view of the narrow overlap 
between models, and apart even from the 
above results, it should b e  obvious that this 
cannot produce connections of an acceptable 
accuracy. 

The experiments show that the computa- 
tion of the parameters of a similarity trans- 
formation based on the space-time formula- 
tion of special relativity, as described in the 
present article, gives results that are indis- 
tinguishable from those obtained where the 
parameters are computed by least-squares 
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TABLE 3. SUDBURY, 1:3,000. RMS OF THE RESIDUALS AFTER MODEL TRANSFORMATION 

Via space-time transformation Via @ne transformation 

Schut 1968 
using centroids Schut 1972" Oswal Blais 

Absolute orientations 
smallest RMS 7 r m  4 ~m 37 rm 37 pm 
largest RMS 36 15 418$ 419$ 
mean RMS 15 11 - - 

Model connections 
smallest RMS 15 13  22 22 

largest RMS 88 85 111 111 
mean RMS 43 38 59 59 

* These results are identical with those of minimization of residuals by least squares. 
t Excluding four models with three and one with four control points, where no results or inaccepta- 
ble results were obtained. 

TABLE 4. SUDBURY, 1:3,000. DEVIATION OF ROTATION FROM THAT OF LEAST-SQUARES 
ADJUSTMENT, IN GRADS 

Via space-time transformation Via afine transformation 

Schut 1968 
using centroids Schut 1972 Oswal Blah 

Absolute orientations 
smallest dev. 0.0008 0.00000002 0.0470" 0.0469 

largest dev. 0.0393 0.00000132 0.439$ 0.440$ 
mean dev. 0.0118 0.00000066 - - 

Model connections 
smallest dev. 0.0045 0.00000043 0.0090 7 0.0090 

largest dev. 0.0265 0.00000903 O . 1 O l 0  0.101 
mean dev. 0.0121 0.00000349 0.0448 0.0448 

* Orthogonalization achieved to 5 decimal digits only. 
t Orthogonalization achieved to 6 decimal digits only. 
$ Excluding four models with three and one model with four control points, where no results or in- 
acceptable results were obtained. 

minimization of the residuals a t  the control 
noints. 

If all control points are complete, this com- 
putation has the advantage over the least- 
squares minimization that it  does not require 
initial estimates of the parameters although 
requiring the same minimum number of con- 
trol points. 

The  computation of the parameters from 
an affine transformation gives identical re- 
sults only in the instance of an ideal spatial 
distribution of the control points. Also, it re- 
quires one more control point. 

The  use of this computation in topographic 
applications of photogrammetry is not ad- 
visable. As Table 1 shows, the absolute ori- 
entation of models gives residuals that are 
several times larger than those obtained by 
t h e  least-squares minimization even in the 
illstance of large height differences of the 
control points. As Table 3 shows, even in the  
use of a wide overlap hetween models and 
the hest possil~le spacing of the points in this 

overlap, the residuals are  considerably larger 
than those obtained by  the least-squares mini- 
mization. In  many practical applications the 
distribution of the control points is less ad- 
vantageous to this method and either no solu- 
tion or no satisfactory solution is obtained. 
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