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New Math Model for 
Independent-Model Triangulation 
Applying the collinearity principle, the system may be used as a 
substitute for fully analytical aerial triangulation. 

RIANGULATION by independent models is T based on forming strips by joining inde- 
pendent models in planimetry,4,gJo or by 
spatial transforrnation,l3J8,19 or by p e r f m -  
ing the adjustment of relative orientation 
based on recorded y-parallaxes in the strip 
formation.1 In the adjustment phase, stand- 
ard polynomial procedures are used in these 
methods. The polynomial adjustment proce- 
dures suffer from several shortcornings.l,2J5 
The mathematical model in this paper is 
based on utilizing two collinearity equations. 
The first one involves the model point, per- 
spective center of the stereoplotter and the 
image point. The second one involves the 
object point on the ground, the exposure sta- 
tion and the image point. 

I t  is believed that the use of this model 
should overcome the shortcoming of the 
polynomial adjustment. Also it will avoid: 

The problem in the scale determination 
which arises in the seven-parameters An- 
block method.2728 
The problem of assigning four parameters 
for planimetry and three others for height 
in the procedure described by v. d. Hout.10 
The problem of non-rigorous determination 
of the scale factor and the three shift oa- 

collinearity equation involving the terrain 
point, the exposure station and the image 
point. The image point coordinates are ob- 
tained using another collinearity equation in- 
volving the model point, the perspective cen- 
ter of the stereoplotter and the image point. 
Thus the mathematical formulation for an 
image point i in photo k transformed from 
model i is f 

where 

rameters (which are determined not accord- THE DERIVED OBSERVATIONS 
ing to the least squares method) shown by 
Schut.18 The derived observations are the image co- 

At the same time, as shown in the paper, ordinates calculated using Formula 1 (for 

the suggested model provides complete sta- the left and right photos of a given stereo- 

tistical analyses for the observations and the model after performing a relative orienta- 

parameters involved in the solution of this tion) in the form: 

model. 

DERIVATION OF THE MATHEMATICAL MODEL 

The mathematical model is based on the r wM1li  
* Presented at the 12th International Congress (1B) 

of Photogrammetry, Commission 111, July-August 
1972, Ottawa, Canada. 

1 For mathematical notations-see Appendix. For above calculation, U'O, V'O, W'O and 



ABSTRACT: A  new mathematical model for independent-model aerial 
triangulation is based on  the collinearity principle. The  validity o f  
the model was assured using various sets o f  test data. The  stereo- 
models are first relatively oriented; then the model coordinates are 
observed, and transformed to the image plane. These transfomed 
coordinates are used as observations together with exposure station 
unknowns and the pass-point coordinates as parameters in  a simul- 
taneous least-squares solution. This mathematical model was searched 
for b y  using different geometrical approaches and various statistical 
models. The  approaches to the geometrical models are based on the 
collinearity equation, conditions between unknown parameters for the 
exposure stations, and conditions between the transformed image co- 
ordinates. A  suitable geometrical model was chosen from a compara- 
tive test of these approaches, using the collinearity equation as a 
basic equation in  the adjustment. This model gives the best agree- 
ment between the observations and the parameters in  the solution, 
uses a half-photograph as a basic unit in  a simultaneous least-squares 
solution, and assigns for each basic unit three rotation parameters. 
The  choice of the statistical model for this geometrical model is ob- 
tained b y  using different weight coefficient matrices for the trans- 
formed image coordinates as observations to obtain the best agree- 
ment between these observations and the parameters in  the solution. 
For the specific statistical model that satisfies this condition, i t  is 
found that the transformed image coordinates can be treated as un- 
correlated observations with equal weights. Inasmuch as the mathe- 
matical model was used for the first time in a simultaneous adjustment, 
the results were checked b y  statistical and geometrical analyses. 
Furthermore, the mathematical model is used i n  a comparbon study 
with the existing analytical systems, using various test data on differ- 
ent stereoplotters and on one stereocomparator. From the results of 
these tests, it is concluded that: (1) independent-model aerial tri- 
angulation may b e  used as a substitute for analytical aerial triangula- 
tion; (2) the formulation of the adjustment of aerial triangulation must 
include the collinearity equation; and (3) mathematical correlation be- 
tween the image coordinates may be  neglected. 

U"o, V V o ,  W V o ,  and the orthogonal matrices 
A',,AU, should be used. 

ADJUSTMENT PHASE 

For any simultaneous adjustment using the 
image coordinates as observations, the mathe- 
matical model is 

Linearizing Equation 2 leads to a linear 
observation equation having the form: 

To find the values of XI,  X, and V of 
Equation 3 by the least-squares method, 
one needs the matrices (1) W, A,, A, and 
(2) 0,. 

Calculation of W,  A,, A,. Calculation of 
these matrices depends on the initial values 
for the parameters in the solution ( X I o ,  X,").  
Calculation of X I o  is accomplished using 

polynomial strip adjustment after strip for- 
mation is done using spatial transformation. 
For the calculation of X,O, space resection 
is performed either considering every whole 
photo or only half of it. 

The Whole-Photo Case. The mathematical 
model in this case consists of Equations 2 
and 3 in the form: 

where 

In the space resection, the derived image 
coordinates Y,  and Y ,  are used as observa- 
tions. Because the resection in photogram- 
metry consists of the determination of the 
six orientation parameters (a, v, K, UE, VE,  
WE) from the positions of three or more im- 
age and object points, the values of X I 0 ,  Y,b 



where 
W ,  = F(Y,b ,  X,O). (5'3 

Similarly for the right photo of model i, 
F(Y,a, X,a) = 0 (6A) 

and 
V ,  = A ,  X ,  + W ,  = 0 (6B) 

where 
W ,  = F(YSb, X,o). ( 6 c )  

Calculation of Q,. Because Y ,  and Y ,  
are calculated using Formulas 1 and 2, and 
are functions of the original variables (the 
model coordinates M and the relative orien- 
tation elements X , ) ,  then these formulas 
have to be linearized with respect to M and 
X,. Furthermore, to study the radial weigh- 
ing proposed by Hallert,g and the effect of 
X ,  on Q,, the following assumptions have 
been made. 

PERSPECTIVE CENTER 

FIG. 1. Convergence condition. 

and Y , b  are used for this purpose. The out- 
come of this phase is W ,  A ,  and A,, needed 
for the final least-squares adjustment of 
Equation 3. 

The Half-Photo Case. A half-photo as a 
unit in space resection is treated because it 
is needed for mathematical model D (which 
is indicated later). The resection is performed 
by using either Y , b  or Y , b  as observations for 
solving X,O, which constitutes six parameters 
for each half-photograph. The mathematical 
formulation is : 

For the left photo of model j ,  

where 

0,,2 = c o p  + u,,z. 

(b) Linearizing, Formulas 1A and 1B are: 

Y ,  = B,*A M +G,*A X,.  

(c) Applying error propagation to formulas 
8A and 8B, one gets: 

and 

S tev Determination of the Persvective Center Relative Orientation Parameters 

Observation Projected grid points in X, Y plan Y-parallax in the model measured 
with w 

Number of 
Points 
Statistical 
Model 
Estimate 
Required for 
Geometrical 
Model 
Output 

Equal weight and no correlation Equal weight and no correlation 

Approximate values for 
UO, Vo, W O ,  a07 Vo, 
Linear form of the collinearity 
equation 
Initial values for the zero setting of 
the instrument and the perspective 
center coordinates 
11, 15 
No iteration is necessary ( 15) 

Approximate values for 
K', Kt', p', v'', a'' 

Linear fonn of the coplanarity equation 

The model coordinates, the relative 
orientation parameters and their 
estimated variance-covariance matrix 
5, 15 
Iterative procedure, the change is done 
only for the vector of misclosure 

References 
Remarks 



TABLE 2. CASES OF Qy 

Case Equation used for Q, and Q, Q,, C, c2 c3 K 

1 9A, 9B 9C 4.1 0.017 0.000567 ~ P Y / ~ O  

2 9A. 9B - 4.1 0.017 0.000567 1 
Qyi = B1 QM Bit 

3 Qx-I: = B2 QM Bzt 
4 Diagonal term of Case 3 
5 Qy = Q,, 11A 
6 Qy = Q ,  11A 
7 Ov = Unit Matrix 

(d) Q, can be obtained by utilizing the well 
known numerical procedure for relative orien- 
tation as shown in Table 1. 
(e) To obtain Q,, a space intersection can 
be used between the image and model co- 

I ordinates: 
I 

QM = (Bt Qr-I B) 
where 

QI = (1/uo2KS2) 
and 

S = C ,  - Cgr +Cpr 2 
(11B) 

C , ,  C ,  and C ,  are chosen according to 
Hallerts or similar assumptions; and they are 
introduced to take into account the radial 
weighing for the image coordinates. Their 
values are listed in Table 2. 
(f) The previous assumptions have been 
made in various adjustment tests for deriv- 
ing different patterns for Q,; and they are 
used as weight coefficient matrices in the 
least-squares solution for Equation 3. These 
assumptions are described briefly in Table 
2. The main idea for these choices is to 
prove that: 

1. It is not necessary to calculate Q, and QM 
for the least-squares solution of the sug- 
gested mathematical model. 

2. The transformed image coordinates (Y, 
and Y,), derived from the model coordi- 
nates after performing relative orientation, 
are mathematically uncorrelated. This proof 
is shown later. 

In order to check the mathematical der- 
ivations, some instrumental work was con- 
ducted on two stereoplotters (A8 and Kern 
PG2) and on one stereocomparator (STK1). 
The test data of this experiment are given 
in Table 3. Test number 1 was performed 
first to check the mathematical derivations 
given in the first section, and it was con- 
ducted in the following steps. 

(a)  Determination of the coordinates of 
the perspective center and the relative orien- 
tation parameters as shown in Table 1. The 
outcome of this stage is: 

1. U'o, V'o, W'o and Ut'o, V"o, W"o 
2. a,, = 4.23 pm 

3. XR, QR and OPY 

4. U,, V ,  and W,. 

(b)  Using Equations 1A and 1B to obtain 
Y,  and Y,. 

(c) Determination of X,O by polynomial 
adjustment (Carlin25) after strip formation. 

(d )  Calculation of different Q, as out- 
lined in Table 2. 

( e )  A simultaneous least-squares adjust- 
ment for Equation 2 using geometrical Ap- 
proaches A,C,D,E and F (as shown in the 
next section). 

The other test data are used when the sug- 
gested mathematical model (Approach D )  
is compared with other analytical systems 
in practice (as shown in a later section). 

TABLE 3. TEST DATA 

Test Shediac Area New Brunswick Swiss Test Block 

Type of Photography Wide Angle Super Wide Angle 
Scale 1/16,000 1/63,000 - 1/78,000 
Principal Distance 152.07 mm 88.24 mm 
Format 230 X 230 mm 230 X 230 mm 
Number of Strips 1 2 
Number of Models 6 8 
Instrument Used Wild A-8 K-PG2, STKl 
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TABLE 4A. THE GEOMETRICAL APPROACH USED 

Basic Unit 
Approach X, Geometry of Adjustment 

A 6 F(La, X,a, Xza) = o (2A) Photo 
C 8 F(La, Xla, X2a) = o ( 2 c )  Photo 
D 9 F(La, Xta, X,a) = o ( 2 D )  
E 

Half Photo 
9 F(La, X,a, X2a) = o (2E)  Half Photo 

F ( X,,a = 0 
F 9 F(La, Xla, X,a) = o ( 2 F )  

- 
Half Photo 

- 0 
- - 

CHOICE OF THE BEST PARAMETERS * The solutions of these geometrical ap- 

Different approaches to various geomet- proaches by a least-squares method are 

rical were tested; they are listed in treated and developed by Maarek,15 follow- 

Table 4A. The following are remarks on these ing the principles given in References 20, 17, 
approaches. 24, 3. * Approaches A, C and D are based on * The orientation parameters repre- 

E~~~~~~~ 2, the difference is the number of sent the six exterior orientations per photo in 

X2 per photo. case of Approach A, the six exterior orienta- * Approach used Equation and the tions per photo and two shift components for 

condition between unknown parameters X,, the inner orientation per photo for Approach 

which implied that the orientation elements C, and the nine orientation elements for Ap- 
for the left and right halves of photo K proaches D, and F are three 
should be equal. This condition makes Ap- tion Parameters for each photo ( X t ~ )  and 

proach E identical with Approach A. three rotational parameters (X,,) for each 

* Approach F also used Equation 2 to- half-photo) . (Discussion of the latter point 

gether with the condition between observa- is given next.) 

tions (Y,, Y2), which implied that the space 
mCESSIn OF INTRODUCING ADDITIONAL 

angle between any two identical pass points 
THREE ROTATIONAL ELEMENTS 

and the perspective center should equal zero, 
as shown in Figure 1, This condition .Jccurs The necessity of introducing three rota- 
for a particular pass point in the triple lap tional parameters while keeping the transla- 
area between two adjacent models. This con- tion elements the same is justified by the 
dition is already implied in Approach D following items. 
(and Equation 2) for the reason that in Ap- . The fact that the transformed image 
proach D the collinearity condition is used coordinates Y,b and Y,b (which are calculated 
for both rays specified in F. Hence, this con- by Equations 1A and 1B) for a particular 
ditian is not an independent condition and it intermediate photo in a certain strip come 
follows that geometrical models F and D from different relatively oriented models. 
should be identical. Y,b and Y,b are already rotated by the 

TABLE 4B. APPROXIMATE PARAMETERS FOR X,. 

xOeT (in ft.). xoZR Grads 
Photo UOE vOE W O E  W O E  'POE K O ~  



angular parameters of the relative orientation 
X R .  

1 The positions of these Y,b and Y,b are 
not related to a fixed coordinate system as in 
the case of a normal analytical triangulation 
measured on a monocomparator. 

A study of the values of XS0,  after space 
resection using the half-photo (Table 4B) ,  
shows that the differences between the trans- 
lation elements for the right and the left 
photo do not exceed 2.5 feet (deviation 
from the mean). This is in the order of 30 
P m  at image scale, and in the order of the 
standard deviations of the perspective center 
of the stereoplotter. Furthermore, the vec- 
tor of misclosure W in Equation 3 is always 
calculated by returning to the original Equa- 
tion 2. Thus it is only necessary to introduce 
X , ,  as three parameters per photo. 
1 On the other hand, from the same Table 

4B, the range of change between the sets of 
XoLR for the right and the left halves of the 
photos has reached the value of one grad. 
Thus, it is essential to introduce three rota- 
tional parameters for each half-photo. It is 
very essential to introduce this change be- 
cause it does not correspond with the change 
(which does not exceed 0.0005 grad) of the 
rotational elements of the perspective center 
of the projectors of the stereoplotter. 

proaches using different Q, (Table 2), were 
conducted to clarify two points: (1) the 
necessity of introducing three rotational pa- 
rameters for each half of photo, and the best 
geometrical approach, and (2)  the choice 
of weight coefficient matrix for the sug- 
gested model. 

With respect to the first point, the results 
obtained are listed in Table 4C. From these 
results, it is obvious that the unbiased geo- 
metrical model corresponds to Approach D 
because its estimated variance of unit weight 
8,2 is the smallest. 

To study the second point, the different 
weight coefficients given in Table 2 are used, 
and the results obtained are shown in Table 
5. Comparing the estimated variance %,2 of 
unit weight of each case with each other, 
and checking %,2 of each case with the tabu- 
lated value of the Fisher test, it is found that 
the unbiased 8,2 corresponds with the sta- 
tistical model Case 7 (Table 5 ) .  This leads 
to the conclusion that the transformed image 
coordinates behave as uncorrelated observa- 
tions and with equal weights. 

Statistical tests have been applied for test- 
ing the behaviour of V and it is found that 
the following characteristics are valid. 

THE CHOICE OF THE SUGGESTED MODEL A With respect to the estimated mean of 
Analyses of the different geometrical ap- V(U); it is found that U is an unbiased esti- 

mate by checking it against the theoretical 
TABLE 4C. RESULTS OF USING THE mean U ,  ( U ,  equals zero). The statistical 

GEOMETRICAL APPROACHES test used in this case is the normal distribu- 

Statistical 
Approach Case 

A 7 
A 2 

tion test. 
A With respect to the shape and the 

density of V", V was plotted in histogram 
and it was found that it belongs to normal 
distribution with modulated structure Ro- 
manowski.22,23 The statistical test applied in 
this case was x2-test. 
A The number of rejected observations 

were found as listed in Table 6. 

TABLE 5. CHOICE OF THE WEIGHT COEFFICIENT MATRIX 

zv zvs a02 
Statistical Case mm X 10-2 mm2 X 10-3 ,urn2 Remarks 

1 8.89 0.139 349.62 
2 8.60 0.130 349.62 
3 8.52 0.127 349.62 
4 8.52 0.127 349.62 
5 -1.65 -0.234 314.15 
6 8.21 0.222 290.64 
7 -0.079 -0.687 150.36 
7' -0.095 -0.224 82.23 

" See also "Modulated Normal Distribution and Photogrammetric Measurements," by the author, 
PHOTOCRAMMETRIC ENGINEERING, 39: 8, 1973. 



TABLE 6. NUMBER OF REJECTED OBSERVATIONS 

No. of Rejected 
Test Observations Observations 

Grid Measurement 630 2 
Test 1 304 6 
Test 2 406 8 

These rejected observations were relative- 
ly few, which agrees with the ideas of Rosen- 
field.21 Also these residuals have biased char- 
acter and gross magnitude and they do not 
belong to the normal distribution; further- 
more their magnitude is larger than 4 %,. 

A With respect to the estimated %,2, this 
is usually carried out by the use of x2-test as 
follows: 

The necessary statistical quantities for Equa- 
tion 12A are given in Table 7 .  
%,2 is obtained from Table 5, ~ , ? 2  is calculated 
using Equation 7B. Substituting in Equation 
12A, one gets: 

This means that 8,2 is an unbiased estimated 
variance of unit weight. 
A Finally, it is of great interest on con- 

cluding the statistical analyses for the sug- 
gested model, to check the power of the x2- 
test on accepting 8,,2 to represent the sample 
variance; in other words, one likes to know 
the probability of error Type I1 (B) when 
the xLtest is used to test the hypothesis 
concerning the variance %,2. Such a test is 
shown in Hamilton7 (page 83).  Using this 
test, it is found the B = 60 percent. 

In the following the obtained results from 
the two test data given in Table 3 were 
compared with the other triangulation sys- 

TABLE 8A. COMPARISON OF S,, S,, 3 ,  WITH 

RMSE FROM ANDERSON~, VALUES IN METERS ( C  

REPRESENTS SCALE FACTOR) 

Estimated 
Standard 
Deviation 
for XI S ,  S, S, Remarks 

Calculated 0.212 0.179 0.352 
S X c  0.870 0.740 1,450 c = 4.11 
RMSE s u  s v  sw  (6)  

Minimum 0.570 0.520 0.690 
Maximum 1.400 1.700 11.900 

tems in practice. Such a comparison is diffi- 
cult due to the lack of information about an 
equivalent value to %,2 in the published 
aerial triangulation adjustments by other or- 
ganizations. The limited size of the test 
materials used, the distribution of the ground 
control, bridging distance, type of photog- 
raphy and scale of photography question the 
validity of such comparison. Furthermore, 
in photogrammetric practice, RMSE (Ander- 
son6) constitutes the normal criterion for 
comparison, for which either a test area is 
required12 or simulated blocks6 must be used. 

Comparison of the values of S,, S, and S w  
by the results given by Anderson6 are shown 
in Table 8A where S,, S,  and S, are cal- 
culated using the equations, 

where $, , S, , 3, are obtained using the 
diagonal elements of the variance-covariance 
matrix of the adjusted pass point coordinates 
( E X I )  after the least-squares adjustment of 
equation 2; nu, N,, n ,  are the number of the 
coordinates of the pass points in X, Y, Z di- 
rections respectively. Another comparison is 
done between the estimated variance of unit 

TABLE 8B. COMPARISON OF a,,, WITH uXy(uX, uy 
FROM J A K S I C ~ ~ ,  P. 400, 401 ) 

Computation 
Unrefined Ref ned 
Coordinates Coordinates Remarks 

a t 8.7 + 7.6 
a, -1 7.4 f 6.2 (12) 
ax, * 11.4 + 9.8 
b, f 12.3 +. 12.3 n = 304 

f 9.1 * 9.1 n = 298 



TABLE 9. RMSE OF SIMULTANEOUS, MATHEMATICAL MODEL D AND POLYNOMIAL ADJUSTMENTS 
(USING STEREOCOMPARATOR DATA; n, = 18 POINTS 

Simultaneous Mathematical Polynomials 
AMAREO (25) Model D (29) Units 

- 

3 2.63 3.05 3.72 meters 
-V 

2.87 3.26 3.81 meters 
SW 2.93 3.76 4.18 meters 
number of iterations 2 1 15 

TABLE 10. RMSE OF MATHEMATICAL MODEL D AND POLYNOMIAL ADJUSTMENT 
(USING KERN PG2 DATA), n, = 18 POINTS 

Polynomials Mathematical Model D Units 
- 
s u  4.04 3.50 3.40 meters 
5" 4.00 3.82 3.23 meters 
?P 5.68 5.26 4.70 meters 
SW 3.68 4.03 3.16 meters 
number of iterations 12 1 2 

weight %,2 and the similar value given by 
Jaksiclz shown in Table 8B. 

The suggested mathematical model was 
used by Okuwals (in the case of the second 
test) to prove its validity; the results ob- 
tained are given in Tables 9, 10, 11. Table 9 
shows the results using the suggested model, 
polynomial adjustment by Schut29 and si- 
multaneous adjustment described by U.S.C.G. 
and modified by Carlin.25 The basis of 
the comparison in Table 9 is RMSE, using 
18 check points. Table 10 shows a com- 
parison between the suggested model and 
polynomial adjustment.29 The instrument 
used in the comparison given in Table 9 was 
stereocomparator STKl whereas for Table 
10 it was Kern PG2. 

As they were available, a comparison was 
made between the RMSE in planimetry and 
height for Kern PG2 (Table 10) and the 
values of S, and S,, calculated from Equa- 
tion 17, shown in Table 11. This comparison 
shows that it is practically accurate to con- 
sider S, and Sw as representative for RMSE 

in planimetry and height respectively, de- 
spite the fact that the statistical basis for 
such comparison is not so rigorous. 

Considering the results achieved if the 

test data are subjected to the suggested 
mathematical model, the following conclu- 
sions can be drawn. 

C It is obvious from Tables 4A, 4B, and 
4C that the best parameters for the solution 
came from mathematical model D, which 
assigned to each half-photo three rotations 
different from the other half. 

C The derived observations, computed 
from model coordinates and relative orienta- 
tion elements in a least-squares solution, be- 
have as observations of equal weight and free 
from mathematical correlations. This becomes 
clear from Table 5 and from different choices 
of weight coefficient cases. 

C The variances of the adjusted param- 
eters of the coordinates of the pass points 
were checked and they were found to be 
satisfactory for the use in large scale map- 
ping. This is obvious from the values of Su, 
S, and S,, which are given in Table 8A. 

C Comparison of the values of S,, S, and 
S, by the results shown in (Anderson,6 
Jaksiclz); and the comparison of the sug- 
gested system with other systems in practice 
given in Tables 8A, 8B, 9 and 10 prove that 
independent-model aerial triangulation can 
be used as a substitute for analytical systems, 
providing that the suggested mathematical 
model is used in the adjustment. 

TABLE 11. COMPARI_SON-OF Sp ~ r n  SW WTH S P ,  SW 
(VALUES OF S,, SW FROM TABLE 10) 

Number of - - 
Iterations Su Sv Sp S,/Sp Sw Sw/Sw 



C The  applied statistical analyses prove 
that the  suggested mathematical model is 
a n  unbiased mathematical model and applies 
a rigorous least-squares solution. 

This work is a part of the author's Ph.D. 
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New Brunswick, Fredericton, N.B., Canada 
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years. The author is indebted t o  many per- 
sons, including Dr. G. Konecny for his su- 
pervision and members of the dissertation 
committee, Mr. G. Schut, Prof. Hilborn, Dr.  
W. Knight, Dr. E. Dorrer and Dr. S. Masry 
for useful criticisms. Finally the author wishes 
to  thank the staff of the surveying depart- 
ment of New Brunswick University and the 
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raphy. I t  is assumed to be 49 pmz 
(8) .  

INDICES A priori variance of unit weight 
related to the measuring instru- 
ment. no, is obtained by grid meas- 
urement ( Table 1 ) . 

i Image point. 
i Model number. 

k Photo number. 

Standard error of image coordi- 
nates. 
The estimated variance of unit 
weight for the y-parallax measure- 
ments. 
The estimated variance of unit 
weight for the observations ob- 
tained from a least-squares adjust- 
ment. 

SUBSCRIPTS 

M Model coordinates. 
G Ground coordinates. 
T Translation elements. 
R Rotational elements. 

SUPERSCRIPTS 

t Transpose. 
a Adjusted quantities. 
b Observed quantities. 
o Approximate quantities. 
' Left photo. 
" Right photo. 

- 1 Inversion. 

Variance-covariance matrix for the 
image coordinates. 

RMSE Root mean squares error of the dis- 
crepancies on the check points. 
RMSE in X, Y, Z directions. 

LETTERS The unbiased estimated standard 
deviations for the pass point co- 
ordinates in X ,  Y, Z directions. 
The radial distance of the image 
point. 

Image coordinates in X, Y direc- 
tions. 

vx ,  VY Residuals of the image coordinates. 
U,, V M ,  WM Model coordinates in X, Y, Z di- 

rections, respectively. 

f Principal distance. 
Uo, Vo, Wo The perspective center coordinates 

in the stereoplotter. 
WE, VE,  WE The exposure station coordinates 

for photo k. 
U,, V,, W, The ground coordinates in X ,  Y, Z 

directions, respectively. 

number of observations. 
number of check points. 
degree of freedom. 

EQUATIONS USED I N  THE PAPER 

(Vx, Xy)t = V,t 

(Vx, Vy)t = V,t 

(x, y)t = Ylt 

(x ,  y)t = Yzt 

(UM, V,, W,)t = Mt 

(U,, V,, W,)t = X,t 

V E I  WE)Kt = Xzt 

(K, a, vIKt = XtZR 

AR Orthogonal matrix, relates the im- 
age coordinates with model coor- 
dinates. 
Orthogonal matrix, relates the im- 
age coordinates with ground co- 
ordinates. 
micrometers. 
millimeters. 
The vectors of the image coordi- 
nates of left and right photos of a 
certain stereomodel. 
The matrix of partial derivatives of 
the image coordinates with respect 
to pass-point coordinates. 
The matrix of partial derivatives 
of the image coordinates with re- 
spect to orientation elements. 
The incremental correction for the 
pass point coordinates. 
The incremental correction for the 
orientation elements. 
The relative orientation elements 
(a", p", K", Kt'). 
A priori variance of unit weight for 
the image coordinates. 
A priori variance of unit weight 
related to the wideangle photog- 


