
methods have been published (Arthur, 1972; 
Hardy, 1971, 1972) which make use of the 
formalism of the theory. However, their au- 
thors do not refer to this theory but base their 
formulation on other considerations. 

The present paper describes first the con- 
ditions under which the theory is applicable 
and the extent to which the three methods 
apply the theory. For this purpose, the fol- 
lowing sections contain a summary of the so- 
called correlation theory of those functions 
and an analysis of the three methods. 

Very different from these methods is a 

known analytical surface has been selected. 
This serves to obtain information on the de- 
gree to which in practical applications the 
requirements of correlation theory must be  
satisfied and it serves to compare the results 
of the two methods. 

A random function of one parameter, say x, 
is a function whose values are random vari- 
ables. With it are associated distribution 
functions which specify the probabilities that 
the values of the function, individually and in 
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sets of two or more, lie within specified 
ranges. T h e  random function is called 
stationary of these probability distributions 
and are independent of the value of x. 

The correlation theory of these functions is 
based on the first and second moments ofthe 
distribution functions. The first moment is 
the mean value of the function. The second 
moment is a function, B (p ) ,  of the separation 
p in x of two values of the random function. 
B(C4) is called the correlation function or 
covariance function. The theory has been 
developed for the case where the first mo- 
ment is zero. 

To apply the theory to a given case where a 
number of function values at equally spaced 
values of x are given, the first moment is 
made zero by subtracting the mean from each 
value. The function B ( p )  is then computed 
for each multiple p of the x-spacing by taking 
the mean of the products of all pairs of func- 
tion values spaced by the distance p. B(0) is 
the mean square of all values of the random 
function. The correlation function can be 
normalized by dividing all its values by B(0). 

Because the correlation function is a statis- 
tical concept, it cannot be accurately deter- 
mined if only a limited number of values of 
the random function is available. In such a 
case, if the correlation function is not known 
in advance, a correlation function must be 
assumed that agrees reasonably well with the 
values calculated from the available values of 
the random function. It must have the follow- 
ing properties based upon its statistical 
origin: it has its maximum as well as its max- 
imum absolute value at p = 0 and its graph is 
symmetric with respect to p = 0 .  Further, ifi 
and j are two values of x and p = i-j ,  the 
matrix B whose element h,, equals B (4 
must be nonnegative definite. 

According to (Yaglom, 1962) a correlation 
function which is often used in cases where 
precise information is not available is 

B(C4) = exp ( -a  1 p I); a>0. (1) 

This function is always positive and with in- 
creasing values of p it rapidly approaches 
zero. The correlation is not necessarily al- 
ways positive; it can, e.g., have the character 
of a damped oscillation. In that case, a more 
suitable correlation function is 

B(p)  =   ex^ (-a I p I)) cos(bp); a>O, b>O. (2)  

Let now the correlation function of a sta- 
tionary random function be known and let the 
values ti ofthe latter function atx i = i ( i  = -1 1 ,  
-2, . . ., -n)  have been measured. According 

to correlation theory, the best linear estimate 
of this function at x = m is: 

Here. the vector a is solved from 

[is the column vector whose components are 
the values 5, of the stationary random func- 
tion, B is the above-mentioned matrix whose 
elements have the values B(0) to B(n-1) and 
b is the vector whose components are the 
values R(p)  for p = m-1 ,  m-2 ,  . . ., m-n .  

If the values 6, are affected by errors qi, 
the actual observations are (, = ti + 7,. Let it 
be assumed that the errors qt are also ele- 
ments of a stationary random function, that 
their mean value is zero and that the two 
random functions are not correlated. The cor- 
relation function of the actual observations is 
then the sum of the correlation functions of 
the two random functions: 

The best linear estimate of the value 6, of 
the random function atx = m is now obtained 
from 

in which, as before, b is the vector whose 
components are the values of the correlation 
function Bg ( p )  for p = m-1 ,  m-2 ,  . . ., m-n.  
The vector a is now solved from 

( is the vector whose components are the 
actual observations of the stationary random 
function and the elements of the matrix B are 
now derived from Equation 4. 

Obviously, the formulas (3a,b) and (5a,b) 
can be extended to the case where m is not a 
non-negative integer. If m is any rational 
non-integer number, the formulas serve for 
interpolation between the measured values 
or for extrapolation beyond them. Both these 
cases have been covered by the name predic- 
tion. Ifm = -1,.  . ., -n, Formulas 3a,b repro- 
duce the actual observations. Formulas 5a,b 
give here the best linear estimate of the val- 
ues ti of the random function. This has been 
called filtering. 

INTERPOLATION IN TWO DIMENSIONS 

Yaglom (1962) also mentions the concepts 
of a stationary random function in multi- 
dimensional space and the correlation theory 
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of such a function. This random function is Be (4 = exp (-ap2); a>O 
said to be hon~ogeneous and isotropic if its 

(6) 

correlation f~inction is a function of only the For this, there is no justification in the 
distance between points in the field, not of theory of random functions. If the first mo- 
location or direction. ment has been reduced to zero, for large val- 

Moritz (Moritz, 1963; Heiskanen and ues of p the distribution function BS (tL) is 
Moritz, 1967) has applied these concepts to equally likely to have negative as positive 
interpolation in two-dimensional space. His values. This can be illustrated with practical 
ti are the gravity anomalies in a given area. examples. An experimentally derived corre- 
Assuming that the average product of two lation function in (Moritz, 1963) attains nega- 
gravity anomalies is a function of the separa- tive values. Also, in (Kraus, 1972) the experi- 
tion oftheir locations only, this average prod- mental data in Figure 2 can be fitted much 
uct again defines the correlation function. better with a function that becomes negative 
Moritz's interpolation formulas are formally for large values of p. Finally, in a present 
identical with Equations. 3a,b but these now investigation of film deformation Dr. H. 
have the following interpretation. The refer- Ziemann of the Photogrammetric Research 
ence points, that is, the points at which the Section of NRC is having the same experience. 
gravity anomalies are determined, are or- In all these cases, the experimental data can 
dered in an arbitrary sequence. The compo- be fitted much better with a correlation func- 
nents of the  vector [ are the  gravity tion of the type 
anomalies, ordered in this sequence. The 
element bu of the matrix B is the value of the BS ( p ) =  (exp(-up2) ) cos (bp) ;  a>0, b>O. (7) 
correlation function for the distance between 
the two points with sequence numbers i andj. K~~~~ (1972) states that this method of in- 
The component bi of the vector b is the value terpolation, which he applies here to film 
of the correlation function for the distance deformation correction, is independent of the 
between the point at which the gravity anom- type and structure of the systematic deforma- 
aly is to be ~red ic ted  and the point with tion. Although this is true of the computation, 
sequence number i .  it is not true of the result. Best results, in the 

A more recent publication (Moritz, lg73) statistical sense, are obtained only if the data 
extends the interpolation and filtering to the comprise a realization of a random function 
case where the observations are the sum of a wit]l all the restrictions discussed in the pre- 
linear function of unknown parameters, a ceding section. This cannot be achieved by 
stationary random function and measuring simply subtracting a constant from all obser- 
errors. The linear function contains the SYS- vations to make the first moment equal to 
tematic part of the observations and may be zero. 
called the trend function. If the trend func- ~ ~ ~ ~ ~ ~ i ~ i ~ ~  this, in ( K ~ ~ ~ ~  and ~ i k h ~ i l ,  
tion were known, its values could be sub- 1972) the concept of the trend function is 
tracted from the observations and subse- utilized. As it is put here: relative to the trend 
quently the correlation theory could be ap- function, the data must have positive and 
plied. In Moritz's formulation, however, the negative regions in a more or less random 
parameters in the trend function are com- fashion. The trend function is determined 
puted simultaneously with the interpolation first and the interpolation and filtering are 
and filtering. This implies that the correla- performed only after reducing the data by the 
tion function must either be known in ad- trend function. 
vance or be determined otherwise. 

ARTHUKS INTERPOLATION OF A FUNCTION OF 

KRAUS'S LINEAR LEAST-SQUARES INTERPOLATION MANY VARIABLES 

Arthur (1965) devised an interpolation 
Kraus has adopted Moritz's (1963) formula- method which made use of Equations 3a,b. 

tion for his least-squares interpcllation The correlation function used here is 
(Kraus, 1972; Kraus and Mikhail, 1972). He 
makes use of Equations. 5a,b with the addi- B(p )  = 1 -p2; p = dla, (8) 
tional and reasonable assumption that the 
random measuring errors are uncorrelated. d being the distance between two points and 
This makes B , ( d  non-zero only if p equals a being a constant distance. By making a 
zero. larger than the largest distance between two 

In addition, he assumes that the most ap- points, B(P) remains positive for all values of 
propriate correlation function is a Gaussian p. For criticism of this method, the reader 
curve. After normalization, this gives should refer to (Schut, 1970). 
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Arthur (1972), after having given a 
strangely incorrect listing of this criticism, 
has changed his correlation function to a 
Gaussian curve. Based on a desired closest 
possible approach to a linear interpolation in 
the case of two reference points only, he now 
chooses the correlation function 

~ ( p )  = exp ( - 2 . 5 ~ 9 ;  p  = dla. (9) 

Now, a is the average distance between the 
points with known values. 

As Arthur (1972) states that no interpola- 
tion method has a theoretical basis, he is ap- 
parently unaware that his method differs 
from the one derived in correlation theory 
only in the criterion for selection ofthe corre- 
lation function. 

HARDY'S INTERPOLATION WITH MULTIQUADRIC 
EQUATIONS 

Hardy (1971, 1972) developed an interpo- 
lation method which, also, makes use ofEqua- 
tions 3a,b. The role of the correlation func- 
tion is here assumed by one of the functions 

and 

Here, d is again the distance between two 
points whereas C is a constant to which a 
value is assigned in advance. 

Hardy (1971) has given the interpolation its 
geometrical interpretation: it is simply a 
summation ofn functions. Each term in Equa- 
tion 3a contributes one function to the sum- 
mation. Each function contains only one ad- 
justable parameter which is the componentai 
of the vector a. 1x1 the two-dimensional case, 
this function becomes a surface of revolution 
with its extreme at the i-th reference point 
and with aiB(d) as a vertical section. 

At first sight, Equations 10 and 11 may 
seem to be very unsuitable as correlation 
functions because B(C4) increases with in- 
creasing values of p. However, it must be  
borne in mind that both here and in the case 
of the rigorous application of correlation 
theory the ai are not restricted to positive 
values and therefore in both cases both max- 
ima and minima can occur at the reference 
points. Hardy reports reasonable-looking re- 
sults in the use of his formulation for contour- 
ing. These results are obtained by carefully 
choosing the reference points at significant 
terrain points such as highs and lows. 

This seems to indicate that the form of the 

correlation function may not be very critical 
especially if a rather large number of refer- 
ence points is used. Nevertheless, to avoid 
sharp peaks or dips at the reference points, 
one should avoid functions such as Equations 
1 and 2, and Equation 10 with C = 0. 

In a more sophisticated version of the 
method (Hardy, 1971), a polynomial of low 
degree is added to the first parts of Equations 
3a.b. 'The coefficients of this volvnomial are . , 
determined simultaneously with the compo- 
nents of the vector a by adding suitable con- 
dition equations to Equations 3b. This means 
that here a trend surface is determined simul- 
taneously with the vector a. 

An entirely different method of interpola- 
tion and smoothing is the method of moving 
averages. Here, the interpolated value of a 
function at any point is computed as a weight- 
ed  average of the values at the reference 
points. The weight attached to a reference 
value is a function of the distance from the 
interpolated point to the reference point. 
Therefore, the interpolated value is com- 
puted independently for each point. 

Taking the case of the height interpolation 
over a given area, the interpolated value may 
be interpreted as the height of a horizontal 
plane. Therefore, in the method of moving 
averages, for each interpolated point a hori- 
zontal plane is determined and its height is 
taken as the interpolated value at the point. 

The method of interpolation and smooth- 
ing developed by Schut (1970, 1972) is a 
generalization of the method of moving aver- 
ages. Taking again the case of the height in- 
terpolation, the horizontal plane is replaced 
by a tilted plane or even by a curved surface. 
Again, for each interpolated point such a sur- 
face is computed and its height at the point is 
accepted as the interpolated value. 

One  important consideration in  this 
method is the choice of the surface which is 
computed for each point. To save computa- 
tion time, it should have only a few paramet- 
ers. A simple formulation is a polynomial 
with respect to the planimetric coordinates. 
It need not have higher than first- or second- 
degree terms. 

A second important consideration is the 
choice of weights. The weight should be a 
monotonically decreasing function of dis- 
tance. As a result, the totality of interpolated 
points defines a continuous surface which 
cannot be given an analytical formulation. A 
rather sharp drop-off of the weight at small 
values of the distance produces a surface 
which fits well at the reference points. A 
slower drop-off produces a smoothing effect. 
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In  experiments with interpolation in 
planimetric block adjustment (Schut 1970), 
the best results were obtained with the 
weight function. 

Here, r was the ratio between the distance to 
a reference point and a maximum distance 
beyond which reference points were not 
used. These results were obtained with a 
fixed distance which was somewhat larger 
than the largest distance in the block. For 
ratios smaller than 0.01, r was made equal to 
this value. This prevents the weight from ris- 
ing to infinity as r approaches zero. 

The use of a maximum distance by which 
all distances are divided serves two pur- 
poses. Firstly, it makes it possible to specify a 
weight function which can be used indepen- 
dent ofthe size of the block and of the unit of 
measurement. Secondly, by making the 
weight function approach to zero as the dis- 
tance to a reference point approaches the 
maximum distance, reference points beyond 
this distance are not used in the computation. 
In the case of a dense net of reference points, 
the proper choice of a maximum distance can 
save much computation time. 

A weight function which proved to be suit- 
able in a case where a strong smoothing was 
required (Schut 1972) is: 

Various other weight functions could be 
used. Arthur (1972) has suggested replacingr 
in the denominator of the weight function for 
interpolation by r2. This causes a considera- 
bly sharper dropoff in weight with increasing 
values of r than does an increase in the pow- 
ers of 1 - r and 1 - r2. 

A function which can be adapted to both 
interpolation and smoothing is 

w = exp (-ar2). (14) 

If the constant a is equal to 14 or 20, this 
function varies from unity a t r  = o to less than 

or lo-*, respectively, at r = 1. The 
smoothing effect could be varied by varying 
either one or both of the constant a and the 
maximum distance. However, both these 
measures can affect the number of points that 
effectively participates in the interpolation. 
Rather, the degree of smoothing should be 
controlled by using the weight function 

w = exp (-axz); x = rl(b + (1 - b)r) . (15) 

Here, a is a fixed value which may be taken to 
be 14 and b is a variable parameter. In the 
case of a fairly regular distribution of refer- 
ence points and the use of a maximum dis- 
tance which is about four times the average 
distance between those points, the value b = 
0.2 gives very little smoothing, b = 1 gives a 
fair amount of smoothing, and b = 2 gives a 
very considerable amount of smoothing. 

To evaluate and compare the results that 
can be obtained with these methods, they 
were applied to the interpolation of points on 
a known analytical surface in three- 
dimensional space. In this application, and 
by reason of the geometric interpretation, a 
method based on the formalism of correlation 
theory may be called the  multisurface 
method and the method ofpointwise interpo- 
lation may be called the moving surface 
method. 

The analytical surface was constructed by 
Dr. V. Kratky of the Photogrammetric Re- 
search Section for a non-topographic applica- 
tion of photogrammetry. Profiles in 
x-direction through this surface form a 
wavelike pattern while profiles in y-direction 
vary from a straight line to a convex curve. A 
set of 17 x 17 points was used covering about 
125 mm in x-direction (about one 
wavelength) and 160 mm in y-direction. The 
maximum variation in height is about 26 mm 
and the mean height is zero. 

This surface is clearly not a representative 
example of an isotropic stationary random 
function. Not only does it show systematic 
patterns, but the patterns in the x-  and 
u-directions are different. Results obtained 
with this surface should be instructive be- 
cause it corresponds to the situation often 
encountered in practical applications. For in- 
stance, heights in a digital terrain model can 
hardly be regarded as such a function. 

The multisurface method was used with 
correlation functions of the type proposed by 
Kraus and by Arthur: 

B(d) = exp (-ad2/bZ) 

in which a and b are parameters whose values 
are specified in advance andd is the distance. 
This function actually has only one parame- 
ter, the ratio alb2. 

When first using this method with correla- 
tion functions of this type and with various 
values of the ratio, very poor interpolation 
results were obtained. This can be readily 
explained by the markedly anisotropic be- 
havior ofthe analytic surface and the geomet- 



TABLE 1. RESULTS O F  MULTISURFACE METHOD O F  INTERPOLATION WITH CORRELATION FUNCTION exp 
(-ad21b2). 

y-scale reduction 0.62 y-scale reduction 0.25 
Values of a/h2 Max. error RMS error Max. error RMS error 

ric interpretation of the interpolation as a 
summation of surfaces of revolution. 

Arthur (1972) remarked that the use of only 
distances in the correlation function is not 
very satisfactory if the distribution of refer- 
ence points is markedly anisotropic and that 
the anisotropy should be eliminated by a pre- 
liminary affine transformation. In the present 
situation, this requires the reduction of the 
y-coordinates by a factor of about 0.62. In 
Arthur's correlation function, a equals 2.5 
and b is the average distance between refer- 
ence points. After the scale reduction of the 
I/-coordinates and taking into account all di- 
rections, the average distance lies between 
25 and 30 mm. 

Accordingly, further experiments were 
performed with various scale factors applied 
to the y-coordinates. Table 1 displays some of 
the results obtained with the factors 0.62 and 
0.25, and varying the ratio alb2. With the fac- 
tor 0.62, a shallow minimum ofboth the max- 
imum error and the RMS error is reached with 
a = 2.5, b = 27 mm. However, ifh is increased 
beyond 35 mm, the results improve very sig- 
nificantly until the value b = 85 mm is 
reached. Beyond this the interpolation fails, 
even with double precision arithmetic, be- 
cause the matrix B becomes singular. At each 
of several values of alb2, the factor 0.25 con- 
sistently gave better results than other scale 
factors. 

These results show that it is not sufficient 
to decide upon a correlation function of this 
type and to derive the ratio alb2 from theoret- 
ical desiderata. Also, the introduction of a 
likely correlation function and of isotropy in 
the distribution of the reference points are 

together not sufficient to obtain optimum re- 
sults. 

An additional measure that should be taken 
is to bring the data into a form that is more 
representative of an isotropic stationary ran- 
dom f~~nct ion.  This can be done by means of 
the concept of referring the data to a trend 
surface, and not simply to the horizontal 
plane at mean height. Simple formulations 
for such a surface are polynomials and har- 
monic functions of low degree. 

In the present instance, the wavelike form 
of the analytical surface does not make it pos- 
sible to fit a polynomial of low degree. A 
harmonic function could fit rather well but it 
would have required additional program- 
ming. As an interesting alternative, a trend 
surface was computed by the moving-surface 
method. Moving surfaces of the first and sec- 
ond degree were used with a maximum dis- 
tance of 100 mm and the weight functions of 
Equations 14 and 15. Results are shown in 
Table 2. Comparison with the relevant values 
in Table 1 shows that the introduction of a 
trend surface greatly improves the result of 
the multisurface method. 

The interpolation was performed also by 
the moving surface method. Here, a second- 
degree moving surface was used in combina- 
tion with the reduction factor 0.62. The best 
results that were obtained with various 
weight functions are shown in Table 3. The 
maximum distance of 75 mm which was here 
used in the weight function proved to be the 
smallest value that was suitable. The use of 
the weight function of Equation 14 together 
with a larger value of the maximum distance 
produces a very strong smoothing effect. 

TABLE 2. RESULTS OF MULTISURFACE METHOD AFTER REDUCING DATA TO A TREND SURFACE; 
CORRELATION FUNCTION, exp ( -  14d2/1002); SCALE FACTOR, 0.62 

Construction of trend surface Max. error RMS error 

moving surface of degree 1, 
using Eq. (14) with a =  14 

moving surface of degree 2, 
using Eq. (14) with a= 14 

moving surface of degree 2, 
using Eq. (15) with a=14, b=0.5 
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TABLE 3. RESULTS OF MOVING SURFACE METHOD, USING A SECOND-DEGREE MOVING SURFACE .4ND A 

MAXIMUM DISTANCE OF 75 M M  

Max. error at 
Weight function Max. error RMS error reference points 

(I - r)3 (I - r2)3/r 0.35 mm 0.12 mm 0.01 mm 
(1 - r)3 (I - r2)3/r2 0.36 0.12 0.00 
Eq. 14; a=20 0.30 0.11 0.11 
Eq. 15; a = 20, b = 0.2 0.35 0.12 0.00 
Eq. 14;a=14 0.30 0.11 0.30 
Eq. 15; a=14, b=0.2 0.41 0.14 0.00 

Weight functions that result in little or no 
smoothing together with a smaller value of 
the maximum distance tend to produce gross 
errors in some points with relatively few ref- 
erence points nearby. 

The ex~er imen t s  show that the method of 
prediction and filtering that is based on corre- 
lation theory can give excellent results even 
if the data have a very systematic character. 

They show also that it is not sufficient, as 
done in Arthur's method, to use the for- 
malism of the method although deriving the 
correlation function from other considera- 
tions. 

The  choice of the Gaussian curve as corre- 
lation function, adopted by Kraus and by Ar- 
thur, could give good results but  only be- 
cause the known analytical surface which 
was interpolated made it possible to deter- 
mine the most advantageous value of this 
parameter experimentally. By far the best re- 
sults were obtained by first reducing the data 
not by their arithmetic mean but with respect 
to a trend surface. 

Accordingly, to obtain best results in prac- 
tical applications where the data will often 
have a systematic character, first a trend func- 
tion must be  determined which represents 
the overall systematic trend in the data, and 
the data must b e  reduced by subtracting for 
each point the value of the trend function. 
Next, the correlation function should be  de- 
termined from the reduced data. There is no 
good reason why this function should b e  re- 
stricted to a Gaussian curve. A good alterna- 
tive would be the function given by Equation 
7. Subsequently only, the interpolation or fil- 
tering should b e  performed. 

One may conclude from the experiments 
that, ifthis procedure is followed, the method 
of prediction and filtering is superior to the 
method pointwise interpolation and smooth- 

ing. On  the other hand, if this procedure is 
not followed, the method can easily give 
inferior results. This conclusion reduces the 
importance of the method of pointwise inter- 
polation and smoothing but it leaves it not 
entirely without interest. 
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