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Fi rst-Order Optical 
I ranstormations 

By making the relevant parameters of the various optical 
elements continuously adjustable, and controlling them 
systematically, photographs may be transformed, area by 
area, in quite arbitrary ways. 

(Abstract on next page) 

H I S  PAPER demonstrates the use of or- T thogonal matrices to simplify the  
analysis of optical systems which are de- 
signed to realize the  general two- 
dimensional linear transform relation of 
image to object. In general, such systems in- 
clude anamorphic lenses, and hence do not 
have cylindrical symmetry around the optical 
axis. T h e  relations between system- 
transform coefficients and the relevant 
parameters of the component optical ele- 
ments are found to be generally non-linear. 
As the solution of these relations can be quite 
tedious, it is deemed worthwhile to present 
an organized treatment of the subject. 

As an example of application of the subject, 
NKI Systems has designed and manufactured 
instruments for data reduction of aerial 
photographs with substantial amounts of sys- 
tematic (i.e., tilt, image motion and other 
types of) distortion. Stereo viewing of such 
photographs is sometimes required for opera- 
tion of these instruments, and approximate 
optical correction of the distortions is hence 
necessary. Although the distortions are not 
linear, they may be treated as approximately 
so over the fields of view of the optical sys- 
tems. In  one such instrument a mini- 
computer first computes the distortions at the 
desired points of the photographs, then trans- 
lates these into appropriate settings for the 
optical elements, and finally provides cor- 
responding electrical signals to the motor- 
driven zoom lenses, continuously variable 
and rotatable anamorphic lenses and image 
rotators which are part of the optical system, 
and to X-Y stages which translate the photo- 
graphs under the optical system. In this way 

FIG. 1. Interpretation ofthe rotation matrix [R,, ( e ) ]  
and the reflection matrix [ ~ e  (4)] as operators 
which change the pointing angle ot a vector, but 
not its magnitude. An alternate possil)le interpreta- 
tion is to cotlsider the vector as fixed, and the rota- 
tion and reflection matrices as producting inverse 
operations on the coordinate axes. These two pos- 
sible interpretations are equivalent, but they may 
have respectively opposite positive directions for 
one-coordinate axis and for angles. 

continuous automatic stereo viewing is pro- 
vided with stage rates of translation up to 
about (100IM) mm per second, where M is the 
particular setting of magnification (variable 
from l o x  to 2 0 0 ~ ) .  At the time of writing this 
paper,* high performance systems utilizing 
these principles have been in successful op- 
eration for over two years. 

Assuming that the field of view is suffi- 
ciently limited so linear treatment is a satis- 
factory approximation, one may take a pair of 
crossed vectors (in the object plane) as rep- 
resentative of objects to be projected. The 
corresponding image is then also a pair of 
crossed vectors (in the image plane). The op- 
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tical transformation may hence b e  rep- 2. Reflection (two dimensional matrix: 
resentedby the two-dimensionalmatrix equa- 
tion: cos #J sin #J 

Ax1 Ax2 
By multiplying them out one may see that 

these two types of matrix satisfy the four ma- 
t:ix relations: 

where AX, and AY, are components ofthe ob- 
ject vectors, and h, and Ay, are components [ R ,  (04 ] [R" (0.) ] = [R,  (02 + e l ) ]  (4 )  
of the corresponding image vectors. Hence 
the objective is to express the overall trans- [R,, (02) I [Re ( & ) ]  = [R, (02 + + I ) ]  (5) 

formation parameters A, B, C, D as functions 1% ($41 [Ro ( e l ) ]  = [R, ( $ 2  - O I ) ]  (6) 
of the setting parameters for the component [Re (42)] [Re $1) ] = [R. (42 - $ I ) ] .  (7) 
optical elements in a form which may be Figure 1 illustrates geometric interpretation solved for the latter. of the rotation, and reflection matrices. 

BASIC PRINCIPLES I n  terms of these a general two- 
The technique used here is that of express- dimensional matrix may be expressed as: 

ABSTRACT Optical systems, which include anamorphic lenses operat- 
ing in  tandem with other types of optical elements, are capable of 
general linear two-dimensional transformations of the input object 
plane. Over limited fields of view such linear transformations are 
often satisfactory approximations of more general types of transfor- 
mations. By making the relevant parameters of the various optical 
elements continuously adjustable, and controlling them systemati- 
cally as functions of photograph coordinates (by  computer, for exam- 
ple) entire photographs may be transformed, area b y  area, in  quite 
arbitrary ways. In particular, corrections for tilt, image motion, and 
other types of systematic distortion may be obtained optically, over 
each successive field of view. Implementation of this scheme is 
greatly facilitated b y  the use of orthogonal matrices. Thewblack box" 
point of view considers that the overall transformation may be rep- 
resented as the matrix product of individual matrices representative 
of each of the component optical elements. 

ing general matrices as linear combinations 
oforthogonal matrices. An orthogonal matrix [i g]  = P [ R .  ( b ) ]  + Q [R .  (+)I 
is one whose transpose is equal to its inverse, (8) 
and there are two types-those whose deter- with 
minant is equal to +1, and those whose de- 
terminant is equal to - 1. In this paper these 
two types are called rotation and reflection 
matrices, respectively. (9) 

Two dimensional (i.e., 2 by 2) orthogonal 
matrices have precisely one degree of free- 
dom, i.e., their elements may be expressed as (10) 
functions of only one parameter. If the latter 
is taken as an angle, then the two types are: 0 - t a n p 1  (z) 

1. Rotation (two dimensional) matrix: 

cos 0 -sin 0 
(12) 

(2) From Equations 4 through 12 it follows that 
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k o s  el --sin O ]  E ;] E o s  -sin 03 
sin O 1  cos O1 sin O z  cos Oz 

Hence P and Q are invariant to rotations 
(whether pre or post applied). Thus A, B,  C ,  
and D on the one hand, and P, Q, 0,  and 4 on 
the other hand are two alternate equivalent 
sets of four parameters for the  two- 
dimensional first-order transformation. 

A rotatable ananlorphic lens has two de- 
grees of freedom which are here taken as the 
stretch ratio, a, and the angle fro111 the X 
coordinate axis to the anamorph major axis, 
e l .  In terms ofthese the appropriate matrix for 
the anamorphic lens is 

cos O 1  -sin O l  6 cos O1 sin el 
Lin O l  cos 0 1  [O $1 I s i n  Ol co,v 0 1  

Hence the overall transformation of an op- 
tical train consisting of a zoom lens followed 
by a rotatable anamorphic lens followed by 
an image rotator may be represented by 

In Equation 15 [R, ( -e l ) ]  represents a rota- 
tion of coordinate axes-to the anamorph 
major and minor axes-and [R, (O1)]  
represents rotating the coordinates back 
again. [Ro(02)] ,  however, represents rotation 
of vectors-hence has the opposite sign from 
the corresponding coordinate rotation. If the 
image rotator occurs optically ahead of the 
anamorph then the transformation is the 
same as Equation 15 except that Oz in the 
second term has its sign changed. If A, B, C ,  
and D are regarded as known then Equations 
8 through 12 may be used to solve Equation 
15 for M, a, O1 and 02. 

From Equations 9 and 10 it may be seen 
that the matrix determinant (AD -BC) is 
equal to (PZ -Qz) .  Because P and Q are, by 
definition, non-negative it follows that the 
necessary and sufficient conditions for Mz 

and a in Equation 15 to be positive are that 
this determinant must be positive. Should a 
transformation be desired with values for A, 
B, C ,  and D such that (AD -BD) is negative, 
then the expression equivalent to Equation 
15 should include an image reflector in place 
of the image rotator which is shown. The so- 
lution would then yield positive values forMz 
and a-with the negative determinant. 

In analyzing aerial photographs of the 
earth's surface it is common to choose coor- 
dinate systems in such a way that the deter- 
minant ( A D  -BD)  is generally positive, 
though the latter is son~etimes taken as gen- 
erally negative. In such applications the de- 
terminant is zero only for photograph per- 
spective rays which are intlli5 horizontal plane 
through the perspective center. As these do 
not usually occur, it is not likely that the de- 
terminant will change sign within any one 
photograph. Special provision must be made, 
however, for the situation when A = D and 
B = -C,  if the determinant is positive, or for 
A = - D  and B = C if it is negative. Either of 
these special cases results in unity anamor- 
phic ratio at an indeterminate angle. 

As an application of these principles, we 
consider the net ana~norphic effect of two 
crossed cylindrical lenses. Let each cylindri- 
cal lens have a stretch ratio N, and let the 
angle between the two be O1.  Then the com- 
bined transformation ofthese two elements is :;I = E ;] [ cos 01 sin 01 

-sin O 1  cos O 1  

1 0  N cos O1 sin O 1  

0 N - 
] (16) [ 11 = [-.in Ol I 1 cos O l  

N 
Hence 

P=v [(w) cos2 O l  +.*in2 0.  (1,) I" 
Q = (Nz  - 1 )  cos 01/2N 
and 

pz - Q 2 = 1,  as expected. 

Hence the effective anamorphic ratio is 
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Tbis is a non-linear function of dl which var- 
ies from N2 to 1 as 1 9 ~  varies from 0" to 290'. 
The analysis also shows that, in general, the 
two crossed anamorphs also produce a small 
net image rotation. 

The preceding discussion demonstrated 
the usefulness of rotation and reflection ma- 
trices in analyzing optical systems which in- 
clude anamorphic lenses. For simplicity, the 
rotation and reflection matrices were treated 
abstractly, without discussing how they 
might be realized. Although it is well known 
that these matrices are realized with inclined 
plane mirrors, it nevertheless seems worth- 
while to state briefly some details ofhow this 
is done. This discussion may also be consid- 
ered as an application of the use of these 
matrices. 

The black box view of a plane mirror is, of 
course, that there are input andoutput planes 
normal, respectively, to the incident and re- 
flected sections of the optical axis, and that 
only vectors in these planes are considered as 
objects and corresponding images. It is then 
convenient to use two different coordinate 
systems for object space and image space. 
The latter are taken so their respective + Z  
axes are parallel to the two sections of the 
optical axis, and so that one points toward, 
and the other points away from, the mirror. 
(In other words, the two + Z  axes are like an 
axial incident and reflected ray.) In this way 
the object and image planes are both rep- 
resented by X-Y coordinate planes, which are 
both normal to the optical axis, and the trans- 
formation is analogous to those which were 
discussed previously. 

The reflective transformation of a plane 
mirror may be represented by the vector 
equation 

3 

where V k  are the object-space coordinate sys- 
tem conlponents ofan arbitrary object vector, 
V, are the image-space coordinate systemcom- 
ponents of the corresponding image vector, 
CIk are the components of the 3 x 3 rotation 
matrix which turns the object-space coordi- 
nate system into the image space coordinate 
system, and A, and Ak are the image- and 
object-system components of a unit vector 
normal to the mirror. It may be shown that the 
matrix that is bracketed in Equation 20 satis- 
fies the requirements for being a 3 x 3 reflec- 
tion matrix. I t  will be  represented by X l k .  

If the object-space and the image-space 
noordinate systems are oriented as was de- 

scribed earlier (i.e., with their respective Z 
axes parallel to the object space and image 
space sections of the optical axis), then the 
reflection matrix in Equation 20 may be put 
in the form: 

Evidently this is equivalent to: 

where [ R , ( $ ) ]  is theX-Y (2 x 2) sub-matrix of 
Equation 21 and 

Hence the Z-axis portion may be ignored if 
the object and image vectors are constrained 
to be normal to the two sections of the optical 
axis. 

Thus, within the framework of the main 
subject of this paper, the transformation pro- 
duced by a generally inclined plane mirror 
may be represented by a (2 x 2) reflection 
matrix whose angle is given by Equation 23. 
From this it follows (see Eauations 4 through 

u 

7) that one may combine an odd number of 
mirrors to realize a desired reflection matrix, 
or an even number of mirrors to realize a 
desired rotation matrix. (Note that, in this re- 
spect, Dove prisms and Pechan prisms are 
image reflectors-rather than image rotators.) 

In applying Equation 23 it is sometimes 
convenient t o  use the familiar process of 
treating a coordinate rotation matrix as the 
matrix product of rotation matrices represent- 
ing plane rotations about successive posi- 
tions of particular coordinate axes. 

As an example of Equation 23, let the two 
segments ofthe optical axis be statedin terms 
of their respective aximuth and elevation 
angles-with respect to a common base coor- 
dinate system whose +Z axis is vertically 
upward. Azimuth is taken as a four-quadrant 
angle, positive right handed about the base 
+Z axis, from the base + X  axis to the horizon- 
tal projection of the rotated + Z  axis. Eleva- 
tion is taken as a two-quadrant angle, positive 
left handed about the rotated +X axis, from 
the base horizontal plane to the rotated + Z  
axis. As stated before, the two rotated +Z axes 
are parallel to the two segments ofthe optical 
axis, and one (either one) points toward the 
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mirror, whereas the other one points away for each element, except the last one, also 
from it. The mirror inclination is, of course, being the input plane for the next element in 
that which is particularly required to reflect the sequence. Hence the overall transform is 
one segment ofthe optical axis into the other. constructed as the matrix product of the ma- 

With these conventions the two rotation trices representing individual elements, for 
matrices which carry the base coordinate sys- which relevant parameters are easily 
tem into the object and image systems are specified. 

[ R 1 ]  = [R ,  ( z  - 6 d ]  [ R , ( ~ I  + g)] (24) Inasmuch as the purpose of this analysis is 
to predict the overall performance of the sys- 

[&I = [ R J ; - 0 4 ) ]  [Rz(e3  + $ ) I  (25) tem as a whole, it is not necessary that the 
analytical subdivision correspond to a real 

where @ I , @ , .  . . are respectively the two pairs optical subdivision. other words, the so 
of azimuth and elevation angles. Hence the called object andimaKe planes for individual 
rotation matrix that carries the object system elements are not necessarily planes at which 
into the image is the system produces intermediate optical 

= [&I [ R I ] - '  real images. The question of where (or 
whether) the system requires intermediate 

= ['x (?-'4)1 L R ;  ('3 - '1)1  ( 0 2  - $11 real images is part of the design problem- 
which is not the  subject of this paper. 
Nevertheless it is assumed that the system as 

0 - C ,  S 4  a whole ~ r o d u c e s  an actual optical image 
(final output) of an actual optical object (ini- 
tial input). The assertion is that the analysis 
correctly describes the relation between the 

(26) input (object) and output (image) for the sys- 
Multiplying these out and applying Equa- tern as a whole, and not that it implies any- 

tion 23 gives thing about ~ o s s i b l e  intermediate optical 

( S 2 - ~ 3 )  sin (0,-0,)  
I$ = tan-' 

-C2C4 + (I-s2s4)  cos ( e3 -e l )  

with S, = sin 0, and C ,  = cos 0, This is in aform 
which may be readily applied to each of two 
or more plane mirrors in tandem. It is derived 
for coordinates taken with the X axis always 
in the horizontal plane, and with the +Y axis 
always either in  or above the horizontal 
plane. The image-space coordinate system 
for any particular mirror is, of course, the 
same as the object space coordinate system 
for the next mirror in the sequence (if there is 
one). 

As an example, Equation 27 has been used 
in determining the inclinations of two mir- 
rors and a film projection plane so as to effi- 
ciently fold an optical path into a prescribed 
volume, with a prescribed orientation of the 
doubly-reflected image. 

SUMMARY 
The black box view of an optical system is 

that the optical system acts like a 2 x 2 matrix 
operator, which transforms the input object 
into a corresponding output image. Factoring 
this matrix operator into component sub- 
matrices is equivalent to analyzing the over- 
all optical system as a group of individual 
elements, operating in tandem, with this 
same black box view taken for each indi- 
vidual element-and with the output plane 

real images. 
In developing this method of analysis, it 

turns out that the relations between the trans- 
form matrices and the relevant optical 
parameters ofindividual elements are gener- 
ally non-linear, and hence tedious to work 
with if not treated in a systematic way. Calcu- 
lation is found to be greatly facilitated if the 
general matrices are resolved into linear 
combinations oforthogonal matrices. Hence 
discussion is included of pror xties and ap- 
plications of the two types of orthogonal ma- 
trix, which for convenience are referred to as 
rotation and reflection matrices. 

In particular, applications of rotation and 
reflection matrices to anamorphic lenses, and 
also to plane mirrors, are discussed in some 
detail. As additional examples of application 
of orthogonal matrices, it is observed at this 
point that reflection matrices may be used to 
represent the difference between projection 
of positive and negative film, and also the 
difference between projecting either film 
type emulsion side u p  versus emulsion side 
down. Finally, reflection matrices also cor- 
respond to the difference between front 
screen and rear screen viewing. Hence the 
overall transform for the complete system 
may include matrices for the input and/or 
output planes themselves, as well as for the 
various individual optical elements of which 
the system is composed, and is the matrix 
product of all these individual matrices. 


