
DR.  KAM W. WONG* 
University o f  Illinois 

Urhunu, Illinois 61801 
G E R A L D  M .  ELPHINGSTONE 

DMA Aerospace Center 
St .  Louis, Missouri 631 18 

Recursive Partitioning by 
Direct Random Access 

The combination of random access and the recursive algorithm yields 
the best approach for the solution of normal equations in block 
aerotriangulation. 

A HIGHLY efficient computer subprogram, code named FILE, was successfully 
developed for solving large systems of normal equations in simultaneous 

block aerotriangulation. It was designed to minimize computer core-storage re- 
quirement and to maximize computational speed. A recursive partitioning algo- 
rithm was used to take full advantage of the positive definite, banded, symmetric 
properties of the coefficient matrix of the normal equations. In addition, a direct 
random-access technique was used for data storage and retrieval. 

ABSTRACT: A highly efficient comprlter szcbprogra7n in Fortrun IV lon- 
guclge t ~ u s  developed for ,solving large systenis of r~orn~u l  ec/uutions. It iri- 
colporated the recursive purtitiorling algorithnl tui t l~ the  direct access 110 
tecli7iic/tte whicA provided the cc~pubility o f  directly r~ccessir~g individucll 
dutc~ records. The  s~rbl)rogrclnl zl;ci.s tested in (i computer progrc~m culled 
SAPGO f i ~ r  the s i n ~ u l t u ~ ~ e o u s  solutiorl of l1lzotogrcin~7netric block. For u 
block of 4 X 45 photos, the totcll CPW tinle fi)r one conrjdete iteration on  
the I B M  systeni 360175 2 ~ 1 s  f u u ~ ~ d  to be  5 nl inute ,~  u11d 8 secorid.~. Tlae CPU 
time for the solut io~l  ($the 1080 r~ornzul ec/tratio~i,s c~lotie t~c l s  only 1 nlin- 
ute und 53 secotds.  

The recursive partitioning algorithm is a simple variation of the fundamental 
Gauss elimination method of solving simultaneous equations. It recognizes the 
fact that the zero elements located outside of a diagonal band in a band matrix 
remain zero throughout the elimination process, and thus an algorithm can be 
developed to operate strictly within the non-zero band. The computational advan- 
tage of such an algorithm was reported by Stock (1956) and Rutishauser (1958). 
Tezcan (de Jong and Tezcan, 1965) successfully developed a computer subpro- 
gram for such an algorithm in which five tape units were used for auxiliary stor- 
age. Snowden (1966) investigated the relative efficiency between a partitioning 
algorithm and the direct bordering technique for general symmetric normal equa- 
tions. Brown (1968) and Elassal (1969) have both reported the use of a partition 
algorithm in photogrammetric block aerotriangulation. 

* Presented at the Annual Convention of the American Society of Photogrammetry in Washington, 
D.C., March 1972, under the title "An Efficient Computer Technique for Recursive Partitioning." 
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A listing of the subprogram developed by Snowden (1966) has been published. 
Unfortunately, this subprogram also uses five tape units as auxiliary storage de- 
vice, causing inefficiency in the storing and retrieving of data. 

In the subprogram FILE to be described in this paper, the capability of the third- 
generation computers for direct, random access to data files in disk storage is uti- 
lized further to increase the computational speed and efficiency. This technique 
eliminates the necessity of backspacing records and therefore decreases the total 
time required for building and solving a set of equations. 

Subprogram FILE was developed as an equation solver for an advanced com- 
puter aerotriangulation program called SAPGO (Wong and Elphingstone; 1971). 
This program has the unique capability of incorporating independent geodetic 
measurements such as horizontal angles and distances in a simultaneous solution 
of photogrammetric blocks. The computing efficiency of FILE was tested in a 
SAPGO program using fictitious data and the test results will be reported in this 
paper. 

Consider a system of n normal equations represented in matrix notation as 

where S is a symmetric band matrix with a bandwidth p,  X is a matrix of the un- 
known parameters, and C is a matrix of constants. 

This system of equations may be partitioned as shown in Figure 1. The parti- 
tion is such that SI1 is a square matrix with a dimension of q x q. The dimension 
y must be chosen so that (n - p )  is divisable by y. Furthermore, S,, must have a 
dimension of p  x p and S13 must be a null matrix. 

This partition breaks up Equation 1 into the following three equations: 

Sl1Xl + Sl,X, + OX, = C1 

S1ZTX1 + s22x2 + s23X3 = c2 

OX1 + S23TX2 + S3,X3 = C3. 

Solving Equation 2 for X1 yields 

Substituting this expression into Equations 3 and 4 yields 

FIG. 1. Partition of normal equations. 



where 
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Equations 6 and 7 now consist of ( n  - q )  equations and ( n  - q )  unknowns, and 
can be conveniently represented as 

in which the superscript denotes the number of times the original set of equations 
in Equation 1  has been partitioned, or the number of sets of q equations that have 
been eliminated. 

At stage 2, Equation 10 is partitioned and reduced to ( n  - 24)  equations in ex- 
actly the same manner. This partitioning process is repeated successively until 
only 11 equations remain; i.e. 

S m  Xn" Cnl. 
( P , P )  ( P . 1 )  ( p . 1 )  

(11) 

This is accomplished after m stages where m = (n  - p) /q .  
Stages 1 to m in the above partitioning process is identically equivalent to the 

foreward solution of the standard elimination ~rocedure .  The backward solution 
is initiated by solving Equation 11; i.e., 

Equation 5 can now be used successively in backward substitution to solve for 
one set of y unknowns at each stage. In the first backward stage, the solution can 
be represented as follows: 

It will also require i n  stages to complete the entire solution. 
During the backward solution, instead of solving directly for the unknowns, 

the banded portion of the inverse matrix S - I  can be computed. Let the inverse 
matrix of the reduced matrix Si at the i-th stage be denoted as follows 

The submatrices Dl,  and Dl ,  can be computed by the recursive equations 

These expressions are used recursively during each backward stage, adding q  
rows to the inverse during each stage. 

This algorithm can be easily extended to compute the entire inverse matrix S-'. 
However, as the inverse is used ~ r i m a r i l ~  for error analysis, interest is centered 
primarily on the elements bordering the diagonal. By not computing the elements 
outside of the diagonal band, large savings in both storage space and computer 
time can be achieved without sacrificing any computational accuracy. 

Due to the limited capacity of the core memory of present day computers, the 
solution of large systems of equations require the use of auxiliary storage devices 
such as tapes, disks or drums. The major programming problems therefore are: 
(1) minimizing the time required to transfer the data to and from the auxiliary 
storage device and (2) keeping record of the exact location of each data set. 
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Third-generation computers offer random access routines that partition disk 
storage into directly addressable records. Each record of disk storage may be 
accessed in a random fashion in the Fortran program. The  IBM 360175 computer 
at  the University of Illinois at  Urbana-Champaign uses a Fortran compiler which 
allows random access to disk storage in the following manner: 

(1) An erectctiue cotttrol card to  reserve a block ($disk sp(1c.e. For example, the follow- 
ing statement reserves 500 records containing 2904 bytes each and the third and fourth 
digits in the sequence number FTOlFOOl indicates that this data set is numbered "01"- 

IIGO.FT01F001 DD UNIT=DISK,SPACE=(2904,(500,1)),DISP=(NEW,PASS). 
(2) A Fortran statement to  set u p  the disk storage i r ~  Fortrun con~pilatioil.  For example, 
the following statement set up the storage space reserved in the above statement- 

DEFINE FILE l(500,726,U,Nl). 
The number 726 indicates the number of words in each record (1 word = 4 bytes); the 
variable U indicates that read or write from this data set is always without format control; 
and N1 is an index variable. 
(3) Datu are written into disk storage by a WRITE staterrlent. The following statement 
writes the first q equations into record No. 12 of disk No. 1- 

WRITE(l"l2)((S(I, J), J=l,P),C(I),I=l,Q). 
(4) Data are read from disk storuge and put into core by (I READ statenlent. The follow- 
ing statement reads the above set of equations from disk storage- 

READ(l"l2)((S(I, J), J=l,P),C(I),I= 1,Q). 

The  data management algorithm for FILE was based on the following character- 
istics of the recursive partitioning method: 

(1) The coefficient matrix S of the normal equations is symmetric, and hence only the 
upper or lower triangular portion needs to be stored or computed; 
(2) At any stage of the recursive process only matrices S,,, S,,, C, and C, need to be in 
core storage; and 
(3) The basic partition of the matrix S is the same at each stage. 

Consider in particular a system of normal equations represented as 

Before subprogram FILE can be called to solve this set of equations, the latter 
must be  stored into disk in a specified manner. Figure 2 shows how the matrices 
A and U must be partitioned, and Figure 3 shows how the submatrices in the upper 

FIG. 2. Partition of normal equations for file 
storage. 

Record 1 

Record 2 

Record i -1 

Record k -1 
FIG. 3. Contents of data-set records at begin- 

ning of solution. 
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B X i C  

FIG. 4. Collapsed submatrices in core memory. FIG. 5. Contents of data-set records after the 
forward solution. 

triangular portion must be stored into their respective records in the data file. In 
this manner, the address of any set of y equations can be easily determined. 

When subprogram FILE is called, the first (p  + q)  equations, which are stored 
in the first [1 + (plq)] records, are read into the computer core memory. These 
equations are stored in core as the working S and C matrices in the collapsed form 
shown in Figure 4. During the first stage of partitioning, the matrices Sll-', S22 
and C, are computed according to Equations 8 and 9. The submatrix St,-', which 
is actually A,,-', is then put back to disk storage in record No. 1 together with sub- 
matrices S12 (which is A,,) and U ,  (which is C,). In turn, a new set of y equations 
are brought in from record No. (p/q + 2). This procedure is repeated for (n - p)/q 
times to complete the foreward solution. Figure 5 illustrates the contents of the 
disk records at the end of the foreward solution. 

In the backward solution, if a direct solution is being computed, the solution 
matrix X is partitioned according to Figure 2 and the submatrices are stored in 
the locations of the corresponding Ui matrices. If the inverse D of the coefficient 
matrix A is being computed, the inverse matrix D is partitioned as shown in Fig- 
ure 6(a) and the submatrices lying within the diagonal band are computed and 
stored in the disk records as shown in Figure 6(b). 

a) Partition b) Storage 

FIG. 6. Partition and storage of inverse matrix. 



OPERATION COUNT 
The computing time required to solve a system of normal equations depends 

largely on the number of division and multiplication operations and on the num- 
ber of inputloutput requests to the auxiliary storage device. The number of divi- 
sions and multiplications required by subprogram FILE to solve a system of n 
normal equations having a bandwidth p is estimated to be as follows: 

(1) Foreward solution - 

where 

(2) Solution of the p equations by Cholesky's square root method during the last stage 
of the foreward solution- 

N,  = t P 3  + + p 2  + + p  + p square roots. 

(3) Backward substitution for a direct solution: 

Thus, the total number N of operations is estimated by the following expression: 

N = m(6p2 + 48p - 252) + Qp3 + #p2 + $ p  + p square roots 

For q = 6 ,  

N = 40n + (8n - 40)p  + ( n  - 6 ) p 2  - 3p3 + p square roots. 

Correspondingly, to solve the same system of normal equations, Cholesky's square 
root method requires 

(+n3 + #n2 + $ n  + n square roots) 

operations and a Gauss elimination will require 

operations. 
If p approaches n, the number of operations in the recursive partitioning method 

becomes greater than both the Cholesky and Gauss methods. Therefore, this 
method and subprogram FILE is not recommended for small block where p ap- 
proaches n. 

Another subprogram based on the bordering method of solving normal equations 

TABLE 1. RECORDED COMPUTING TIME FOR RECURSNE ALGORITHM 

No. of Equations 648 648 648 1080 

Block Dimension 

Bandwidth 

No. of Operations 
(1 x lo6) 

Total CPU Time for one 
Complete Iteration of 
Photogrammetric Solution 

CPU Time for Solution 
of Normal Equations 

" By estimation 
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TABLE 2. ESTIMATED CPU TIME FOR LARGE SYSTEMS OF EQUATIONS 

No, of Equations 1080 1080 1728 1728 1728 

Block Dimension 

Bandwidth 

No. of Operations 
(1 x lo6) 

Total CPU Time for one 
Complete Iteration of 
Photogrammetric Solution 

CPU Time for Solution 
of Normal Equations 

was developed for use in small blocks. This subprogram has been incorporated 
into a special version of SAPGO which requires no auxiliary storage devices and 
which can solve a block of up to 40 photos in a computer core capacity of 300 K. 

TEST RESULTS 
Four test cases were conducted on an IBM System 360175 computer to deter- 

mine the CPU time required to form and solve large systems of equations using 
random access programming techniques and the recursive algorithm. The tests 
were conducted with subprogram FILE operating inside a SAPGO program. The 
CPU time for the recursive algorithm alone was recorded for only two cases. How- 
ever, the total CPU time required for one complete iteration of a photogrammetric 
block solution was recorded for all four cases. The latter total CPU time included 
the sorting of the measured data (image coordinates as well as control data), load- 
ing data records, forming the normal equations, solving the normal equations, com- 
puting the corrections to the pass points, updating all the unknowns and printing 
the final results. 

The test cases and their results are tabulated in Table 1. The recorded CPU 
time has a standard deviation of 10 per cent. 

Table 2 shows the estimated CPU time for cases involving larger bandwidths 
and larger blocks of photos. Table 3 shows for comparison the number of mathe- 
matical operations required by the Cholesky and Gauss methods for solving the 
photo blocks included in Tables 1 and 2. The number of operations does not vary 
with the bandwidth for these two methods. It is obvious from Table 3 that both 
of these methods are far inferior to the recursive partitioning methods for large 
systems of equations. 

TABLE 3. OPERATION COUNTS FOR CHOLESKY 
AND GAUSS METHODS 

No. of Operutions 
(in millions) 

No. of Equations Cholesky Gauss 
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CONCLUSIONS 
The direct random-access technique for the storage and retrieval of data are 

ideally suited for the recursive partitioning algorithm. The combination of ran- 
dom access and the recursive algorithm yields the best approach for the solution 
of normal equations in photogrammetric block aerotriangulation. 

Direct random-access storage is being used in other parts of the SAPGO program 
besides subprogram FILE. The efficiency of the complete SAPGO program is evi- 
dent from the total CPU time recorded in Table 1. 

A version of Subprogram FILE has also been developed for use on a UNIVAC 

1108. The random-access-to-disk storage is handled differently in this computer, 
but only minor modifications were needed in the subprogram. 

The work reported in this paper was part of a research project supported by the 
U.S. Army Research Office-Durham and conducted at the University of Illinois. 
Mr. Elphingstone worked on this project as a research assistant when he was a 
graduate student at the University. 
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Comments on "Stereoscopy-A 
More General Theory" 

M R. GEORGE L. LAPRADE'S "More Gen- 
eral Theory of Stereoscopy" has two 

distinct characteristics. Firstly, it tries to rec- 
oncile two basic schools of thought, namely 
the projectionists with the fixationists. 
Secondly, it makes an interesting effort to 
replace the conventional variables of stereo- 
scopy with a set of abstract ones, namely the 
angles a, [ and y. But, at the end it comes to 
express the vertical exaggeration as a func- 
tion of the base-to-height ratio and to approx- 
imate it by the value 

To that extend the more general theory of 
stereoscopy comes to support Jackson's 
approximate expression', who proposed the 
relation q = 4 ( B / H )  in 1959. Furthermore, it 
presents one of the very rare experimental 
efforts in this field and, unquestionably, the 
most interesting one. 

Still the fact remains that, to continue the 
search for a mathematical expression that 
will give a quantitative measure of what is 
called (although it does not exist) vertical 
exaggeration is a Quixotic effort. Because 

(Continued on page 282) 


