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Recursive Methods in Photo- 
grammetric Data Reduction 
An algorithm is devised for applications where the size of the 
system of normal equations changes. 

INTRODUCTION 
N ALMOST ALL of the problems encountered I in computational photogrammetry, more 

observational information is normally avail- 
able than required for an unique solution. 
Consequently, some method of estimation 
must be used to obtain the most probable 
values of the unknown parameters. For linear 
mathematical models, the method of least 
squares has been extensively used for this 

of convergence is satisfied. I t  must be em- 
phasized that least-squares estimation only 
applies within each linearization. 

The above discussion is related to general 
problems of computational photogrammetry 
where the mathematical conditions are 
formed at one time from an available set of 
input data. The data may be, for example, 
the set of photo coordinates to be used for 
solving conventional analytical problems such 
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purpose. If the model is non-linear, as most 
photogrammetric problems are, some series 
expansion, such as Taylor's, is used to line- 
arize the model. This allows for the use of 
least squares to estimate corrections to ap- 
~roximate values for the ~arameters rather 
than the parameters themselves. Depending 
on the values of the chosen approximations, 
the estimated corrections may or may not be 
those yielding the final answers upon adding 
them to the approximate values. If the ap- 
proximations are coarse, the estimated cor- 
rections are added to them giving fresh ap- 
proximations for a new, and normally closer, 
linear model. Least squares is then used again 
for estimating another set of corrections and 
the procedure is repeated until some criterion 

as multiple-photo triangulation. By contrast 
to these conventional methods of analytical 
photogrammetry, recent developments intro- 
duced newer and more dynamic concepts. 
Some of the most interesting are those in- 
volved with on-line methods in which a com- 
puter is interfaced with the comparator. The 
availability of computer-assisted comparators 
opens the door for more fundamental treat- 
ment and thorough evaluation of current data 
reduction and estimation techniques. 

Data acquisition schemes for on-line com- 
parator systems must be, by necessity, rather 
different from those currently used with con- 
ventional comparators. One of the obvious 
differences is the fact that data reduction 
(such as preprocessing) must overlap the 
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data acquisition phase. This is because the 
computer may be used for processing data 
from measured image points while other 
points are being observed and edited. The 
sequential handling and processing of data 
necessitates different estimation methods than 
currently used in analytical systems. 

Suppose that a set of observations yielded 
r linear condition equations* from which u 
parameters are to be estimated. A set of nor- 
mal equations may then be formed and 
solved for the required estimates of the pa- 
rameters. Suppose further that we have an 
on-line data acquisition system and that ad- 
ditional observations, such as the coordinates 
of another image point, yielding p additional 
condition equations, became available. The 
incorporation of these equations into the 
mathematical model and updating the esti- 
mates of the u parameters can be accom- 
plished by different processing schemes 
which must be carefully considered. Another 
problem, which is akin to that of adding in- 
formation, concerns the deletion of some con- 
dition equations due to measurement rejec- 
tion in the editing phase of data reduction. 
The two problems, though not identical, are 
quite similar and can be handled with es- 
sentially the same mathematical formulation. 

Returning to the example of p added con- 
dition equations, one of the methods which 
is used in off-line analytical systems is the 
so-called batch least squares. There are ac- 
tually two variations of this method, depend- 
ing on the size of the problem and the ca- 
pacity and speed of the computer used in the 
reduction. In one procedure, only the input 
data, in the form of observed values, are 
stored and when the extra observations be- 
come available they are added to the stored 
data. The entire normal equation matrix is 
then formed, this time for all ( r  + p)  con- 
dition equations, and solved for the unknown 
parameters. This procedure is time consum- 
ing, but is normally used when problems of 
very large size are encountered and when the 
computer capacity cannot store the normal 
equation matrix. 

In the second procedure, the normal equa- 
tion matrix formed from the first r condition 
equations is stored into the computer. The 
contribution of the extra p condition equa- 
tionsf to the normal equations is computed 
and added to (or subtracted from) those al- 

* In this paper, all mathematical equations in- 
volving observations (with or without param\- 
eters) are termed condition equations, while those 
involving only parameters are called constraint 
equations. 

ready stored, and the updated set is then 
used to solve for the parameters. In this in- 
stance, it must be possible to store the entire 
set of normal equations which, of course, may 
require a good portion of the computer's 
storage capacity. Both types of batch least 
squares can handle additions as well as dele- 
tions, and the order of the normal equations 
can change due to these additions or dele- 
tions as a result of the increase in the num- 
ber of parameters. In any event, the normal- 
equation matrix must be inverted anew after 
these changes take place. 

Batch least squares may not be an efficient 
process of on-line systems, as both computer 
capacity and processing times are more crit- 
ical than with off-line analytical systems. 
Consequently, other methods of successive 
estimation must be investigated. Mikhai1,g 
Gambino and Stilwell,s Schmid and Schmid,ll 
and others have discussed a process by which 
not the normal equation matrix, but rather 
its inverse is modified due to addition or 
deletion of data. These published accounts, 
however, represented a first step and en- 
tailed one situation in which the size of the 
normal equations, and consequently the 
number of parameters, does not change. 

In this paper we shall discuss several as- 
pects of recursive methods of data reduction. 
First is. presented the straight-forward situa- 
tion where the size of the normal equations 
remains unaltered. Next there is the case 
where the addition of information increases 
the number of parameters, whereas deletion 
of information effects the opposite. Finally, 
problems of estimation in non-linear models 
will be discussed, particularly in regard to 
the exactness of the recursive methods. 

This is the situation that has been dis- 
cussed in the literature and derived mostly 
in relation to least-squares estimation. Ac- 
tually, the recursive formula may be given 
strictly as a matrix algebra operation, Equa- 
tion l. For example, given the expression, 

the inverse of M may be evaluated from 

provided, of course, the inverses shown in 
Equation 2 do exist. Equation 2 may now be 

t The extra conditions should not in this case 
contain any of the original observations, nor 
should the new observations be correlated with 
the original ones. 



applied to normal-equation augmentation as 
follows. Let a set of condition equations be, 

. .  . 
A V + B  A = F O  
r .n  n,l r.u u.1 r.1 

(3) 

and the set to be added or subtracted be, 

noting that the parameter vector is iden- 
tical in both sets." The final coefficient matrix 
of normal equations can readily be written 
in terms of both sets of condition Equations 
3 and 4 as, 

. . . . . . . . 
B ~ A Q A ~ ) - ~ B  = i l (kc jky - l t j  s B ~ ( A Q A ~ ) - ~ B  (5) 

where Q ,  Q, and Q are the cofactor matrices 
which are the inverses of the weight matrices 
P, P, and P, respectively. The modified in- 
verse of the normal equation matrix may now 
be obtained directly by applying Equations 
2 to 5. Thus, 

in which 

and the upper signs in Equation 6 relate to 
adding Equation 4 to 3, whereas the lower 
signs are for subtracting. In a direct manner, 

* The observations associated with v must 
not be correlated with the observations asso- 
ciated with V .  

the relationship, similar to Equation 5, for 
the normal-equations constant term is given 
by, . . . . . . . . . . 
Bt(AQA9-IF0 = b t ( k ~ ~ t ) - ~ i i ' ~  & Bt(AQA1)-IFb. 

To give the reader some estimate for the 
computational efficiency of recursive versus 
batch processing, a system of 90 linear equa- 
tions in 60 parameters was generated. As a 
start, a 60 x 60 normal-equation matrix was 
formed from all 90 equations and inverted 
and the time consumed was noted to be ap- 
proximately eight seconds. Next, several in- 
stances of deleting a progressively larger 
number of equations from the original set 
were computed. The computation was per- 
formed both by our conventional batch least- 
squares process as well as by the recursive 
method given by Equation 6. The results are 
summarized in Figure 1. It can be seen that 
there is a cut-off point, where the two curves 
intersect, beyond which recursive methods 
offer no advantages. It must be emphasized, 
however, that these results hold for the size 
of normal equations chosen, for the computer 
used (Univac 1108), and the inversion al- 
gorithm of Gauss elimination. Deviation from 
these conditions may produce somewhat dif- 
ferent results, but with essentially the same 
characteristics as those in Figure 1. As a 
matter of fact, if the equations were to be 
formed within the solution, the recursive 
procedure is expected to offer further time 
savings. 

AVERAGE COMPUTATION TIME IN SECONDS 

FIG. 1. Plot of the change in computation time versus the num- 
ber of equations deleted from the solution. 



Or, in view of Equation 10: 

In many photogrammetric problems, the 
most common of which is triangulation, the 
increase or decrease in condition equations 
also increases or decreases the number of 
parameters in the model. For example, if the 
collinearity equations are used as the basic 
mathematical condition, every time another 
image for a pass point is measured and added 

or, more compactly, 

to the model, three new parameters are 
added. These parameters are the object-space 
coordinates of the pass point. A similar situa- 
tion occurs if a pass point is completely de- 
leted, thus reducing the parameters by three. 

Starting with the general case, let the total 
set of equations be, 

with obvious correspondence in terms for the 
submatrices shown. The inverse of Equation 
13 may be symbolically written as, 

and from the fact that MM-1 = I, one can 
readily write, 

E = (M - GM-lMf)-l (15a) 
which may be partitioned to the form," 

The matrix E is of particular interest because 
it can be evaluated using Equation 2 as, 

The 8 is a subvector of parameters by which 
the total number of parameters will change 
due to either addition or deletion. The lower 
Equation of 10 may be rewritten as, From Equations 12 and 13 it is obvious that 

where The inverse of can be directly obtained 
by applying Equation 2 to Equation 17: 

. . 
ii = [ti b ] .  

It is important to note that Equation 6 
cannot be applied to Equations 9 and 11 
directly. For example, if N-1 is the inverse of 
the normal equations for Equation 9, and 
M-1 is the inverse of the net normal equations 
after Equations 11 are subtracted from Equa- 
tion 9, the following expression is singular: 

We now have all the elements for handling 
both cases of addition as well as subtraction 
of condition equations. 

Referring to Equation 10, the top line 
would constitute the original set, and the 
second line the set to be added, which in- 
cludes the new unknown parameter vector 8 .  
For the original set, we would have the in- 
verse of the normal equation matrix, 

The preceding assertion gives an indica- 
tion that some other means must be sought 
to obtain a recursive method for such cases. 
The total normal equation matrix for the sys- 
tem in Equation 9 is, 

and the constant term vector, ' Again, the sets of observation with v and 
v are assumed uncorrelated. 



In order to get the new inverse M-1 of the 
augmented. normal equation matrix, we first 
compute i l l - *  from Equation 18 noting that 
all matrices involved are .?]ready known. 
Next, the matrices and IM may be com- 
puted using the information in Equations 12 
and 13. From these and !\I-], Equation 16 
can be used to compute E, and then Equa- 
tion 15 leads to computing G and H. Having 
these three matrices, M-1 may be readily con- 
structed using Equation 14. 

The new augmented constant column 2 
would be obtained as 

or, using the partitioning in Equation 10, 

Realizing that 
. . . . . .  
2' = Bf(AQA')-lI.'U 

equals constant-term vector from the original 
set of equations, Equation 22 therefore be- 
comes 

which is the inverse we are seeking. 
The constant term vector T may be readily 

obtained from T by simple inspection of 
Equation 23, thus: ........ 

T = T - Bt(AQA"-IF0. (26) 

THE RECURSIVE ALGORITHM AND 

NON-LINEAR MODELS 

In all the preceding derivations regarding 
recursive formulation we assumed a linear 
mathematical model. In photogrammetric ap- 
plications, however, the estimation problems 
encountered are usually non-linear. This situ- 
ation of originally non-linear models needs 
to be discussed more in detail, particularly 
with regard to the application of recursive 
methods. In order to facilitate the explana- 
tion of the various possibilities that could 
occur, we shall begin our discussion with the 
batch method and realizing that the problem 
of adding information is quite similar to that 
of deleting information, we shall consider the 
former without loss of generality. 

Suppose that we have a set of non-linear 
equations, 

In this case, Equation 9, and its par- 
titioned form, Equation 10, would repre- 
sent the original layer set of condition equa- 
tions, from which the lower line of Equation 
10 is to be deleted. Thus we would start 
with having the total inverse M-1 and seek to 
obtain the net inverse S-1.  Consequently, all 
we need to consider is the submatrix E of 
M-1 and disregard all. the rest. Using Equa- 
tion 15a we evaluate M -1 as follows: 

E-i lif - GM-1fi t  

and, applying Equation 2, 

I$-1 = E - EGCM + M ~ E M I - ~ M ~ E  (24) 

where lii and .$f are computed from the con- 
dition Equations 11 which are to be deleted, 
utilizing the information in Equation 12 and 
13. 

Next, we rearrange Equation 17 and write 
. . . . . . . . .  A- = M - B ~ ( A Q A ' ) - ~ ~  

to which we apply Equation 2 and get, 

in which L is the observation vector and X 
is the vector of parameters to be estimated. 
For the actual observations LO, and the set 
of approximations XO, Equation 27 may be 
linearized to the form, 

where the matrices A, B, and FO are evalu- 
ated at LO and Xo. A system of u normal 
equations can be formed from Equation 28 
and solved to obtain the first set of correc- 
tions A1 which, if added to the approxima- 
tions, yields the first updated parameter 
vector, 

XI = X" + A,. (29) 

This process may be repeated through m 
linearizations to give, 

Suppose that in addition to the condition 
equations of Equation 27 we have an added 
set which we will assume contains no more 
than the original parameter vector X and 



which is denoted by 

The combination of Equations 27 and 31 
gives a larger set of condition equations 
from which the final estimate Xf of the u 
parameters will obviously be different from 
that given by Equation 30. The most direct 
process, but not necessarily the most effi- 
cient, is to linearize Equation 31 at an ap- 
proximation vector Xf 0 equal to X obtained 
from Equation 30 to give, 

Next, Equation 28 is re-evaluated at the same 
value XfO and combined with Equation 32 
to form the total set of ( r  + p) condition 
equations. The corresponding normal equa- 
tions are formed and solved to obtain a cor- 
rection, At, and the solution repeated, if nec- 
essary, until convergence is achieved. It 
should be noted that in this process the nor- 
mal equation matrix of size u will have to be 
inverted each time a correction vector is 
computed. 

Another ~ossibilitv occurs if Eauations 28 
are stored and kepi until all t h e  additional 
Equations 31 become available. In this in- 
stance, Equation 31 is linearized at the ap- 
proximation vector Xo used for Equation 27 
and the set of linear equations is combined 
with Equation 28. Normal equations are 
formed and solved and relinearizations ap- 
plied until the solution converges to a pre- 
set tolerance. 

A number of possibilities arise if the re- 
cursive algorithm is used for non-linear es- 
timation problems. Some of these possibilities 
entail exact solutions whereas others involve 
certain approximations. To begin with, the 
sequential algorithm is exact if used inside 
each linearization. For example, suppose that 

the At 1 is obtained from the first cycle of the 
solution from Equations 27 and 31 together, 
linearized at the same vector of approxima- 
tion, Xo. If then the inverse of the normal 
equations and the constant term vector aris- 
ing from the set of Equation 27 linearized 
at Xo, are modified by the sequential algo- 
rithm to include the set of Equation 31, also 
linearized at XO, the product of the resulting 
inverse and constant vector will give At 1 ex- 
actly. 

For the non-linear situation, the set of 
Equations 28 is solved by the linearization 
process as shown in Equation 30. The new 
set of Equations 32 are then added by the 
sequentiai algorithm after being linearized 
with the best estimates of the parameters 
from the original set of equations, that is, X 
from Equation 30. In this situation, the re- 
sulting estimated parameter vector A t  will 
not necessarily be precisely the same as that 
(At 1 )  estimated from the linear least-squares 
estimation problem with all equations con- 
sidered together. Obviously, the degree of 
difference between At from the sequential 
and At  1 from the batch will depend on the 
quality of the first vector of approximation, 
xo -- . 

To obtain an appreciation of this method 
of sequential reduction for the non-linear 
models, we have solved different examples of 
a relative orientation problem of a pair of 
aerial photographs. .Table 1 summarizes the 
results obtained. First, six points were used 
in a regular batch least squares and the so- 
lution iterated until convergence. The an- 
swers (that is, the values of the five exterior 
orientation parameters) from this solution 
are given in the first line. Adding three more 
points, the second line gives the results from 
a batch solution where all nine points are 
used directly, whereas the fifth line gives the 
corresponding results when the three points 
are added sequentially. In the third and sixth 

TABLE 1. COMPARISON OF BATCH AND SEQUENTIAL SOLUTIONS OF THE NON-LINEAR MODEL O F  

RELATIVE ORIENTATION 

Type of Solution 
Batch Sequenthl Estimated Parameters 
Points Points Y z o P K 



lines the results of a total of 15 points are 
given, whereas those in the fourth and 
seventh lines are for 40 points. One can note 
that if an extensive case of redundancy exists, 
such as for a set of 40 points. the two solu- 
tions are identical. For other examples, there 
is some difference between the two methods 
of solution reflecting the alreadv mentioned 
fact that the sequential algorithm is not exact 
for non-linear applications. However, such 
differences, a t  least for the example given, 
are  so small that they can b e  neglected. Of 
course, we  must emphasize that this is only 
one example which shows tendencies, but  
more experimentation is needed before one 
can formulate a firm concept. 

dated inverse as the a posteriori cofactor 
matrix of the estimated parameters. 

Once Q/A is evaluated, other cofactor 
matrices may also be  obtained. For example, 
it can be  shown that the cofactor matrix of 
the resiclunls is 

where = (AQA1)-1 and Q is the a priori 
cofactor matrix of the net observations. Also, 
if the estimated observations are those equal 
to the original o'bservations plus the residuals, 
then the  cofactor matrix of the estimated 
observations is 

All cofactor matrices may be  converted to 

An attempt has been made to deal with 
sequential data-reduction problems as they 
arise in computational photogrammetry. Con- 
tinuing earlier efforts, an algorithm suitable 
for applications where the size of the system 
of normal equations changes has been for- 
mulated and tested. Also, test results are 
given to compare times used for sequential 
solutions compared to batch solutions indicat- 
ing a cutoff point. Finally, a discussion of the 
sequential process and non-linear mathe- 
matical models points out the complexity of 
the ~ ~ r o b l e m .  A possible scheme is given 
which, although not exact, yielded results 
which were very close to the exact solution, 
a t  least for the limited test given. The authors 
believe that for many of the computational 
problems of photogrammetry this scheme 
may work satisfactorily. However, it is rec- 
ommended that more testing and experi- 
mentation must be  performed before a firm 
opinion is formulated. 

In the text, attention was given solely to 
the problem of parameter estimation. Ac- 
tually, least squares adjustment usually in- 
cludes a second operation, namely that of a 
po~feriori precision estimation (traditionally 
called error propagation). The  cofactor matrix 
of the estimated parameters, QA.  is perhaps, 
the most decired. For the case of fixed num- 
ber of parameters, Q A  is equal to the inverse 
given by  Equation 6. If one is dealing with 
a case of variable number parameters, then 
Q-\ is equal to M-2 from Equation 14 for 
adding conditions, and to N-2 from Eqnation 
25 if deleting conditions. All that needs to be  
remembered is that  when sequential pro- 
cedures are applied, one must use the up-  

covariance matrices using the reference vari- 
ance, 20, which is equal to V t  IPV divided by  
the degrees of freedom. 
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