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Accuracy Aspects of
Non-Metric Imageries®

Opening the door to the use of non-metric cameras should
enable many engineers and scientists to make full use of the
technical and economical advantages of photogrammetry.

InTrRODUCTION

Rr‘.sn-:-\ RCH IN close-range photogrammetry at

the University of Ilinois and elsewhere
has clearly shown that®>13, for numerous areas
of applications and potential applications,
fully acceptable accuracy can often be
achieved with better non-metric cameras,
such as Hasselblad, Robot, Linhof Technika,
ete., provided that appropriate measures are

mations. In view of the relatively large lens
distortions and film deformations generally
associated with non-metric cameras, the
analytic approach has been almost exclu-
sively used so far in photogrammetric data
reduction from non-metric imageries.

In 1971 an analytic data reduction method,
particularly suitable for non-metric im-
ageries (Direct Linear Transformation—bLt)

Anstract: An updated version of the Direct Linear Transformation
(DLT) emphasizes the mathematical modeling of lens distortions and
Jilm deformations. Experimental results indicate the levels of accu-
racy attainable at close range with four readily available non-metric
cameras (Huasselblad 500 C, Honeywell Pentax Spotmatic, Crown
Graphic, Kodak Instamatic 154) and the Hasselblad MK 70 metric
camera. A technique compares the photogrammetric worthiness of
measuring systems involving any camera (metric or non-metric). Ex-
pressions enable one to estimate the theoretically expected accuracies
inobject-space coordinates. The optimumnumberofobject-space con-
trol points for the DLT solution is derived.

taken in data acquisition and data reduction.
Essentially, one has to: (a) choose a suitable
configuration for data acquisition (b) provide
the necessary object-space control, (¢) coun-
teract possible internal instability of the
camera by combining calibration procedures
with the measuring process, and (d) choose a
suitable mathematical model to correct for
the effect of lens distortions and film defor-
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studies supported in part by the National Science
Foundation (grant GK-11655).

t Currently a Research Associate, Biostereomet-
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was developed by the authors'. This method
has since been used in numerous applica-
tions (e.g., by Williamson!¥ and Faigé7 and
others) and has proven its practical merits.

In this paper, an updated version of the pur
approach is discussed, with emphasis on the
mathematical modeling of lens distortions
and film deformations. A number of
mathematical models have been investigated
and the one deemed most suitable (on the
basis of the experiments conducted and the
statistical analysis undertaken) is recom-
mended.

To the accuracy-conscious user of non-
metric cameras, the experimental investiga-
tion (summarized later in the section, “The
Photogrammetric Potential of Any Camera”)
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may be of some interest. These results indi-
cate the levels of accuracy attainable with
four readily available non-metric cameras
(Hasselblad 500 C, Honeywell Pentax Spot-
matic, Kodak Instamatic 154, Crown
Graphic) as well as Hasselblad MK70.

Basic DLT EguaTtions
As outlined in Reference 9, the basic equa-
tions for the Direct Linear Transformation
method are:
LX + LY +1,Z + 1,
X + [1oY + I Z + 1

X+ Ax +

X + 1Y + 1,Z + 1,
y + Ay + = (.
[X + oY + 1 Z + 1 (1)

where x,y are the comparator coordinates of
an image point X,Y,Z are the object-space
coordinates of that point, Iy,l,, . .. ,l;; are the
transformation coefficients, and Ax,Ay are
image refinement components in x and y to
account for the nonlinear components of lens
distortions and film deformations.

Inthe linearized form, Equation 1 takes the
following form:

Av, +AM +x+ L X+ LY+ LZ+1,
+t'ng+f'wx1’+l'nIZ=O

Av, +AA +x+ s X+ 1Y+ 1;Z+1s
+lLyX +hoyY +luyZ=0 (2

wherel,, ls, . .., l;; are transformation coeffi-
cients, A =l X + L1, Y + I, Z + 1, v,, v, are
residual errors in image coordinates after re-
finement.

It should be pointed out that the linear
components of lens distortion and film de-
formation are taken into account by the elev-
en transformation coefficients (I; through
[11) in Equation 2 in the process of transform-
ing comparator coordinates into object-space
coordinates. These linear components ac-
count for different scale factors along the x
and y directions and for the nonperpendicu-
larity of the comparator axes.

IMAGE REFINEMENT

The incorporation of provisions for image
refinement (to account for the linear and the
nonlinear components of lens distortions and
film deformations) in data reduction is highly
recommended if one wishes to obtain
reasonably accurate results. In applications
of low accuracy requirements, one may dis-
regard Ax and Ay in Equation 2 where the
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nonlinear components of lens distortions and
film deformation are not taken into account.

LENS DISTORTIONS

In an ideal lens with perfectly centered
elements, lens distortion is strictly symmet-
rical about the optical axis. Errors in center-
ing lens elements lead to asymmetrical lens
distortion.

Symmetrical Lens Distortion, A generally
accepted mathematical model for symmetri-
cal lens distortion is an odd-powered
polynomial:

Ar = k3 + korS 4., + k2t (3)

where Ar is radial lens distortion, r is the
length of the radial vector from the point of
symmetry to the point under consideration, r?
=(x — x)? + (y — y )? x,y are image coordi-
nates of the point under consideration, x_,y,
are image coordinates of the point of sym-
metry, and (2n + 1) is the degree of the odd-
powered polynomial.

Investigations have shown that, for the rel-
atively simple lenses often used in non-
metric cameras, k, is the only significant coef-
ficient in Equation 3. Equation 3 can thus be
reduced to:

Ar = kr3. (4)

Asymmetrical Lens Distortion. A gener-
ally accepted mathematical model for asym-
metrical lens distortion is the following one
which reflects the distortion caused by de-
centering of lens elements and accounts for
the selection of a point other than the point of
svmmetry as reference:

Il

Ax = py (r2 + 2x2) + 2pa E[T:

Ay = pa(r? + 2y2) + 2p, xy (5)

where Ax,Ay are asymmetrical lens distortion
components, r is the length of the radial vec-
tor from the point of symmetry to the point
under consideration, x,y are image coordi-
nates of the point under consideration, re-
ferred to the point of symmetry, and p,,p2 are
coeflicients of asymmetrical lens distortion.

FILM DEFORMATIONS

Numerous sources contribute to film de-
formations in non-metric imageries includ-
ing irregularities in film material, handling
during processing, unflatness of the film in-
side the camera, tension exerted on the film
inside the camera (between one photograph
and another) and outside the camera (during
processing), and temperature and relative
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humidity during storage of the film and dur-
ing its processing.

Several mathematical models can be used
to represent film deformations. To estimate
the parameters of such models, one has to
have some calibrated references (fiducial
I'I'lill‘k.\' or |'(‘3\'L'ill1). II] non-metric cameras,
however, such references are generally not
available and one can only use object-space

control to determine the combined effect of

film deformation and lens distortion. The es-
timates RMS values of the residual errors
after image refinement, thus reflect, in this
instance, unrepresented film deformations,
unrepresented lens distortions and the ran-
dom errors in measurement,

MATHEMATICAL MODELING OF IMACGE REFINEMENT

Models Tested. Based on the mathematical
models used for film deformation and lens
distortions inaerial cameras, and on results of
experiments conducted by the authors?, the
following six mathematical models for image
refinement in non-metric photography were
selected for an experimental investigation.

Model 1. Linear polynomial in x and y,

Ax = a; + axx + asy

Ay = a4 + asx + agy. (6)

In this model, only the linear components
of lens distortion and film deformation are
taken into ‘consideration. The nonlinear
components of image refinement are neg-
lected. Equation 6 accounts for the lack of
perpendicularity of the x and y axes and al-
lows for ditferent scale factors along the x and
y directions.

Incorporating Model 1 in Equation 2 does
not change the form of the equations. In other
words, the unknowns in the pur solution
using Model I remain as 11 unknowns. This
should not be surprising as Equation 2, as
stated earlier, takes into account the linear
components of image refinement, in the proc-
ess of transforming comparator coordinates
into object-space coordinates. In combining
the two sets of Equations 6 and 2, the six
coefticients in Equation 6 thus absorbed by
the 11 coefficients in Equation 2.

Model II. One more unknown (k) is
added to Model I to account for symmetri-
cal lens distortion,

Ax

I

ay + apx + agy + x kyr?

Ay = ay + asc + agy + y k2. (7)

in which the terms are defined after Equation
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11. In this instance, the bt solution involves
12 unknowns.
Model ITI.  An odd radial polynomial of
the seventh degree is added to Model I to
account for symmetrical lens distortion,

=y + asx + agy + x (k2 + kort + kqr6)

ag + asx + agy + y (kyr? + kor® + kgr®).
(8)

Ay

I

The pursolution in this instance involves 14
unknowns.
Model IV. Model III is combined with
Conrady’s model® for asymmetrical lens
distortion,
Ax = ay + agx + agy + x (kyr? + kord + kor®)
+ Py (r2 + 2x2) + 2P, xy
Ay = ag + asx + agy + Yy (kyr? + kort + kyr6)
+ Py (12 + 2y?) + 2Pxy. (9)
The prrsolution here involves 16 unknowns.
Model V. The same as Model 1V, except
the radial polynomial accounting for lens
distortion is a full polynomial of the
seventh degree,
Ax = a, + ax + agy
+ X (kg? + kor® + kard + kars + kgr®)
+ Py (r? + 233 + 2P xy
Ay = a4 + asx + agy
+ 1y (kyr? + kor® + kygrt + kgrs + kgr®)
+ Py (r2 + 2y2) + 2P, xy (10)
Here the pursolution involves 18 unknowns.
Model VI. Same as Model V, except the
polynomial in x and y is of the second
degree, accounting for the nonlinear com-
ponent of film deformation,
Ax = 1y + doX + agly = {J412 0 asy%
+x (kyr? + kor® + kgrt + kar® + kgr®)
+ Py (r? + 2x%) + 2Py xy
Ay = ag + ax + agy + agx? + a,oy?
+y (kir? + kor® + kgrt + kg + kgr®)
+P2(r2+2y2J +2P1 xy {l].)
In this model, the pLT solution involves 22
unknowns.
In all the above models, x,y are the image
coordinates of the pointunder co_nsideration,
xs,ys are the image coordinates of the point of

symmetry,x = X — X5,y =y — ys, r = length of
the vector from the point of symmetry to the
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TaBLE 1. CAMERAS USED IN THE EXPERIMENTAL INVESTIGATION
Camera Lens Focal Image Approx.
Length Format Price
{mm) {mm) ($)
Kodak Instamatic 154 Kodak 43 12x 12 15
Crown Graphic Graphex /4.7 135 120 100 300
Honeywell Pentax
Spotmatic Super Takumar /1.4 50 36x24 500
Hasselblad 500 C Planar (2.8 80 55%55 550
Hasselblad MK 70 Biogon /5.6 MK 60 55%x55 4500

image point under consideration, Ax,Ay =
image refinement components, a,as, ... ay
= coefficients of film deformation,
kika, ... ks = coefficients of symmetrical
lens distortion, py.pe = coetlcients of asym-
metrical lens distortion.

Experimental Investigation. Five different
cameras (Kodak Instamatic 154, Honeywell
Pentax Spotmatic, Graflex, Hasselblad 500 C
and Hasselblad MK 70) were used to investi-
gate and compare the six above image re-
finement models. The image format, focal
length of the lens used and the price (1973)
are listed in Table 1 for each of the five
cameras used. Kodak Plus X film was used in
all the cameras except Hasselblad MK 70
where Kodak Tri X film was used.

Ten photographs were taken with each of
the five cameras of a test area in which targets
of known spatial position were placed mainly
in two planes (Figure 1); a total of 39 targets
were used (16 in Plane No. 1, 17 in Plane No.
2. and 6 scattered throughout the test area).
For each camera, five of the photographs
were taken from Camera Station No. 1 and
five from Camera Station No. 2 (refer to Fig-
ure 1). The cameras were hand-held with
their axes approximately horizontal and with
convergence of about 30° (b, = ¢ = 157 as
sketched in Figure 1). In each instance, the
stereobase was approximately 400 ¢m. The
object distance for Plane No. 1 was approxi-
mately 550 em and for Plane No. 2 approxi-
mately 400 ¢m, as sketched in Figure 1.

The RMS values of image plane residual
errors (after image refinement) for each of the
50 resulting photographs are listed in Tables
2 through 7.

Discussion of Results. On the basis of the
results tabulated in Tables 2 through 7. one
can deduce as follows.

A. Regarding modeling of lens distortions.
(1) No significant improvement in accu-

L B 400 cm

1

1

Camera Station No. | Camera Stotion No. 2

|
— o
°|_I5 Jléz-ﬁ'
' [

Comera Mis—’”’l \T‘-Camero Bxis

D, =400 cm
Dy =850cm

— — Plone No. 2

— - Plane No. |
FiG. 1. Plan of set-up for experimental investi-
gation.

TasLE 2. BMS VaLvuEs oF RESIDUAL ERRORS FOR
THE TEN PHOTOGRAPHS TAKEN WITH A KODAK
InsTAMATIC 154 CAMERA

Photo Image Refinement Model Number

No. I 11 111 18Y% A" VI

(pm) (pm) (wm) (pm) (pm) (pm)

1 53.6 13.0 13.2 12.7 127 12.6

2 48.3 13.7 139 1211 11.3 113

3 48.6 13.0 133 129 132 126

4 37.0 152 148 14.1 140 134

5 51.3 139 125 109 114 118

6 39.0 16.1 164 147 150 7.4

7 436 151 152 154 158 150

8 374 185 183 184 187 18.1

9 37.1 186 19.0 190 189 I8.1

10 27.6 132 134 124 123 11.1
Mean

BRMS 43.0 152 152 145 146 135
Value

racy is achieved by representing the lens dis-
tortion by a full polynomial rather than an
odd polynomial (compare results of Model
I1T with those of Model VI).
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TasLE 3. RMS VaLUES OF RESIDUAL ERRORS FOR
THE TEN PHOTOGRAPHS TAKEN WITH A CROWN
Graruic CAMERA

I

TasLE 5. BMS VaLvuEs oF RESIDUAL ERRORS FOR
THE TEN PHOTOGRAPHS TAKEN WITH A
HasseELBLAD 500 C CAMERA

Photo Image Refinement Model Number
No. I I1 111 v v Vi
(pm) (pm) (uwm) (pm) (wm) (pm)
1 129 58 48 48 47 4.0
2 169 93 84 84 82 7.1
3 172 145 119 11.8 11.7 11.8
4 236 122 102 103 103 82
5 244 126 122 122 120 86
6 23.8 152 13,5 136 123 92
7 172 107 88 86 88 72
8 147 116 76 76 77 7.6
9 182 11.7 88 88 88 76
10 92 86 66 66 66 5.8
Mean
BMS 184 115 96 93 94 80
Value
TasLeE 4. RMS VaLues oF REsiDUAL ERRORS FOR

THE TEN PHOTOGRAPHS TAKEN WITH A
HONEYWELL PENTAX SPOTMATIC CAMERA

Photo Image Refinement Model Number
No. I 11 I11 v v VI
(pm) (um) (um) (pm) (uwm) (wm)

1 282 39 39 22 23 22

2 283 39 37 23 23 24

3 283 3.1 31 20 19 18

4 282 32 32 30 27 25

5 26.1 38 37 38 39 37

6 295 40 40 40 40 39

7 303 47 48 43 42 43

8 246 38 40 28 28 28

9 23.1 42 43 35 36 32

10 224 44 45 33 34 32
Mean

RMS 270 39 39 32 32 31
Value

(2) No significant improvement in accu-
racy is achieved by incorporating terms to
account for asymmetrical lens distortion
(compare Models I11 and IV).

(3) Astatistical analysis of the results of the
various models indicate that, for all the
cameras tested except the Crown Graphic,
only those unknowns involved in Model 11
are of significance in representing lens dis-
tortion. For the Crown Graphic camera,
Model I11 showed a little improvement over
Model IT in that respect.

B. Regarding modeling of filim deformations.

(1) No significant improvement in accu-
racy is gained by incorporating a second-

Photo Image Refinement Model Number

No. I I1 111 v v VI

(m) (pm) (pm) (pm) (pm) (um)

1 288 36 24 34 35 30

2 303 49 48 46 45 4.0

3 284 62 55 54 54 52

4 204 36 34 35 35 33

o 252 76 76 T3 67 64

6 342 67 67 68 59 6.0

T 345 7.1 70 68 64 6.0

8 284 66 68 69 7.0 64

9 286 50 49 48 48 47

10 288 78 79 80 82 177
Mean

RMS 308 6.1 6.0 60 58 55
Value

TapLE 6. RMS VaALUES OF RESIDUAL ERRORS FOR
THE TEN PHOTOGRAPHS TAKEN WITH HASSELBLAD
MK 70 CaMERA. CALIBRATED RESEAU
INTERSECTIONS WERE INCORPORATED IN THE
IMAGE REFINEMENT.

Photo Image Refinement Model Number
No. 1 [1 I IV v VI
(um) (um) (um) (em) (pm) (pm)

1 41 42 40 41 41 36

2 41 42 42 43 44 34

3 38 38 39 39 40 38

4 48 46 47 47 48 44

5 45 45 45 43 44 28

6 41 41 39 38 47 27

7 60 59 60 56 51 34

8 49 48 48 47 4.7 45

9 53 54 583 51 52 53

10 39 39 38 39 39 3.1
Mean

RMS 46 46 46 45 45 38
Value

degree polynomial to account for the non-
linear components of film deformations
(compare Models [TT and VI).

(2) Forthe Hasselblad MK 70, incorporat-
ing the calibrated coordinates of reseau inter-
sections in the solution did not significantly
improve the results (compare Tables 6and 7).
C. Regarding the total pur model.

On the basis of the above discussion,
Model 11 is recommended for use in image
refinement for non-metric photography.
Model IT (Equation 7) can be rewritten as:
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TasLe 7. RMS VaLugs oF REsiDUAL ERRORS FOR
THE TEN PHOTOGRAPHS TAKEN WiTH HASSELBLAD
MK 70 CAMERA. CALIBRATED RESEAU
INTERSECTIONS WERE NOT INCORPORATED IN
IMAGE REFINEMENT.

Photo Image Refinement Model Number
No. I 11 11 v \Y VI
(em) (pm) (pm) (um) (pm) (pm)

1 47 41 41 42 42 34
2 48 43 44 45 46 36
3 49 47 45 42 44 38
4 63 50 51 51 52 46
5 57 57 57 58 58 39
6 3.7 38 38 37 38 3l
7 59 59 60 6.1 55 4.5
8 539 59 57 58 57 53
9 58 58 54 55 55 50
10 47 46 46 46 45 42

Mean

RMS 53 50 50 50 50 42

Value

Av = a; + asx + agy + x ky {(x—x,)?
+ (v-v,)%}
Ay = as + asx + agy + 1 ky {(.\."’,\“}2

+ (v - v.)?} (12)

where vy, are image coordinates of the point
of symmetry. (Approximate values for xs and
ys can be determined from the approximate
values of the putcoetficients(ly, . . . [;;) using
Equations 23 and 24 for xo and ye.)

With Model II chosen for image refine-
ment, the bt basic equation (Equation 2) can
be rewritten as:

Avx + Alx—xs) Kr2 + x + [[X + LY + 1,Z
+ Iq + IQY,Y * {10“")’ + f“xz =0

Avy + Aly—y) Kr2 + y + 1sX + LY + 142
+ lg + loyX + LigyY + LywZ = 0. (13)

Equations 13 involves 12 unknowns ([,
ls, ..., 1y, K). A minimum of 6 object-space
control points, well distributed throughout
object-space and known in X.,Y,Z would be
necessary for a unique solution. Naturally,

PHOTOGRAMMETRIC ENGINEERING, 1974

redundant object-space control would be
highly desirable. One must avoid having all
object-space control points in one plane. As
much deviation from the planar arrangement
as can be allowed by depth of field considera-
tions is highly recommended.

Optimum Number of Object-Space Con-
trol Points. Although six object-space control
points provide a unique solution, the incor-
poration of more control points improves the
reliability of the solution.

The reliability of the solution is indicated
by the standard deviation of the standard de-
viation of object-space coordinates. This can
be expressed as:

3
V[2(n-u)]

Ss‘ =

(14)

where S¢ is the standard deviation of the
standard deviations of object-space coordi-
nates (X,Y, orZ), S is the standard deviation of
object-space coordinates (X,Y, or Z), n is the
number of observation (twice the number of
object-space control points), and u is the
number of unknowns (12 for the mathemati-
cal model adopted).

Computing Sg for different numbers of
object-space control points P, one gets the
values shown in Table 8. Graphically, the
relationship between Sg and P is plotted in
Figure 2. A study of Figure 2 indicates that
bevond some 20 to 25 object-space control
points, the improvement of the reliability of
the solution is relatively small and in all
probability not worth the effort of providing
further control points.

CONFIGURATION OF DaTta
Acouisition SET-Up

The contiguration of data acquisition plays
a major role in the accuracy of object-space
coordinates obtained. An interesting study
on this topic was conducted by the authors2,
Because of the practical relevance of this mat-
ter, however, the conclusions of this study are
briefly summarized here.

According to the authors?, the expected
standard deviations of object-space coordi-
nates can be expressed in the symmetrical
situation (refer to Figure 3) as:

TaBLE 8, THE STANDARD DEVIATION OF THE STANDARD DEVIATION OF OBJECT-SPACE COORDINATES
(Sg) VERSUS THE NUMBER OF OBJECT-SPACE CoNTROL PoiNTs (P) USED IN THE SOLUTION.

P 6 7 10 15

20 30 40 50 100

® 0.58 0.258 0.178

Ss

0.138 0.108 0.085 0.078 0.058
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Fic. 2. The standard deviation of the standard deviation of the
object-space coordinates Sg versus the number of object-space con-

trol points P used in the solution.

Fic. 3.

Data acquisition set-up: The symmetri-
calcase(dpy = o=,y =ap=a C; =Cp =C).

Wi & DiC 5 (I + tan a tan ¢)
z : x
BID V= (1 —tan [a—¢] tand " * (15)
m. — D (1 + tan a tan ¢) -
C (1 — tan [a—tb] tand (16)
my = B aed ) m
c (1 — tan [{x—d:] tan ¢) (17)
my = V(m2x + m? + m?z) (18)

where my, my, my are the expected standard
deviations in X,Y,Z object-space coordinates,
my is the positional accuracy of object-space
coordinates, ms« = mx, = my, is the accuracy of
x image coordinate, my = my, = muy, is the
accuracy of y image coordinate, x4, y, are the
image coordinates of image 1, x,, 1, are the
image coordinates of image 2,C = C, = C, is
the principal distance of the camera, D is the
object distance to the central point of the ob-
ject (as defined in Figure 3), B is the length of
the base of the stereopair, ¢ = ¢; = ¢o is half
the value of the angle of convergence be-
tween the camera axes, and

o=@ = ap = tan'(B/2D) (19)

From Equations 15 through 18, itis evident
that my, my, m, and m; decrease (i.e., the
accuracy of object-space coordinates im-
proves) as the photo scale C/D increases.

From Equation 15, it is obvious that m,
decreases as the ratio B/D increases. The
maximum value of B/D can be obtained by
maximizing B and minimizing D. The
minimum value of D is limited by depth-of-
field considerations, whereas the maximum
value of B can be obtained in one of two ways:

e In the normal application of photogram-
metry (¢=0), one uses the minimum al-
lowable overlap between the two photo-
graphs. For example, il A percent is the
minimum overlap desired, and § the format
size of the photographs, the maximum al-
lowable value of base B would be:

D . (100-A)
B=% 3 700 (20)

e By using convergent photography. The ac-
curacy of object-space coordinates, in this
case, will also be a function of the value of
the angle of convergence ¢, as will be noted
below.

Maintaining the B/D ratio fixed and chang-
ing &, one finds that:

* iy, My, My, My increase as ¢ increases, as
long as ¢ remains smaller than « (i.e., for ¢
< @),

* My, My, My, My reach their maximum val-
ues if ¢ = a, and

* my, my, my, my decrease as ¢ is increased
beyond the value of a (i.e., for ¢ > a).

From the above discussion, it follows that
the critical angle of convergence in the sym-
metrical case occurs at ¢ = a, i.e., if the cam-
era axes are pointing to the central point in
the object. By avoiding the critical angle of
convergence (i.e., by choosing a value for the
angle of convergence less or more than the
critical value), one gets better results than
those obtained where ¢ = a.
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According to the authors?, the most desira-
ble configuration is the normal case. Should
this not be feasible, convergent photography
is to be utilized. The angle of convergence
should be kept as small as possible and as far
as possible from the critical value.

It should be pointed out that the authors?
studied only the case of symmetrical con-
vergence(d; = dbo = ¢). A study of the general
case (¢ # ¢o) is currently underway at the
University of Illinois.

Tue ProtocraMMETRIC POTENTIAL
or AnY CAMERA

The photogrammetric potential of any
camera is a function of the accuracy of the
object-space coordinates obtained using the
camera. As can be seen from Equations 15
through 18, the accuracy of object-space
coordinates is a function of B, D, C, ¢, mxand
iy (e is not included because it is a function
of B and D). These parameters can be divided
into two groups:

B Parameters pertaining to the configuration
of the data acquisition system: D, B, and ¢.
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B Parameters pertaining to the camera and to
the data reduction system: C, mx and my.

The effects of configuration parameters (D,
B, ¢) on the accuracy of object-space points
were discussed in the previous section.

Theoretical and experimental studies were
conducted to determine the standard devia-
tions of object-space coordinates of targets
photographed according to the configuration
sketched in Figure 1 and discussed above.
Tables 9 through 14 summarize the results of
the experimental investigations. Referring to
Figure 1, a total of 39 targets were measured
(16 in Plane No. 1, 17 in Plane No. 2, and 6
placed throughout the test area).

Theoretical studies by the authors? showed
that the accuracy of object-space coordinates
is a function of the ratio m/C, where m is the
average value of my and my, and C is the
principal distance of the camera. The m/C
ratio, referred to by the authors? as angular
error factor, is suggested as a means to assign
a numerical value to the photogrammetric
worthiness of the total measuring system of
which the camera is a part.

TaBLE 9. Accuracy (RMS) oF OBJECT-SPACE COORDINATES OBTAINED USING A KODAK INSTAMATIC

154 CAMERA
Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 cm) (D = 400 ¢m)
No. oy ay oy ox ay oy
(mm) (mm) (mm) (mm) (mm) {mm)
1 1.6 1.1 2.0 0.5 0.8 1.0
2 1.2 14 2.3 0.5 1.1 2.0
3 1.0 1.3 2.5 0.8 0.8 1.6
4 1.6 1.5 3.5 0.7 0.9 2.0
5 1.0 1.3 2.4 0.6 0.7 0.8
Mean
RMS 1.3 1.3 2.5 0.6 0.9 1.5
Value

TasLE 10.

ACCURACY (RMS) oF OBJECT-SPACE COORDINATES OBTAINED USING A CROWN GRAPHIC

CAMERA
Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 c¢m) (D = 400 cm)
No. oy oy oy ay oy oy
(mm) (mm) (mm) (mm) (mm) (mm)
1 0.28 0.27 0.93 0.22 0.09 0.36
2 0.55 0.53 1.43 0.26 0.19 0.58
3 0.41 0.26 1.00 0.12 0.07 0.31
4 0.37 0.28 1.71 0.15 0.12 0.67
5 0.43 0.38 1.38 0.16 0.20 0.38
Mean
RMS 0.41 0.34 1.29 0.18 0.13 0.46

Value
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Obviously, the lower the value of m/C, the
more appropriate is the measuring system for
photogrammetric purposes.

The theoretical accuracy expected in
object-space coordinates can be estimated by
substituting the values of B. D, ¢, a, C, myand
my in Equations 15 through 18. The values of
nty and my may be determined through com-
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parator measurements or may be estimated
on the basis of previous similar work. The
value of C is obtained as a by-product of pLT
solution as explained below.

For any object distance D, the value of the
principal distance C is determined as a by-
product of the prr solution using the equa-
tions,

TasLE 11.  Accuracy (RMS) oF OBJECT-SPACE COORDINATES OBTAINED UsSING A HONEYWELL PENTAX
SPOTMATIC CAMERA
Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 ¢m) (D = 400 ¢m)
No. oy oy oy ox oy Tz
(mm) (mm) (mm) (mm) (mm) (mm)
1 0.17 0.23 0.63 0.24 0.19 0.75
2 0.27 0.27 0.82 0.33 0.12 0.74
3 0.28 0.21 0.72 0.24 0.23 0.64
4 0.30 0.26 0.80 0.25 0.23 0.65
5 0.25 0.24 0.75 0.33 0.16 0.65
Mean
RMS 0.25 0.24 0.74 0.28 0.19 0.69
Value

TasLE 12, Accuracy (RMS) oF OBJECT-SPACE COORDINATES OBTAINED USING A HASSELBLAD 500 C

CAMERA
Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 em) (D = 400 c¢m)
No. oy oy o7 oy Ty Tz
(mm) (mm) (mm) (mm) (mm) (mm)
1 0.36 0.19 1.03 0.22 0.32 0.34
2 0.44 0.39 1.36 0.39 0.20 1.00
3 0.34 0.15 1.22 0.09 0.16 0.62
4 0.39 0.30 1.31 0.25 0.25 1.14
5 0.32 0.26 0.85 0.38 0.43 0.70
Mean
RMS 0.37 0.26 1.15 0.27 0.27 0.76
Value

TasLE 13.  Accuracy (RMS) oF OBJECT-SPACE COORDINATES OBTAINED USING A HASSELBLAD MK 70
CAMERA. CALIBRATED RESEAU INTERSECTIONS ARE INCORPORATED IN THE SOLUTION

Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 cm) (D = 400 ¢m)
No. 7% oy oz oX oy oz
(mm) (mm) (mm) (mm) (mm) (mm)
1 0.28 0.38 1.10 0.18 0.33 0.80
2 0.40 0.26 0.85 0.18 0.20 0.71
3 0.36 0.24 1.25 0.16 0.23 0.60
4 047 0.41 1.03 0.10 0.25 0.78
5 0.28 0.29 1.13 0.17 0.23 0.83
Mean
BRMS 0.36 0.32 1.07 0.16 0.25 0.74

Value
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TasLE 14. Accuracy (RMS) oF OBJECT-SPACE COORDINATES OBTAINED USING A HasseELBLAD MK 70
CaMERA. CALIBRATED RESEAU INTERSECTION COORDINATES ARE NOT INCORPORATED IN THE SOLUTION.

Stereo- Targets in Plane No. 1 Targets in Plane No. 2
model (D = 550 cm) (D = 400 cm)
No. Ix oy oz Tx g § T
(mm) {mm) (mm) (mm) (mm) (mm)
1 0.50 0.31 1.48 0.17 0.24 0.70
2 0.55 0.35 1.07 0.18 0.32 0.88
3 0.41 0.35 1.03 0.17 0.36 0.71
4 0.45 0.24 0.83 0.27 0.28 0.75
5 0.34 0.28 1.27 0.22 0.19 0.51
Mean
RMS 0.45 0.31 1.14 0.20 0.28 0.71
Value
. " (12, + 125 + [2y) the principal distance C can be determined
Chr=wett (124 + 12,5 + [24,) By W
i i (2 C = 7(Cx+Cy (25)
2. 4+ 12 4 |2 Table 15 lists the estimated accuracy
C2 =y, + {_—-5_—3-—7}.. (RMS) for object-space coordinates in the
(1% + 1249 + 12,) (22)  above outlined experiment. As can be seen

after estimating the parameters xo and yo from

- Lilg + Iglyo + lyly,

X, =
12y + 124 + 125 (23)
Il + lglio + L7144

r -

Yo !'.29 + lmm + (244 f24)

From the values of Cr and Cy (the values of
the principal distance as computed in the x
and y directions), a representative value for

by comparing Table 15 to Tables 9 through
14, the theoretically expected values fairly
well correspond to the experimentally ob-
tained results. In these comparisons, one
should bear in mind the variations experi-
enced in the RMS values of the residual er-
rors in the different photographs taken by the
same camera, as can be seen from Tables 2
through 7.

Coxcruping REMARKS
In numerous areas of applications (and po-
tential applications) of close-range photo-

TasLE 15. THEORETICALLY EXPECTED AcCURACY (RMS) oF OBJECT-SPACE COORDINATES

D = 550 em D = 400 em
Camera ox oy oy oy oy z
(mm) (mm) {mm) (mm) (mm) (mm)

Kodak Instamatic 154 2.00 2.00 4.10 1.40 1.40 2.00

Crown Graphic 0.47 0.47 1.08 0.33 0.33 0.54
Honeywell Pentax

Spotmatic 0.43 0.43 0.85 0.31 0.31 0.44

Hasselblad 500 C 0.43 0.43 0.98 0.31 0.31 0.49
Hasselblad MK 70,

Case A* 0.42 0.42 0.96 0.30 0.30 0.49
Hasselblad MK 70,

Case Bt 0.49 0.49 1.12 0.34 0.34 0.55

* Calibrated reseau intersections incorporated in the solution.
t Calibrated reseau intersections not incorporated in solution.
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grammetry, the accuracy levels indicated in
Tables 9 through 14 are completely accepta-
ble. In such instances, then, an appropriate
non-metrie camera can be used for data ac-
quisition. It is interesting to note that, except
for the Kodak Instamatic 154 camera, the ac-
curacies achieved using the four other
cameras are essentially in the same ballpark.

Lest we bhe misunderstood, we stress the
fact that although we firmly believe, on the
basis of experimental investigations such as
the ones presented in this paper, there is a
definite place for non-metric cameras in
close-range photogrammetry, we equally
firmly believe that such cameras should be
used only if the accuracy requirements per-
mit. We do not foresee that non-metrie
cameras will completely replace metrie
cameras in close-range photogrammetry,
Each of these two types of cameras have ad-
vantages and disadvantages and have an im-
portant role in plnJtc:gl';ltlllllt-tl')-'.

It seems to both authors that the time has
come for a thorough reexamination of the
metric or none stand which many photo-
grammetrists have heretofore rather piously
adhered to. Opening the door to the use of
non-metric cameras in photogrammetric
work should enable many engineers and sci-
entists in numerous fields to make full use of
the technical and economical advantages of
photogrammetry.,
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