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Interpolation of a 
Function of Many Variables, II 
Two different methods pertain to control distribution for aerial 
triangulation and to the correction of coordinates on reseau photos. 

INTRODUCTION arguments. Clearly cp is designed to de- 

HE PRESENT PAPER is in reply to criti- crease monotonically from its maximum 

Tcisms of a paper by G. value at zero. Applications of Equation 1 

Schut (1970). The background very to the controls themselves gives the set 

briefly is as follows. In 1957, when 1 was n 

much involved in the automation of aero- C, Kj(~(ri j)  = vi 
i = 1  

(2)  
triangulation computations, I made a first at- 
tempt to solve a problem of frequent oc- in which rii is the distance between the 
currence in cartography, photogrammetry, i-th and j-th controls. Note that rii = 0. This 
astrographics, and geodesy, namely, the set can generally be solved for the Kj and 
interpolation of a variable as a function of the interpolation then performed using 
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several arguments where the functional Equation 1. In 1957 I set 
form is unknown and the control is irreg- 
ularly distributed in the arguments. 1 ini- cp ( r )  = 1 - r/u (3) 
tially proposed that this variable v be repre- where is greater than any of he rij and 
!jented as the sum from each tested the method on blocks of height data 
of the controls and thus could be expressed with eight controls. In this form the method in the form ,' was communicated informally to interested 

zj = C, Kicp(ri) (1) German photogrammetrists at the 1958 
i= I Zeiss Photogrammetric Week at Munich 

where n is the number of control points, the (see B. Miiller, 1963). 
Ki are constants characteristic of the con- Before I published the method myself in 
trols, ri is the distance from the point to the 1965, I noted that the use of Equation 3 in- 
i-th control and cp is the attenuation function, troduces discontinuities in the spatial deriv- 
always the same for all controls. Generally atives of 0 at the controls themselves, so I 
the distance r really is the Euclidean dis- substituted the form 
tance (Ax" Aay2 + . . .)'I" but in non-geo- p ( r )  = 1 - r2/u2 
metrical applications it can be any appro- 
priate function of the differences in the in the paper as published. 
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SCHUT'S CRITICISMS OF THE 
DISTANCE METHOD 

Schut (1970), in connection with the allied 
problem of adjusting the planimetry of a 
warped block to external controls, severely 
criticised the distance method. His criti- 
cisms are 

i. the method has no theoretical basis; 
ii, the method does not reduce to linear inter- 

polation of the linear type o = a + bx + 
cy i= . . . if the number of controls exceeds 
the number of arguments by unity; 

iii. the method is precisely singular in the two- 
dimensional case where the four controls 
are at the comers of a square; 

io. the method tends to singularity with ran- 
dom control; 

o. even with a new function p the method is of 
little use. 

Even though some of these criticisms are 
quite correct, they are overstated and I be- 
lieve that they tend to mislead the reader 
as to the usefulness of the distance method. 

I cannot answer the accusation that the 
method has no theoretical basis for the very 
simple reason that no interpolation method 
has such a basis. Either we know the func- 
tional form or we do not. In the latter case 
we must assign it on the basis of efficiency 
and convenience. The fact that second-de- 
gree forms, such as are generally used in 
the one-dimensional case, are more con- 
venient than forms of higher order, and 
more efficient than linear forms, does not 
give them a theoretical basis. 

The criticism concerning linearity has 
some merit but is overstated. In most appli- 
cations v is the residual of a least-squares fit 
to the controls and very often the model is 
linear, so that the v's are then very definitely 
non-linear. If however there is a linear trend 
it is easily disposed of by a preliminary ad- 
jus tmentof thetypev=a+bx+cy+.  . . . 
It should be noted, by the way, that Schut's 
planimetric adjustment (Schut, 1970) does 
not reduce to this form if there are three con- 
trols, although I myself would not criticize 
it on that account. 

The singularity criticisms are correct and 
lead to some useful results both in connec- 
tion with the distance method and Schut's 
own method of planimetric adjustment. In 
the two-dimensional case with the controls 
at the four comers of a square of side s the 
matrix in Equation 2 is singular if 

It is readily verified that the matrix is sin- 

gular for ull values of u if cp is defined as in 
Equation 4. This result, coupled with Schut's 
findings that there is a tendency to singu- 
larity with random control, is a clear indi- 
cation that Equation 4 is not appropriate for 
the purpose. 

SCHUT'S PLANIMETRIC ADJUSTMENT 
Schut (1970) has published a method of 

external adjustment of the planimetry of an 
air-survey block which has considerable 
merit. It is reviewed briefly here for two 
reasons. First it leads directly to a general 
interpolation method; secondly it incorpo- 
rates the extremely useful idea of weights 
which give the representing function an 
osculating character. Schut uses the well- 
known conformal relation 

in which a, /3 and y are complex constants 
whereas z is the complex vector x + i y .  The 
constants in Equation 6 are determined 
afresh at each point at which Ax and Ay are 
required, using the weight wl for each con- 
trol i, where 

and pi is the normalized distance 

As before, a is a distance greater than any 
of the riJ. TWO remarks are apposite here. 
First the form of Equation 7 is surprisingly 
complex. In relation to this it is not surpris- 
ing that Schut does not appear to be entirely 
satisfied with his weight function. Secondly 
I note that Schut has followed my 1965 
paper in normalizing his distances with the 
distance u. I now believe that I made in- 
correct choices for the function cp and was 
thereby forced into a completely wrong 
choice of the normalizing distance. If this 
is so, then Schut followed me into a rather 
important error. This is discussed later. 

INTERPOLATION WITH SECOND-DEGREE 
FUNCTIONS 

Schut's planimetric adjustment depends 
on the use of two strongly conditioned sec- 
ond-degree forms. As such it immediately 
suggests a general interpolation method 
with the free second-degree form 

with arguments x,, x,, . . . x,. The argu- 
ment x, is defined to be always unity. There 
are Hrn + 1) (m + 2) coefficients a,, so for 
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m > 2 the computations rapidly become 
rather expensive. The control demands may 
also become excessive. The method is not 
likely to run into singularity problems but 
approximations to singularity cannot be 
ruled out. For example, in two dimensions, 
the above can be written as 

The typical row of the determinant is 

The determinant vanishes if and only if 
there exists a single set A, B, C, D, E ,  F ,  
such that 

vanishes for all i, that is, for all controls. 
This happens when the controls all fall on 
some conic 

This may be an ellipse, parabola, hyperbola 
or a pair of straight lines. For example, the 
solution fails if the controls fall on two par- 
allel lines and nowhere else. Precise singu- 
larity is unlikely, but unstable solutions 
cannot be ruled out if the control configura- 
tion approximates to a critical case. 

Even with the above drawbacks interpo- 
lation with osculating second-degree forms 
is quite an attractive proposition, because 
the method is usually very successful in 
bridging over awkward gaps in the control. 
In contrast to the above, Schut's planimetric 
adjustment is free of singularity problems. 

The question of weights is deferred to a 
later section. 

The drawbacks of the second-degree- 
function method of interpolation, namely 
rather high computing costs and excessive 
control demands, make it worthwhile to re- 
model the distance method of Equations 1 
and 2 to meet as well as possible the criti- 
cisms of Schut. The trouble evidently lies 
in the forms assigned to p. What are the re- 
quired characteristics of this function? Evi- 
dently, it must be a maximum at zero and 
die away with r increasing. Also it must be  
flat-topped at zero to avoid singularities at 
the controls. It must also be positive for all 
values of r, because any other behavior 
would be quite inappropriate. Evidently p 
cannot be much different from the Gaussian 
function 

p ( r )  = exp ( -c2r2)  

and this is now adopted. The constant c de- 
termines the rate of attenuation and must be 
such that the interpolation is dominated by 
the values at the immediately adjacent con- 
trols. The next ring or shell of controls be- 
yond then should contribute a small fraction 
of c and the next ring beyond these very 
little indeed. The avoidance of singularity 
in the matrix of Equation 2 leads to much 
the same ideas. As the elements on the prin- 
cipal diagonal are all unity, we can be sure 
that singularity will not arise if all the off- 
diagonal elements are all positive and all 
rather small. Thus two lines of reasoning 
point to a fairly small value of p(h) ,  where 
h is the average distunce be tween  adjucent 
controls. This last concept is rather vague, 
but gives no special difficulty in practice. 

It would be possible to stipulate a value 
for c which makes p ( h )  an arbitrary small 
value, but a more interesting approach is 
to try to kill two birds with one stone. TO 
meet Schut's objection to the non-linearity, 
as nearly as the use of Equation 9 allows, 
suppose that cis chosen so that in the case 
of two points only the non-linear interpola- 
tion at a point midway between them is 
precisely equal to the linearly interpolated 
value. Write 0 = exp ( -b2c2)  where b is the 
separation of the two controls, then from 
Equation 1, 

Solving for K t  and K2, 

K ,  = ( v ,  - O v l ) / ( l  - 0'). 

At the midpoint r1 = r, = b/2 ,  the non-linear 
interpolation gives 

Equating this to the linearly interpolated 
value + ( 0 ,  + 0 , )  we get the quartic 

Apart from the non-significant root 0 = +1, 
the only real root of this is 0 = +0.08738. 
This is equivalent to 

p ( r )  = exp (-2.4375r2/b2). (10) 

It is convenient to approximate the constant 
to 2.5. Now we cannot make b equal to all 
the distances between the adjacent controls, 
but we can equate it to the uverage value h.  



Thus the improved distance method makes 
use of 

cp(r) = exp (-2.5r2/h2). 

Note that this does not eliminate the non- 
linearity. It merely ensures in a well-con- 
ditioned network of controls that the non- 
linear interpolation never differs too much 
from the linear interpolation. Is cp(h) ac- 
ceptably small? From the last we have 
cp(h) = 0.082 and cp (2h)  = 0.00005. These 
values seem to be in line with the require- 
ments detailed above, so that Equation 11 
also avoids singularity problems. Thus the 
improved distance method is embodied in 
Equations 1, 2 and 11. A preliminary linear 
adjustment is used if the values at the con- 
trols show a definite trend. The distance 
method is affected by a difficulty not noted 
by Schut, namely that the method is not 
very satisfactory if the distribution of con- 
trols is markedly anisotropic, that is, with 
different intervals in one fixed direction as 
compared to another. This can be elimi- 
nated by a preliminary affine transformation 
of the coordinates or, what comes to the 
same thing, a generalization of the defini- 
tion of distance from the Euclidean d\/CAx2 
to the Riemannian dZg, ,  Axi Axk with con- 
stant gik. 

The discussion of the last section throws 
an interesting light on the problem of nor- 
malizing the distances, either for an attenu- 
ation function cp, or for the calculation of the 
weights in Schut's planimetric adjustment 
and the interpolation method discussed pre- 
viously. It will be remembered that the use 
of the distance (1 in the 1957 and 1965 dis- 
tance method was entailed by a rather poor 
choice of the function cp. The normalizing 
distance had to be larger than the largest 
dimension of the block to prevent negative 
values of cp. There was really no other rea- 
son. Similarly I assume that Schut wished 
his weights to drop to zero at this maximum 
dimension and he followed me mistakenly, 
I now believe, in the use of (1 for this pur- 
pose. It is quite evident from the behavior 
of his rather complex w in Equation 7 that 
he wished his w to approximate to zero long 
before r approached the value (1. 

In the foregoing section I think it becomes 
quite clear that the correct normalizing dis- 
tance is the average spacing of the controls, 
that is, h is the average separation of adja- 
cent controls. This idea is supported by 
appeal to that case in which there is no 

doubt. In the internolation of a function of 
a single variable the intervals between the 
controls enter very strongly into the inter- 
polation formulas. The total range of the 
argument, which is the equivalent of (1, is 
irrelevant and does not come into the dis- 
cussion. As we are dealing with processes 
which are inevitablv arbitrarv to some ex- 
tent, the statement that the use of a is in- 
correct is too strong. However, I think it 
can be said that the use of a is not an opti- 
mum procedure and that normalization with 
h gives better results. 

If the distances are scaled with h it fol- 
lows at once that Equation 7 must be aban- 
doned as it does not behave correctly if p  
exceeds unity. Within the range 0 < p < +l 
Schut's w is a J-shape function dropping 
rapidly from infinity at zero. Its behavior 
suggests a weight function of the type 

Experiments with synthetic two-dimen- 
sional blocks in which the interpolations 
could be demonstrated visually as contours 
soon led to the conclusion that the most 
plausible interpolations resulted from the 
very simple expression 

The vagueness of the definition of h as 
the average separation of adjacent controls 
may bother some. Apparently this is no great 
handicap in practice. This constant h is evi- 
dently related to the control density, but I 
have not taken the time to work out its defi- 
nition from that point of view. 

Figures 1, 2, and 3 show the same block 
interpolated by three methods. Figure 1 
shows the results of visual contouring, that 
is, sketching of contours so as to be con- 
sistent with the values at the controls. In 
practice this is never very different from 
linear interpolation. Figure 2 shows as con- 
tours the same block interpolated by the 
distance method with h = 1.16 in units of 
the sides of the coordinate squares. Notice 
the tendency to isolations at the edges of 
the block. Figure 3 shows the results of 
interpolation with an osculating second- 
degree function with h = 1.16 as before and 
w = P - ~ .  Clearly this third method is supe- 
rior in its results. 

It may be inquired whether the new 
weights are so very different from the old. 
This is best seen by expressing them in 
terms of the same parameters. If p  is taken 
to mean rlh only and m = alh, then Schut's 
weight is 
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FIG. 1. Contours interpolated by eye for a typical block with 12 controls in the 
two-dimensional case. 

(m-p ) (m2-p )  SUMMARY AND CONCLUSIONS 
w , = -  ] (I4) The paper presents two very different ( m - l ) ( m 2 - 1 )  

' 

methods of interpolating a function of sev- 
This has a rough resemblance to the new eral variables with irregular control. The 
weight p-2 if m is small (say m G 2), but first, depending on the use of Equations 1, 
the similarity decreases very rapidly as m 2 and 11, is generally the less expensive 
increases. and demanding in relation to control. It 

FIG. 2. Contour representation of interpolation using u = ZKp(r) for the case 
illustrated in Figure 1. 



FIG. 3. Contour representation of interpolation using an osculating second-degree 
function for the case illustrated in Figure 1. 
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