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Orthogonal Transformations

In Triangulation

Adjustment®

The Gram-Schmidt process allows the reduction of very large
systems of equations to smaller systems through the
repeated application of partitioning a vector space into a
subspace and its orthogonal complement.

INnTRODUCTION

s s said in the past that aerial triangu-

lation is simply a problem of matrix inver-
sion. To be more optimistic, it can be said that
aerial triangulation is a problem of solving a
large linear svstem ol equations.

The classical method of solution of such a
linear system, which usually has a rectangu-
lar coelficient matrix of order n x p where

n=pois based on:1) the formation of a set of

normal equations which have a square coelli-
cient matrix of order p < p;and (2) the solu-

tion of such normal equations by a direct or

iterative method.
Analternate approach forthis least-squares
problem is the solution via orthogonal trans-

OpsERVATION EQUATIONS IN THE SIMULTANEOUS
ApjusTaeENT OF BunpLes

The mathematical model for the simul-
tancous adjustment of bundles in aerial
triangulation can be derived from the projec-
tive relationships between the photograph
and the terrain, (See Schmid, 1959). It can be
reduced eventually to a linear statistical
model for the form:

Y=X8+¢ (1)
E(e) = 0 (2)
Di{e) = o2l (3)

where Y = n % I random vector derived from
the observations, i.c., the measured x- and
y-plate coordinates; g = p x I vector of un-

Anstiact: The mmerical solution of point estimators as well as inter-
val estimators affects the problem of aerial triangulation adjustment
via orthogonal transformations. Two methods are presented that
avoid the formation of normal equations. The first method makes use
of the Gram-Schmidt orthonormalization process. The second
method utilizes the Houscholder orthogonal transformations. Prob-
lems are reported that arose during implementation of the simultane-
ous adjustment of bundles using Housceholder transformations, to-

gether with their solutions.

formations. This is based on the direct man-
ipulation of the colummns of the original rec-
tangular linear svstem, which is usually
known as the observation equation. The solu-
tion via orthogonal transformations avoids
the intermediate step of forming the normal
equations which may be ill-conditioned. and
hence it is theoretically more stable.

* Presented at the Annual Convention of the
American Society of Photogrammetry in Washing-
ton, D.C., March 1973.

known parameters, such as the spatial coor-
dinates of pass points and the positions and
attitndes of the camera during exposures (es-
timates, 8. for g are being sought in the ad-

justment problem); X = a known n x p

coellicient matrix; ¢ = n % 1 unobservable
random vector, which is a function of the
measurement errors (an estimate ¢ for e is
songht in the adjustment): E(e) denotes the
expectation of the random vector ¢, usnally
assumed equal tothe n % [ zero vector(); D(e)
denotes the dispersion matrix of the random
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vectore; o is the standard error of the observa-
tions. For details of such reduction, see Yassa
& MeNair (1973).

To get an idea about the structure of the

coeflicient matrix, consider a small block of

2 x 3 photographs, as shown in Figure 1. As-
sume that four error-tree complete ground
control points are available at the corners of
the block. Assume further that no auxiliary
data are observed. Then there are six un-
known elements of exterior orientation for
each of the six photographs and three un-
known spatial coordinates for each of the 11
pass points. Hence, the number of unknowns
p in the adjustment of the block would be:
p=6x6+3x11=69.
As for the number of equations n in the ad-
justment problem, two observation equations
can be formed for each measured point on a
photograph, one for the x-coordinate and the
other for the y-coordinate measurement. As
there are six measured points for each end
photo in the strip and nine points for each
intermediate photo, the number of observa-
tion equations n would be:
n=2x26+9+6)=84.

Hence, the coefficient matrix is of the order of

84 x 69. However, the coefficient matrix is a
highly sparse matrix characterized by a high
degree of orthogonality between its columns.
This orthogonality is due to the fact that, prior
to the adjustment, there is no correlation be-
tween: (a) the orientation elements of ditfer-
ent photographs in the block; (b) the ground
coordinates of different pass points in the

Column Column Column
1 2 k]
Row 1 & —A
Row 2 41 42 43—  S8trip 1
Row 3 »
Fow 4 44 +5 46— Strip 2
How § & - &

Fic. 1. A sub-block of 2 by 3 photographs. Princi-
pal points are indicated with plus symbols, pass
points by round dots, and atriangle with an x inside
indicates a complete ground control point (or two
separate horizontal and vertical points).
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block; and (¢) a photograph and the pass
points that are not measured on it. Some cor-
relation is, however, introduced by the ad-
justment. For a schematic representation of
the structure of the coefticient matrix for this
sub-block, see Figure 2.

Crassicar LEasT SQUARES SOLUTION
via Normal Eguartions

The classical method of solution for the
tnknown parameters may be briefly sum-
marized as follows:

I. Form the Ilt]l'lllilf equations:

X'Xg=X"Y (4)

where X' denotes the transpose of the coetfi-
cient matrix, 8 denotes the least squares es-
timnates tor the unknown parameters 8. Itis to
be noted that the resulting coefficient matrix
of the normal equations X'X, is a positive-
definite symmetric matrix.

2. Solve the linear System 4 by a direct or
iterative method, to obtain the least squares
estimates B for the unknown parameters.

3. Find estimates for the observation er-

Yors e:
e=Y-Xg (5)
4. Find an estimate for the variance of the
observation errors:

o =¢'eélin—p) (6)
where ¢’ denotes the transpose of the com-
puted vector of residuals é.

5. The Covariance matrix of the unknown
parameters B, is given by:

D(B) = ¥ X'X)-1, (7)

i.e., it is obtained by the inversion of the

coetficient matrix of the normal Equations 4.

LEasT SQUARES SOLUTION BY
ORTHONORMALIZATION
OF THE COEFFICIENT MATRIN

The p-columns of the coefficient matrix X,
viewed as vectors in R" span a vector space of
R" denoted by V. As these column vectors are
linearlv independent in the problem of bun-
dle adjustment, they form an arbitrary basis
for V. The dimension of V is p.

An orthonormal basis U ={!J,, Wy soss ttp}
for the vector space V may be obtained by the
Gram-Schmidt orthonormalization process
which is a recursive p-step procedure as fol-
lows:

1. Normalize the first column vector v, in X
to obtain the orthonormal set {1.‘1} which con-
sists of one vector u, € R":

uy = vyl ||y (8)
where ||vy]] is the Enclidean norm of vector
vy If the elements of vector v, are vy,,

Ugy, . - . Uny, then

[leal| = (or® + 022 + ... + 5"12)1,2 (9)
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u; € R" denotes that the vector u belongs to the
vector space R".

2. For each step k: k = 2, 3,...p, assume
there is an orthonormal basis Uk-11 = {ixl,
tig, ... up-1} for the first k — I columns in the
coefficient matrix. The orthonormal basis UK =
fuy, .. is the union of Uk-1 and u,
where ug is computed from the k-th column
vector vy as follows:

cug )

k-1

Wy =v = 3 <ty U >y (10)
j=1

iy :!L'k-'r“lt:;‘” {II]

where <vg, u;> denotes the scalar product of

the vectors vy and u,.

The transition matrix from the arbitrary
basis X = {t.‘ 1, Udy vn ['f.} to the orthonormal
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basis Q = {”1» Uy, . .. ”::} is an upper triangu-
lar matrix R, of full rank p, thus:

O = XR (12)

where X and Q are both n x p matrices,
whereas R is a p x p matrix. As R is of full
rank, it is invertible, and

X =0QRL (13)

Substituting From 13 into 4, then the point

estimators that are classically obtained from

the solution of the normal Equations 4, may
be directly obtained from:
8 = RQ'Y

(14)

and the intermediate step of forming normal
Equations 4 is eliminated.

Thus for the simultaneous adjustment of
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Diagram of the coeflicient matrix of observation equations for a

six-photo aerial triangulation. The near-square areas on the right indi-
cate arrays of 2 X 3 non-zero entries, areas on the left (twice as large)
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bundles by this method, storage space is
needed for:
(a) the random n x I vectorY,
(b) the upper triangular matrix R, which is
also a sparse matrix, and
(¢) the n x p orthogonal matrix Q. The
storage of Q in the main memory of an elec-
tronic digital computer would impose a se-
vere limitation on the size of blocks that can
be adjusted all at once in the main memory.
The adjustment of very large blocks could,
however, be made by partitioning the vector
space into orthogonal subspaces using aux-
iliary storage devices. See Yassa (1974).
The random vector of residuals, & is simply
the component of Y which is orthogonal to all
the vectors of the orthonormal basis U™,
Thus é is computed from:
p
=Y -3 <Y, u>uy
T s

(15)

i.e., ¢ can be computed even before the com-
putation of the unknown parameters g.

The point estimate ¢2 may be computed
from:

o =¢'éfn—p).

Applying the law of expectation to Equa-
tion 14, one may verify that the estimates 8
are unbiased. )

The covariance matrix of g may be also
derived from Equation 14;

D(B)
=R Q' D(Y)(RQ')
=R Q' o2l Q R'(because D(Y)=D(e)=a?l)
=g2RQ'Q R’
=¢2 R R' (because Q is orthonormal). (16)

Thus, the accuracy of the estimates g derived
by Gram-Schmidt orthonormalization proc-
ess, can be evaluated without any tedious
matrix inversion as in the classical method.

LEAST SQUARES SoLuTion BY [DECOMPOSITION
oF THE COEFFICIENT MATRIX

LetQ be an n x n orthogonal matrix chosen
such that:

=5 =R
(JX—R—[O]

where R is an n X p matrix with zero entries
below the main diagonal, R is a p X p upper
triangular matrix, and O isa(n — p) X p matrix
with zero entries. Apply the orthogonal trans-
formation Q to both sides of the observation
Equations 1, and set:

C = QY

(17)

(18)

n = Qe. (19)

PHOTOGRAMMETRIC ENGINEERING, 1974

Then the observational equations reduce to:

where E(n) = QE(e) = 0 (21)
D(n) = QD(e)Q’
and = 200’
= o2l (because Q is orthogonal)
(22)
and the normal equations reduce to:
R'RB = R'C (23)

Letthe n x 1 column vectorC be partitioned:

c
C= [C] (24)

where Cisap x I vectorandCisa(n—p) x 1
vector. Then the normal Equations 23 can be
written in the form

Ei'OE[S]é - [ro] [g] (25)

The first p-equations of Equation 25 are:

R'RB = R'C. (26)

If the rank of the coefficient matrix X is p, it
can be shown that R has also a rank p and,
hence, itis invertible. Multiply both sides of
Equation 26 by (R')%:

Rp=C (27)
where C is a p x I vector representing the
first p-elements of the transformed vector
QY. Thisis an uppertriangular system, which
can be readily solved for 8 in a backward
scheme, i.e., the unknown parameter é,, is
computed first, 8,,_; is computed next, and B1
is computed last. Thus by applying the or-
thogonal transformation Q, the intermediate
step of forming the normal equations is
eliminated.

An unbiased estimate for o2 is obtained

from )

a? = qn'ngin—p) (28)
which can be rf‘duce(l to the form

2 =C'Chn—p) (29)

where C is an(n—p) x 1 vector representing
the last (n—p) elements of the transformed
vector QY.

It is worth noting that:

R'R = [R o'][g]= R'R

R'R =(QX)' (0X) = X'Q’ OX
=X =X'X
X'X =R'R

and

and hence (30)
i.e., R'R is simply the Choleski decomposi-
tion of the coefficient matrix of the normal
equations, X'X.
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The covariance matrix of the estimates 8
may be obtained from Equations 7 and 30:

D(B) = o2 (R'R)-1. (31)

To realize the triangular decomposition,
Golub (1965) advocated the use of House-
holder orthogonal transformations. Golub’s
algorithm is a recursive p-step procedure de-
fined by:

X=X
X+l = QI Xk (k=1,2,...p). (33)

In order to get an upper triangular matrix
X+, every orthogonal matrix Q%; (k=1,
2, ... p) should transform all elements of the
k-th column of X*®¥ below the main diagonal to
zero. This is satisfied by putting:

(32)

Q® =1 — g Utk Utk)! (34)
where
a, = U[oyo, + x V)] (35)
+ for x'¥ = ()
A kk
o= (¥ (_1-;:')2}‘@ with

=

= (k)
for e (.
f'l36}

UMisann x 1 vector

Iis ann x n unit matrix,
defined by:

0 fori <k
uk =4 o, + \’Li fori =k
(k) fori > k. (37)

The matrices Q% need not be computed exp-
licitly because from Equations 33 and 34:

Xt = x® — g utr xki gk, (38)

Thus the vector UK and the scalar at
contain all information about the orthogonal
transformation Q% at step k. They may be
saved for the transformation of the vector Y
and for later use with iterative im-
provements. Additional space is need-
ed for only the diagonal elements wuyk
and for the scalars eq; k = 1,2, ..., p. In the

method presented by Golub the elements of

U™ below the diagonal element u, % and the
upper triangular matrix R are packed in the
same space originally occupied by the coeffi-
cient matrix X,

SIMULTANEOUS ADJUSTMENT OF BUNDLES

Usine HousenoLpER TRANSFORMATIONS
AND LINkED MEMORY ALLOCATION

A computer program was developed forthe
simultaneous adjustment of bundles using
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Golub's scheme for the least-squares solution
in conjunction with a compact storage
scheme known as linked memory allocation.,
In this compact scheme, space is reserved for
only the non-zero entries of the coefficient
matrix without paving undue attention to
their locations. Each non-zero entry of the
matrix is defined by five parameters: value,
row, column, address of succeeding non-zero
entry in the row, and address of succeeding
non-zero entry in the column.

It was necessary, however, to make a mod-
ification in Golub’s scheme to economize on
storage requirements. The vectors U% which
are used to apply the orthogonal transforma-
tion at step k are not saved beyond that step.
So these vectors are no longer available to
transform the random vector Y. For the com-
putation of the unknown parameters 8, the
equation:

R'RB=X"Y (39)

is used instead of Equation 27. This resulted
in some additional arithmetic operations to
form the column vector X'Y, but it relieved
the memory of a substantial storage space.

Another storage problem arose during im-
plementing Golub’s scheme in conjunction
with sparse matrices. Many non-zero entries
were created during the intermediate steps of
matrix decomposition. This outbalanced the
expected benefits from the use of linked
memory allocation as a compact storage
scheme and imposed a severe limitation on
the size of blocks that could be handled in the
main memory. Further studies, however,
showed that a proper preordering of the un-
known parameters can substantially reduce
the number of these newly created entries. A
block ofaerial photographs is partitioned into
subblocks or strips with a minimum correla-
tion between them. The unknown paramet-
ers, such as camera orientation elements and
pass point coordinates, corresponding to
each subblock are treated as one subset of
unknown parameters. These subsets are then
ordered to correspond to the sequence of the
subblocks or strips within the block.

For example, the subblock shown in Fig-
ure 1 may be partitioned into 2 strips and the
ordered set of unknown parameters is the
union of 2 subsets of unknowns. The first
subset consists of the orientation elements of
photographs 1, 2, 3 and the coordinates of
pass points 12, 21, 22, 23, 31, 32, 33. (The
numbering of pass points is such that the first
digit gives the row position and the second
digit gives the column position.) The second
subset of unknowns consists of the orienta-
tion elements ol photographs 4, 5, 6 and the
coordinates of pass points 41, 42, 43, 52. The




966

correlation hetween the 2 strips is due to the
fact that the pass points 31, 32, 33 are com-
mon. It is clear now that the ordering of un-
knowns given in Figure 2is notthe ideal one.

CoNCLUSIONS
The ftollowing conclusions have been
made from this investigation:
® The use of orthogonal transformations in the
numerical solution of least squares is quite suit-
able for the problem of aerial triangulation ad-
justment. Preliminary studies indicate that the
method of orthogonal transformations is numer-

ically more stable than other direct methods of

solutions. Further tests with larger blocks are
necessary to verify the indication.

The storage requirements of Householder
transformations are more favorable than those
of Gram-Schmidt process. Larger blocks could
be simultaneously adjusted within the main
memory of an electronic digital computer if
Householder transformations are applied. The
use of the compact storage scheme known as
linked memory allocation proved to be useful
in this respect.

For very large blocks which cannot be handled
all at once in the main memory, the use of aux-
iliary storage devices, which are rather slow in
the read and write operations, would be inevit-
able. The Gram-Schmidt process would be
more suitable in this instance. It would allow
the reduction of very large systems of equations
to smaller systems through the repeated appli-
cation of the principle of partitioning a vector
space into a subspace and its orthogonal com-
plement.

The Gram-Schmidt process offers the possibil-
ity of estimating the accuracy of the unknown
parameters and computation of their covariance
mattrix withont any matrix inversion as is usu-
ally done in the classical least squares via nor-
mal equations.
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