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Accuracy Aspects of 
Non-Metric Imageries* 
Opening the door to the use of non-metric cameras should 
enable many engineers and scientists to make full use of the 
technical and economical advantages of photogrammetry. 

ESEARCH I N  close-range photogramnletry at  
R t h e  Urlive~sity of Illinois and elsewhere 
has clearly shown thatg"3, for numerous areas 
of applications and potential applications, 
fully acceptable  accuracy can of ten  b e  
achieved with better non-metric cameras, 
such as Hasselblad, Robot, Linhof Technika, 
etc., provided that appropriate measures are 

mations. In view of the relatively large lens 
distortions and film deformations generally 
associated with non-metric cameras, t he  
analytic approach has been almost exclu- 
sively used so far in photogrammetric data 
reduction from non-metric imageries. 

In  1971 an analytic data reduction method, 
particularly suitable for non-metric im- 
ageries (Direct Linear Transformation-DLT) 

ABSTRACT An updated version of the Direct Linear Transformation 
(DLT) emphasizes the mathematical modeling of lens distortions and 
film deformations. Experimental results indicate the levels of accu- 
racy attainable at close range with four readily available non-metric 
cumerus (Hasselblad 500 C, Honeywell Pentax Spotinatic, Crown 
Graphic, Kodak Instainatic 154) and the Hasselblad MK 70 inetric 
camera. A technique compares the photograinmetric worthiness of 
iv~easuring systeins involving any camera (metric or non-metric). Ex-  
pressions enable one to estimate tlae theoretically expected accuracies 
in object-space coordinates. The optimum number of object-space con- 
trol points for the DLT solution is derived. 

taken in data acquisition and data reduction. 
Essentially, one has to: (a) choose a suitable 
configuration for data acquisition (b) provide 
the necessary object-space control, (c) coun- 
teract possible internal instability of the  
camera by combining calibration procedures 
with the measuring process, and (d) choose a 
suitable mathematical model to correct for 
the effect of lens distortions and film defor- 
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was developed by the authors1. This method 
has since been used in numerous applica- 
tions (e.g., by Williamson14 and Faig6" and 
others) and has proven its practical merits. 

In  this paper, an updated version ofthe DLT 

approach is discussed, with emphasis on the 
mathematical modeling of lens distortions 
a n d  film deformations.  A number  of 
mathematical models have been investigated 
and the one deemed most suitable (on the 
basis of the experiments conducted and the 
statistical analysis undertaken) is recom- 
mended. 

To  the  accuracy-conscious user of non- 
metric cameras, the experimental investiga- 
tion (summarized later in the section, "The 
Photogrammetric Potential of Any Camera") 
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may be of some interest. These results indi- 
cate the levels of accuracy attainable with 
four readily available non-metric cameras 
(Hasselblad 500 C, Honeywell Pentax Spot- 
matic, Kodak Instamatic 154, Crown 
Graphic) as well as Hasselblad MK70. 

BASIC DLT EQUATIONS 

As outlined in Reference 9, the basic equa- 
tions for the Direct Linear Transformation 
method are: 

where x,y are the comparator coordinates of 
an image point X,Y,Z are the object-space 
coordinates of that point, Z1,Z2, . . . ,Il1 are the 
transformation coefficients, and k ,Ay are 
image refinement components in x and y to 
account for the nonlinear components of lens 
distortions and film deformations. 

In the linearized form, Equation 1 takes the 
following form: 

where 11, 12, . . . , Z l l  are transformation coeffi- 
cients, A = l9 X + ll0 Y + Zl1 Z + 1, v,, vy are 
residual errors in image coordinates after re- 
finement. 

It should be pointed out that the linear 
components of lens distortion and film de- 
formation are taken into account by the elev- 
en  transformation coefficients (11 through 
Zll) in Equation 2 in the process of transform- 
ing comparator coordinates into object-space 
coordinates. These linear components ac- 
count for different scale factors along the x 
and y directions and for the nonperpendicu- 
larity of the comparator axes. 

The incorporation of provisions for image 
refinement (to account for the linear and the 
nonlinear components of lens distortions and 
film deformations) in data reduction is highly 
recommended if one  wishes to obtain 
reasonably accurate results. In applications 
of low accuracy requirements, one may dis- 
regard Ax and hy in Equation 2 where the 

nonlinear coinponents of lens distortions and 
film deformation are not taken into account. 

LENS DISTORTIONS 

In an ideal lens with perfectly centered 
elements, lens distortion is strictly symmet- 
rical about the optical axis. Errors in center- 
ing lens elements lead to asymmetrical lens 
distortion. 

Sy~nmetrical Lens Distortion. A generally 
accepted mathematical model for symmetri- 
cal lens distortion is an odd-powered 
polyno~nial: 

where Ar is radial lens distortion, r is the 
length of the radial vector from the point of 
symmetry to the point under consideration, r2 
= (x - x , ) ~  + ( y  - yJ2, x,y are image coordi- 
nates of the point under consideration, x,,y, 
are image coordinates of the point of sym- 
metry, and (2n + 1 )  is the degree of the odd- 
powered polynomial. 

Investigations have shown that, for the rel- 
atively simple lenses often used in non- 
metric cameras, k1 is the only signifihant coef- 
ficient in Equation 3. Equation 3 can thus be 
reduced to: 

Asyininetrical Lens Distortion. A gener- 
ally accepted mathematical model for asyin- 
metrical lens distortion is the following one 
which reflects the distortion caused by de- 
centering of lens elements and accounts for 
the selection of a point other than the point of 
symmetry as reference: 

where &,by are asymmetrical lens distortion 
components, r is the length of the radial vec- 
tor from the point of symmetry to the point 
under consideration, x,y are image coordi- 
nates of the point under consideration, re- 
ferred to the point of symmetry, and pl,pz are 
coefficients of asymmetrical lens distortion. 

FILM DEFORMATIONS 

Numerous sources contribute to film de- 
formations in non-metric imageries includ- 
ing irregularities in film material, handling 
during processing, unflatness of the film in- 
side the camera, tension exerted on the film 
inside the camera (between one photograph 
and another) and outside the camera (during 
processing), and temperature and relative 
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humidity during storage of the film and dur- 
ing its processing. 

Several mathematical nlodels can be used 
to represent film deformations. To estimate 
the parameters of such models, one has to 
have some calibrated references (fiducial 
marks or reseau). In non-metric cameras, 
however, such references are generally not 
available and one can only use object-space 
control to determine the combined effect of 
film defor~nation and lens distortion. The es- 

11. In this instance, the DLT solution involves 
12 unknowns. 

Model 111. An odd radial polynomial of 
the seventh degree is added to Model I to 
account for symmetrical lens distortion, 

hx = a l  + a2x + a3y + ;(klr2 + k2r4 + k3r6) 

Ay = a4  + u p  + a6y + i ( k l r 2  + k2r4 + k3r6). 

(8) 
timates RMS values of the residual errors The Solution in this instance involves 14 
after image refinement, thus reflect, in this unknowns, 
instance, unrepresented film deformations, Model IV. Model 111 is combined with 
unrepresented lens distortions and the ran- Conrady,s for asymlnetrical lens 
dom errors in measurement. distortion, 

MATHEMATICAL MODELING OF IMAGE REFINEMENT 

Models Tested. Based on the mathematical 
models used for fi11n deformation and lens 
distortions in aerial cameras, and on results of 
experiments conducted by the authors2, the 
following six mathematical models for image 
refinement in non-metric photography were 
selected for an experimental investigation. 

Model I. Linear polynomial in x and y, 

In this model, only the linear components 
of lens distortion and film deformation are 
taken into 'consideration. The nonlinear 
components of image refinement are neg- 
lected. Equation 6 accounts for the lack of: 
perpendicularity of the x and y axes and al- 
lows for different scale factors along the x and 
y directions. 

Incorporating Model I in Equation 2 does 
not change the form of the equations. In other 
words, the unknowns in the DLT solution 
using Model I remain as 11 unknowns. This 
should not be surprising as Equation 2, as 
stated earlier, takes into account the linear 
components of image refinement, in the proc- 
ess of transforming comparator coordinates 
into object-space coordinates. In combining 
the two sets of Equations 6 and 2,  the six 
coefficients in Equation 6 thus absorbed by 
the 11 coefficients in Equation 2. 

Model 11. O n e  more unknown (kl) is 
added to Model I to account for symmetri- 
cal lens distortion, 

in which the terms are defined after Equation 

The DLT solution here involves 16 unknowns. 
Model V. The same as Model IV, except 
the radial polynomial accounting for lens 
distortion is a full polynomial of the 
seventh degree, 

Here the DLT solution involves 18 unknowns. 
Model VI. Same as Model V, except the 
polynomial in x and y ii of the second 
degree, accounting for the nonlinear com- . 
ponent of film deformation, 

In this model, the DLT solution involves 22 
unknowns. 

In all the above models, x,y are the image 
coordinates of the point under consideration, 
XS,~JS are the-image coqdinates of the point of 
symmetry, x = x - xs, y = y - y ~ ,  r = length of 
the vector from the point of symmetry to the 



Camera Lens Focal Image Approx. 
Length Format Price 
(mm) (mm) 6) 

Kodak Instamatic 154 Kodak 43 12x 12 15 

Crown Graphic Graphex 04.7 

Honeywell Pentax 
Spotmatic Super Takumar 01.4 

Hasselblad 500 C Planar U2.8 

Hasselblad MK 70 Biogon fl5.6 MK 60 55x55 4500 

image point under consideration, Ax,Ay = 
image refinement components, al,az, . . . a,, 
= coefficients of film deformation, 
kl,kz, . . . ,k5 = coefficients of symmetrical 
lens distortion, pl,pz = coeffcients of asym- 
metrical lens distoltion. 

Experimental Inuestigation. Five different 
cameras (Kodak Instamatic 154, Honeywell 
Pentax Spotmatic, Graflex, Hasselblad 500 C 
and Hasselblad MK 70) were used to investi- 
gate and compare the six above image re- 
finement models. The image format, focal 
length of the lens used and the price (1973) 
are listed in Table 1 for each of the five 
cameras used. Kodak Plus X film was used in 
all the cameras except Hasselblad MK 70 
where Kodak Tri X film was used. 

Ten photographs were taken with each of 
the five cameras of a test area in which targets 
of known spatial position were placed mainly 
in two planes (Figure 1); a total of 39 targets 
were used (16 in Plane No. 1,17 in Plane No. 
2, and 6 scattered throughout the test area). 
For each camera, five of the photographs 
were taken from Camera Station No. 1 and 
five from Camera Station No. 2 (refer to Fig- 
ure 1). The cameras were hand-held with 
their axes approximately horizontal and with 
convergence of about 30' ($1 $2 = 15' as 
sketched in Figure 1). In each instance, the 
stereobase was approximately 400 cm. The 
object distance for Plane No. 1 was approxi- 
mately 550 cm and for Plane No. 2 approxi- 
mately 400 cm, as sketched in Figure 1. 

The RMS values of image plane residual 
errors (after image refinement) for each ofthe 
50 resulting photographs are listed in Tables 
2 through 7. 
Discussion of Results. On the basis of the 

results tabulated in Tables 2 through 7, one 
can deduce as follows. 

A. Regarding modeling of lens distortions. 
(1) No significant improvement in accu- 

c m c m  %ation NO, I aT- Cometo Stotion No. 2 

+, 215' +2 " 15' 

Comem Axis Ji-\if I Axis 

--,+.-- Pione No, 2 

-- - - Plane No. I 

FIG. 1. Plan of set-up for experimental investi- 
gation. 

TABLE 2. RMS VALUES OF RESIDUAL ERRORS FOR 
THE TEN PHOTOGRAPHS TAKEN WITH A KODAK 

INSTAMATIC 154 CAMERA 

Photo Image Refinement Model Number 
No. I I1 I11 IV V VI 

( ~ m )  ( ~ m )  (w-4 (wm) ( ~ m )  ( ~ m )  

Mean 
RMS 43.0 15.2 15.2 14.5 14.6 13.5 
Value 

racy is achieved by representing the lens dis- 
tortion by a full polynomial rather than an 
odd polynomial (compare results of Model 
I11 with those of Model VI). 
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TABLE 3. RMS VALUES OF RESIDUAL ERRORS FOR 

THE TEN PHOTOGRAPHS TAKEN WITH A CROWN 
GRAPHIC CAMERA 

TABLE 5. RMS VALUES OF RESIDUAL ERRORS FOR 

THE TEN PHOTOGRAPHS TAKEN WITH A 
HASSELBLAD 500 C CAMERA 

Photo 
No. 

Image Refinement Model Number 
I I1 I11 IV v VI 

Photo Image Refinement Model Number 
No. I I1 I11 IV V VI 

(wm) (wm) (1-4 ( ~ m )  ( ~ m )  (1.4 

Mean Mean 
RMS 18.4 11.5 9.6 9.3 9.4 8.0 RMS 30.8 6.1 6.0 6.0 5.8 5.5 
Value Value 

TABLE 4. RMS VALUES OF RESIDUAL ERRORS FOR 
THE TEN PHOTOGRAPHS TAKEN WITH A 

HONEYWELL PENTAX SPOTMATIC CAMERA 

Photo Image Refinement Model Number 
No. I I1 I11 IV V VI 

(4 (pm) (pm) (wm) (P") ( c L ~ )  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean 
RMS 
Value 

(2) No significant iinprovement in accu- 
racy is achieved by incorporating terms to 
account for asymmetrical lens distortion 
(compare Models I11 and IV). 

(3) A statistical analysis ofthe results ofthe 
various models indicate that, for all the  
cameras tested except the Crown Graphic, 
only those unknowns involved in Model I1 
are of significance in representing lens dis- 
tortion. For the  Crown Graphic camera, 
Model I11 showed a little improvement over 

TABLE 6. RMS VALUES OF RESIDUAL ERRORS FOR 

THE TEN PHOTOGRAPHS TAKEN WITH HASSELBLAD 
MK 70 CAMERA. CALIBRATED RESEAU 

INTERSECTIONS WERE INCORPORATED I N  THE 
IMAGE REFINEMENT. 

Photo Image Refinement Model Number 
No. I I1 111 IV V VI 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean 
RMS 
Value 

degree polynomial to account for the non- 
l inear colnponents of film deformations 
(compare Models I11 and VI). 

(2) For the Hasselblad MK 70, incorporat- 
ing the calibrated coordinates of reseau inter- 
sections in the solution did not significantly 
improve the reslilts (compare Tables 6 and 7). 
C. Regarding the total DLT model. 

Model I1 in that respect. On the  I~as is  of the  above discussion, 
B. Regarding modeling of film deformations. Model I1 is recon~nlended for use in image 

(1) No significant improvement in accu- refinement for non-metric photography. 
racy is gained by incorporating a second- Model I1 (Equation 7) can be  rewritten as: 
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TABLE 7. RMS VALUES OF RESIDUAL ERRORS FOR 

THE TEN PHOTOGRAPHS TAKEN WITH HASSELBLAD 
MK 70 CAMERA. CALIBRATED RESEAU 

INTER~ECTIONS WERE NOT INCORPORATED IN 
IMAGE REFINEMENT. 

Photo Image Refinement Model Number 
No. I I1 111 IV V VI 

( ~ m )  ( ~ m )  ( ~ m )  ( ~ m )  ( ~ m )  ( ~ m )  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean 
RMS 
Value 

where s l , y s  are image coordinates ofthe point 
of symmetry. (Approximate values for x s  and 
M I  can be determined from the approximate 
values of the ~~~coef f ic ien t s ( I , ,  . . . I,,) using 
Equations 23 and 24 for xo and y o . )  

With Model I1 chosen for image refine- 
ment, the DLT basic equation (Equation 2) can 
be rewritten as: 

Aor + A ( x - x s )  Kr2 + x + l l X  + lzY + 132 
+ l 4  + / g X  + llaxY + lllxZ = 0 

Aoy + A(y-  y,) KrZ + y + I &  + ley  + 1 7 2  

+ 1 ,  + 19yX + lloyY + lllyZ = 0.  (13) 

Equations 13 involves 12 unknowns ( I l ,  
1 2 ,  . . ., z l 1 ,  K ) .  A minimum of 6 object-space 
control points, well distributed throughout 
object-space and known in X,Y,Z would be 
necessary for a unique solution. Naturally, 
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redundant ol~ject-space control would be 
highly desirable. One must avoid having all 
object-space control points in one plane. As 
much tleviation from the planar arrangement 
as can be allowed by depth offield considera- 
tions is highly recommended. 

Optimum Number of Object-Space Con- 
trol Points. Although six object-space control 
points provide a unique solution, the incor- 
poration of more control points improves the 
reliability of the solution. 

The reliability of the solution is indicated 
by the standard deviation of the standard de- 
viation of ol~ject-space coordinates. This can 
be expressed as: 

where S s  i s  the standard deviation of the 
standard deviations of object-space coordi- 
nates (X,Y, orZ), S is the standard deviation of 
object-space coordinates (X,Y, or Z), n is the 
number of observation (twice the number of 
object-space control points), and u is the 
number of unknowns (12 for the mathemati- 
cal model adopted). 

Co~nputing S, for different numbers of 
object-space control points P, one gets the 
values shown in Table 8. Graphically, the 
relationship between S s  and P is plotted in 
Figure 2. A study of Figure 2 indicates that 
beyond some 20 to 25 object-space control 
points, the improvement of the reliability of 
the solution is relatively small and in all 
probability not worth the effort of providing 
further control points. 

The configuration of data acquisition plays 
a major role in the accuracy of object-space 
coordinates obtained. An interesting study 
on this topic was conducted by the authorsz. 
Because ofthe practical relevance ofthis mat- 
ter, however, the conclusions ofthis study are 
briefly sumnlarized here. 

According to the authors2, the expected 
standard deviations of object-space coordi- 
nates can be expressed in the symmetrical 
situation (refer to Figure 3) as: 

TABLE 8: THE STANDARD DEVIATION OF THE STANDARD DEVIATION OF OBJECT-SPACE COORDINATES 
(Ss) VERSUS THE NUMBER OF OBJECT-SPACE CONTROL POINTS (P) USED I N  THE SOLUTION. 

P 6 7 10 15 20 30 40 50 100 

ss m 0.5s 0.25s 0.17s 0.13s 0.10s 0.08s 0.07s 0.05s 
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0 10 20 30 40 50 60 70 80 90 100 
Number Of Objecl-Space Control Polnla ( P 

FIG. 2. The standard deviation of the standard deviation of the 
object-space coordinates Ss versus the number of object-space con- 
trol points P used in the solution. 

From Equations 15 through 18, it is evident 
that my, my, tnz and mT decrease (i.e., the 
accuracy of object-space coordinates im- 
proves) as the photo scale CID increases. 

From Equation 15, it is obvious that inZ 
decreases as the ratio BID increases. The 
maximum value of BID can be  obtained by 
maximizing B a n d  minimizing D .  T h e  
minimum value of D is limited by depth-of- 
field considerations, whereas the maximum 
value ofB can b e  obtained in one oftwo ways: 

Object 
In the normal application of photogram- 

FIG. 3. Data acquisition set-up: The symmetri- metry (+=0), one uses the minimum al- 
c a l ~ a s e ( 4 ~  = $z= +,a1 = a 2  = a C1 = C2 = C). lowable overlap between the two photo- 

graphs. For example, if A percent is the 
minimum overlap desired, and S the format 

DIC (1 + tan a tan $) 
mz = B I D  fi 

( 1  - tan [ a - 4 1  tan4 m x  (15) 

D (1 + tan a tan 4) m, = - mx 
(1 - tan [a-$1 t an4  

D sec my = - 4 mx 
(1 - tan [a-$1 tan 4) (17) 

where Iny, my, mz are the expected standard 
deviations in X,Y,Z object-space coordinates, 
InT is the positional accuracy of object-space 
coordinates, mx = mx, = mx, is the accuracy of 
x image coordinate, my = ing, = my, is the 
accuracy of y image coordinate, xl, y1 are the 
image coordinates of image 1, x2, y2 are the 
image coordinates of image 2, C = C 1  = C 2  is 
the principal distance of the camera, D is the 
object distance to the central point of the ob- 
ject (as defined in Figure 3),  B is the length of 
the base of the stereopair, 4 = = 42 is half 
the value of the angle of convergence be- 
tween the camera axes, and 

size of the photographs, the maximum al- 
lowable value of base B would be: 

By using convergent photography. The ac- 
curacy of object-space coordinates, in this 
case, will also be a function of the value of 
the angle of convergence 4, as will be noted 
below. 

Maintaining the BID ratio fixed and chang- 
ing 4,  one finds that: 

+ mx, my, mZ, mT increase as 4 increases, as 
long as 4 remains smaller than a (i.e., for 4 
< ff), * mx, my, m ,  mT reach their maximum val- 
ues if 4 = a, and * mx, my, mz, m~ decrease as 4 is increased 
beyond the value of a (i.e., for 4 > a). 

From the above discussion, it follows that 
the critical angle of convergence in the sym- 
metrical case occurs at 4 = a ,  i.e., if the cam- 
era axes are pointing to the central point in 
the object. By avoiding the critical angle of 
convergence (i.e., by choosing a value for the 
angle of convergence less or more than the 
critical value), one gets better results than 
those obtained where 4 = a .  
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According to the authors2, the most desira- 
ble configuration is the normal case. Should 

Parameters pertaining to the camera and to 
the data reduction system: C, my and my. - 

this not be feasible, convergent photography 
is to be utilized. The angle of convergence The effects of configuration para~neters(D, 

should be kept as slnall as possible and as far B$ 41 0" the accuracy of object-space points 

as possible from the critical value. were discussed in the previous section. 

It should be pointed out that the authors2 Theoretical and experimental studies were 
studied only the case of symmetrical con- conducted to determine the standard devia- 
~ e r g e n c e ( 4 ~  = c $ ~  = $1. A study ofthe general tions of object-space coordinates of targets 
case ((6, + 42) is currently underway at the photographed according to the configuration 
University of Illinois. sketched in Figure 1 and discussed above. 

Tables 9 through 14 summarize the results of 

The photogra~nmetric ~ o t e n t i a l  of any 
camera is a function of the accuracy of the 
object-space coordinates obtained using the 
camera. As can be seen from Equations 15 
through 18, the accuracy of object-space 
coordinates is a function of B, D, C,  (6, my and 
I ~ I J  (a is not included because it is a function 
ofB and D). These parameters can be divided 
into two groups: 

Parameters pertaining to the configuration 
of the data acquisition system: D, B, and 4. 

the experimental investigations. Referring to 
Figure 1, a total of 39 targets were measured 
(16 in Plane No. 1, 17 in Plane No. 2, and 6 
placed throughout the test area). 

Theoretical studies by the authors2 showed 
that the accuracy of object-space coordinates 
is a function of the ratio mlC, where m is the 
average value of my and my, and C is the 
principal distance of the camera. The VL/C 
ratio, referred to by the authorsZ as angular 
errorfactor, is suggested as a means to assign 
a numerical value to the photogrammetric 
worthiness of the total measuring system of 
which the camera is a part. 

TABLE 9. ACCURACY (RMS) OF OBJECT-SPACE COORDINATES OBTAINED USING A KODAK INSTAMATIC 
154 CAMERA 

Stereo- Targets in Plane No. 1 Targets in Plane No. 2 
model ( D  = 550 cm) (D = 400 cm) 

No. OX '=Y cz cx '=Y '=z 
(mm) (mm) (mm) (mm) (mm) (mm) 

1 1.6 1.1 2.0 0.5 0.8 1.0 
2 1.2 1.4 2.3 0.5 1.1 2.0 
3 1.0 1.3 2.5 0.8 0.8 1.6 
4 1.6 1.5 3.5 0.7 0.9 2.0 
5 1 .O 1.3 2.4 0.6 0.7 0.8 

Mean 
RMS 1.3 1.3 2.5 0.6 0.9 1.5 
Value 

TABLE 10. ACCURACY (RMS) OF OBJECT-SPACE COORD~NATES OBTAINED USING A CROWN GRAPHIC 
CAMERA 

Stereo- Targets in Plane No. 1 Targets in Plane No.' 2 
model ( D  = 550 cm) (D = 400 cm) 

No. '=x UY '=z '=x u~ z 
(mm) (mm) (mm) (mm) (mm) (mm) 

Mean 
RMS 0.41 0.34 1.29 0.18 0.13 0.46 
Value 
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Obviously, the lower the value ofmlC, the 
more appropriate is the measuring system for 
photogra~nmetric purposes. 

T h e  theoretical  accuracy expected i n  
object-space coordinates can be  estimated by 
substituting the values ofB, D, 4, a, C ,  inx and 
mv in Equations 15 through 18. The values of 
lnr and in!, may be determined through com- 

parator measurements or may be estimated 
on the basis of previous similar work. The 
value of C is obtained as a by-product of DLT 

solution as explained below. 
For any object distance D, the value of the 

principal distance C is determined as a by- 
product of the DLT solution using the equa- 
tions, 

TABLE 11. ACCURACY (RMS) OF OBJECT-SPACE COORDINATES OBTAINED USING A HONEYWELL PENTAX 
SPOTMATIC CAMERA 

Stereo- Targets in Plane No. 1 Targets in Plane No. 2 
model (D = 550 cm) (D = 400 cm) 

No. ux 'TY 'Tz 'Tx ' T Y  'Tz 
(mm) (mm) (mm) (mm) (mm) (mm) 

Mean 
RMS 0.25 0.24 0.74 0.28 0.19 0.69 
Value 

TABLE 12. ACCURACY (RMS) OF OBJECT-SPACE COORDINATES OBTAINED USING A HASSELBLAD 500 C 
CAMERA 

Stereo- Targets in Plane No. 1 Targets in Plane No. 2 
model (D = 550 cm) (D = 400 cm) 

No. ux WY 'Tz 'Tx 'TY 'JZ 
(mm) (mm) (mm) (mm) (mm) (mm) 

Mean 
RMS 0.37 0.26 1.15 0.27 0.27 0.76 
Value 

TABLE 13. ACCURACY (RMS) OF OBJECT-SPACE COORDINATES OBTAINED USING A HASSELBLAD MK 70 
CAMERA. CALIBRATED RESEAU INTERSECTIONS ARE INCORPORATED IN THE SOLUTION 

Stereo- Targets in Plane No. 1 Targets in Plane No. 2 
model (D = 550 cm) (D = 400 cm) 

No. 'Jz 
(mm) 

Mean 
RMS 0.36 0.32 1.07 0.16 0.25 0.74 
Value 
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TABLE 14. ACCURACY (RMS) OF OBJECT-SPACE COORDINATES OBTAINED USING A HASSELBLAD MK 70 
CAMERA. CALIBRATED RESEAU INTERSECTION COORDINATES ARE NOT INC~RPORATED IN THE SOLUTION. 
- - 

Stereo- Targets in Plane No. 1 Targets in Plane No. 2 
model (D = 550 cm) (D = 400 cm) 

No. u x  fl Y @ z a x 'T Y uz  
(mm) (mm) (mm) (mm) (mm) (mm) 

Mean 
RMS 0.45 0.31 1.14 0.20 0.28 0.71 
Value 

the principal distance C can b e  determined 
as, 

C = +(cr + C,) . (25) 

T a l ~ l e  1 5  lists t he  est imated accuracy 
(RMS)  for object-space coordinates in the 
above outlined experiment. As can be seen 
by conlparing Table 15  to Tables 9 through 
14, the theoretically expected values fairly 
well correspond to the experimentally ob- 
tained results. In these comparisons, one  
should bear in mind the variations experi- 
enced in the RZlS values of the residual er- 
rors in the different photographs taken by the 
same camera, as can b e  seen from Tables 2 
through 7. 

after estimating the parameters x o  and yo from 

Fro111 the values of CS and C ,  (the values of COSCLUDING REMARKS 
the principal distance as computed in the x In numerous areas of applications (and po- 
and y directions), a representative value for tential applications) of close-range photo- 

TABLE 15. THEORETICALLY EXPECTED ACCURACY (RMS) OF OBJECT-SPACE COORDINATES 

Camera 

Kodak Instamatic 154 2.00 2.00 4.10 1.40 1.40 2.00 

Crown Graphic 

Honeywell Pentax 
Spotmatic 

Hasselblad 500 C 

Hasselblad MK 70, 
Case A* 

Hasselblad MK 70, 
Case Bf 0.49 0.49 1.12 0.34 0.34 0.55 

* Calibrated reseau intersections incorporated in the solution. 
t Calibrated reseau intersections not incorporated in solution. 
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grumnietry, the accuracy levels indicated in 
Tal~les  9 tlirol~gh 14 are co~lipletely accepta- 
ble. 111 sucli i ~ ~ s t a ~ ~ c e s ,  then, an appropriate 
non-metric calnera can I)e used for data ac- 
quisition. It is interesting to note that, except 
for the Kodiik I l~s t a~na t i c  154 camera, the ac- 
curac ies  ach ieved  us ing  t h e  four  o the r  
cameras are esse~itially in the same ballpark. 

Lest we 1)e ~nisunderstood, w e  stress the 
Lc t  that although we firmly believe, on the 
1 Iasls . '  . of esl~erimental  investigations such as 

the ones preselited in this paper, there is a 
de f i~ i i t e  place fi)r noii-metric cameras in  
close-range l~hotogrammetry,  w e  equally 
firrnl). I~e l ieve  that such cameras should be  
used only if the accuracy requirements per- 
mit .  We do 11ot foresee that  non-metric 
cameras will completely replace  metric 
cameras i l l  close-range photogramn~et ry .  
Each of these two types of caineras have ad- 
vantages arid distidvaritages and have an im- 
portant role in photogra~nmetry. 

It seems to 110th authors that the time has 
come for a t l i o ro~~gh  reexamination of the 
inetr-ic or  rlone stand which many photo- 
grammetrists have heretofore rather piously 
adhered to. Opening the door to the use of 
non-metric cameras in photogrammetric 
work slrorlld enable many engineers and  sci- 
entists in Iltimerous fields to make full use of 
the technical and econonlical advantages of 
photogrammetry. 
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