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Propagation of
Variance and Covariance*
Computed root-mean-square errors cannot detect the rapid
accumulation of systematic effects caused by random errors.

INTRODUCTION

T HE METHOD OF propagation of variance and covariance has been used extensively in com
putational photogrammetry for evaluating the accuracy of the quantities determined in a

least-squares solution. In general, the normal equations in a least-squares adjustment prob
lem may be represented by the following matrix equation:

N!i.=C

where!i. is a matrix of unknown parameters. The variance-covariance matrix of the !i.-matrix,
denoted by (TA' may be computed according to the following expression:

(1)

where u o2 is the variance of unit weight.
Equation 1 provides a practical and convenient method of evaluating the accuracy of the

computed pass point coordinates in analytical aerotriangulation, or the accuracy of the com-

ABSTRACT, In a direct least-squares solution, the variance-covariance
matrix of the unknown parameters may be computed by multiplying
the inverse of the coefficient matrix of the normal equation by the
variance of unit weight, i.e., uo2 N -I. In an iterative least-squares
solution, which is generally applied in problems ofanalytical photo
grammetry, this formulation is theoretically valid only if the correc
tions to all the approximations become zero in the last iteration.
Experimental evidence showed that this formulation could not detect
any rapid accumulation of systematic effects caused by random er
rors in the measured parameters. Experimental results also showed
that u o

2N-I could provide reliable estimates on the RMS errors ofthe
computed parameters if the correction parameters converge to a
value which is less than the computed RMS errors.

puted interior orientation parameters in camera calibration. The method is of particular
importance as an accuracy analysis tool in simulation studies.

Unfortunately, Equation 1 is theroretically valid QnJy for direct linear least-squares solu
tions; that is, solutions in which the observation equations are exactly linear and where
unknown parameters can be determined directly by;solving the normal equations. Most
photogrammetric problems necessitate the use of iterative least-squares solutions because of
the non-linearity of the observation equations. Initial approximations must be derived for the
unknown parameters, and the least-squares solutions solve for the most probable corrections
to these approximations. At the end of each iteratio'n, the corrections are applied to the

* Presented at the Annual Convention of the American Society of Photogrammetry in St. Louis,
Missouri, March 1974.

75



76 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1975

approximations. The solution is then reiterated until the corrections become negligibly small.
For this type of iterative solutions, Equation 1 is theoretically valid only if the solution
converges with the corrections becoming zero in the last iteration.

In practical computations, an iterative solution is usually terminated when the corrections
become smaller than the accuracy requirements of the solution. In a weakly conditioned
photogrammetric solution, such as thatcreated by poor geometry or low-accuracy controls, some
or all of the correction parameters may never approach zero. After a certain number of
iterations, the correction parameters may simply oscillate between certain boundary limits
from iteration to iteration. If the iteration procedure is allowed to continue, such a solution
will eventually begin to diverge rapidly. Equation 1 is not theoretically valid for this type of
solution. Yet, it is in this type of solution that some accuracy esimates of the computed
parameters are most urgently needed.

This paper analyzes the validity of Equation 1 by reviewing the theoretical basis of the
method ofpropagation ofvariance and covariance. Some experimental results on the applica
tion ofEquation 1 to problems in coordi nate transformation, camera cali bration and aerotrian
gulation are presented. Based on these experimental results, conclusions will be made on the
validity of 1T0

2N-1 as a reliable accuracy estimator in solutions which fail to converge with the
correction parameters approaching zero.

STATISTICAL DEFINITION OF VARIANCE AND COVARIANCE

Letx be a discrete random variable which can take on anyone ofthe values Xl' x2' X3'" X" with
the probability Pi> P2' P3 ... P", respectively. Then the expected value of X, denoted by the
symbol E(x), is defined as

E(x) = ~ XiPi .
i~l

(2)

The expected value of X is commonly called the population mean of x. If X is a continuous
random variable which has a probability distribution functionf(x), then the expected value is
defined as

00

E(x) = f xf(x) dx.
-00

(3)

From these basic definitions, it can be easily derived that ifb is a scaler, then E (bx) = bE(x).
The variance ofthe random variable X is defi ned as the second moment about the population

mean, i.e.,

ITx = E { (x - E(x) l} .
The covariance ITxy between two random variables x and y is defined as:

ITxy = E {(x - E(x)) (y - E (y))}.

Let Z be a column matrix of random variables 2 h 2 2, 2 3, ... 2 m; i.e.,

Z (m,l) = [2 h 2 2 ", 2 m ]T.

(4)

(5)

Then, it can be easily derived from the above fundamental definitions that the variance
covariance matrix for Z may be expressed as follows:

ITz = E {(Z - E(Z)) (Z - E (Z)) T}

where ITz is an (m x m) matrix.

PROPAGATION OF VARIANCE AND COVARIANCE

(6)

DIRECT LINEAR LEAST-SQUARES SOLUTIONS

Consider a simple problem in linear regression. Let x and y be two variables which are
known to be related to each other.

y = 0 0 + al x .

In conducting an experiment to determine the values of the co-efficients ao> and a1> the
variable y is measured at various values of x. It is assumed that the measurement ofx can be
made exactly, and that only random errors are present in the measurements of y. The
observation eq1,lation for the pair of measurements (Xi, Yi) can then be expressed as
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(7)

where Vj is the random error in the measurement Yi' Equation 7 can be expressed in matrix
notation as

Vi + B i . A = Y i • (8)

The complete set of observation equations for m measurements of Y can then be simply
expressed as:

Vj Bj Y 1
Vz Bz Yz

+ ·A=

Vm Bm Ym

or,

V + B· A = Y. (9)

Let a y denote the variance-covariance matrix of the Y-matrix; i.e.,

a y1
2 a

YjY2
a

YjY3 aY/ Ym

a YjY2 a y/ a Y2Y3 u Y2 !1m

a y =
(10)

(TYj!lm u Ym
Z

where ayjYj denotes the covariance between the two measurements Yi and w. If the measure
ments are all mutually independent, then a YiYj = 0 when i is not equal toj. The corresponding
weight matrix of Y, denoted by W, is then defined as:

where aoz is the variance of unit weight.
The normal equation for this regression problem is:

N·A = C

where

and

C = BTWY.

(11)

(12)

(13)

(14)

The most probable value of the coefficients ao and at. i.e., A, can then be computed as

A = N-1C. (15)

The following paragraphs show that the variance-covariance matrix for the computed
parameter A, denoted by aA, may be simply expressed as

(16)

According to the fundamental definition of the variance-covariance matrix as stated in
Equation 6, the variance-covariance matrix aA can be expressed as:

aA = E {(A - E(A)) (A - E(AJl} .
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Substituting Equations 15 and 13 into the above expression yields

UA = E {(N-1+BTWY - E(N-1BTWY)) (N-1 +BTWY - E (N-1BTwy)/} .

As the matricesN-1 ,BT and Ware matrices ofconstants andY is the only matrix ofvariables,

Therefore,

UA = E { (N-1BTW (Y - E (Y)) (Y - E (Y)l WB N-1}

= N-1BTW E {(Y - E (Y)) (Y - E (Y)/} WB N-1.

By definition,

U y = E { (Y - E (Y)) (Y - E(Y)l} .

Furthermore, from Equation 11, Uy = uo2 W -I. Therefore,

U
A

= U,,2 N-1BTW W-1WB N-1

= u} N-1(BTW B) N-1

= u} N-1N N-1

Hence,

which is as stated in Equation 16.
This derivation is based primarily on the fact that the Y-matrix in the observation Equations

9 is a matrix of random variables. Its elements consisted only of the measured values of the
variable y. It is shown in the following paragraphs that this condition is true in an iterative
solution only if the solution converges with the correction parameters approaching zero.

ITERATIVE LEAST-SQUARE SOLUTIONS

As an example of iterative solutions, consider the solution model for the simultaneous
adjustment of photogrammetric blocks in aerotriangulation. The solution is based on the
following pair of collinearity equations which express the relationship between the image
coordinates (x;j> y;)ofpointi on photo) and the corresponding ground coordinates (Xi' Yj , Z) of
pointj:

(17)

(18)

where XI' and Yl' are the image coordinates of the principal point;! is the focal length X;c, y;c,
and Z; c are ground coordinates of the ith camera position; and the m;/s are functions of the
three rotation parameters (w;, cP;, K) of the camera.

By first-order Newton approximation, these collinearity equations are linearized to the
form:

V'ij + butlX;" + b 121lY;c + b 131lZ;" + b 141lW; + b 1sllcPi

+ b 161lK; + b 17tlXj + b 181lYj + b191lZj = EXij

V!lij + b21 tlX;" + b221lY/ + b231lZ j C + b241lw; + b2s llcP;

+ b261lK; + b27tlXj + b281lY. + b291lZ· = E
) J Yij

(19)

(20)
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(21)

f[m t 2(X/ - X jCO) + m21 (Y/ - y;"U) + m32(Z/ _ZjCIIJ]
+ -.:;-[m-

t
-
3

-(-X:""/-'---X-'-/--"O)-+-m-2'-'3-(-Y-"-j-0---Y"':'i-C"":")-+-m~33:""':"(Z~~J-."---Z-j-C(-=") ] (22)

(23)

where Xj0, Yj", Zj" are approximate ground coordinates ofpointj ;X j
CO, YjCII, Zi co are approximate

ground coordinates of the ith camera position; and !::.X/, ~Yic, etc., are the most probably
corrections to the approximations.
Equations 19 and 20 may be expressed in matrix notation as:

vij + Bij Lij + Bij iij =Eij.
(2,1) (2,6) (6,1) (2,3) (3,1) (2,1)

Equation23 differs from the observation equation of the linear regression problem, i.e.,
Equation 8, in one significant aspect. The elements of the constant matrix Eij are functions of
both the measured quantities (xij, Y j) and the approximations (X) 0, Yj ", etc.), as can be clearly
observed in Equations 21 and 22.

The complete set ofcollinearity equations for a photogrammetric block may be expressed as:

v + B~ = E.

The corresponding normal equation will be as follows:

N~ = C
where

The weight matrix W of the measured image coordinates is again defined as

W = a} a Xy - 1

(24)

(25)

(26)

where axy is the variance-covariance matrix of the measured image coordinates. The follow
ing paragraphs show that the convergence of the ~-matrix is the necessary condition for the
expression atJ. = ao2N - 1 to be valid.

The normal Equation 25 is in exactly the same form as the normal Equation 12. Therefore,
the derivation of atJ. can proceed in exactly the same manner as that presented above until the
following expression is reached:

atJ. = N- J BTWE {(E - E(E)) (E - E(E)/} WB N-1
.

Because, by definition,

E { (E - E (E)) (E - E (E)/} = a. ,

atJ. = N- J B T W a. WB N- J
•

If the ~-matrix became zero in the iterative solution, Equation 24 becomes

V = E.

(27)

That is, the residual terms EXij and EYij in Equations 19 and 20 are caused by random errors in
the measured parameters.Under this condition of convergence, it is obvious that the follow
ing relationship is true:

From Equation 26, a xy = au2W- 1
. Therefore,

a. = a}W-l
. (28)
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By substituting Equation 28 into 27, it can then be easily shown that

ertJ. = era
2N- I

.

LetXO denote the matrix ofall the approximations, andX denotes the matrix ofthe unknown
parameters; Le.

x = X" + Ii.

Then, because XO has stabilized to become a constant term, the variance-covariance matrix
of the computed values of the unknowns (erx) is equal to the variance-covariance matrix ofthe
corrections; Le.,

erx = ertJ..

However, if the iterative solution fails to converge with Ii approaching zero, it would no
longer be true that V = €. In such a solution, the residual terms €Ijj and €Yij in the collinearity
equations will include measurement errors, approximation errors, as well as errors introduced
by the li nearization ofthe original observation equations. Itcan no longer be stated thater = er
and Equation 27 cannot be further simplified, Le., • xy,

ertJ. = N- JBTWer.WBN- l .

There is no simple statistical method available for directly computing er. from the solution. In
fact, there is no assurance that the elements in the €-matrix actually follow a normal distribu
tion.

EXPERIMENTAL VERIFICATION

The validity of the method of propagation of variance and covariance was studied by the
method of simulation for several common adjustment problems in computational photo
grammetry. All the problems to be presented in the following paragraphs required iterative
solutions. In all instances, the iterative solution was terminated when the computed estimate
of the standard error of unit weight between two successive iterations was less than 0.01 ero;
where era is the predefined standard error of unit weight, Le., I (ma)i - (ma);-l I < 0.01 era.

In each simulation solution, the expected root-mean-square (RMS) errors of the adjusted
parameters were computed according to the method of propagation of variance and
covarience; i.e., Equation 1. The true errors in the computed values of the unknown parame
ters were also determined to provide a check on the validity of the method.

COORDINATE TRANSFORMATION

Let Xj, Yj, Zj represent the model coordinates ofa pointj; and Xj, Yj and Zj be the correspond
ing ground coordinates ofpointj. The transformation ofthe model coordinates into the ground
coordinate system requires the determination of seven transformation parameters: scale,
translations in the X, Y and Z directions, and rotation about the X, Y and Z axes.

Table 1 lists the expected RMS errors against the true errors of the computed parameters.
Twenty-five ground control points were arranged in a 5 x 5 rectangular pattern over an area
of 125 km x 125 km. The model coordinates were assumed to have a relative accuracy of ±0.1
m; and the ground control coordinates had an RMS error of ±1 m, ±10 m, and ±1000 m for
Cases 1, 2 and 3 respectively.

In Cases 1 and 2, the corrections in the last iteration were negligibly small and could be
considered as zero. The true errors were all less than three times the expected RMS errors
(3er).

In Case 3, the corrections in the last iteration were relatively large but were all much
smaller than the expected RMS errors. The true errors were also within the three-sigma level.

CAMERA CALIBRATION

Table 2 lists the results from three simulated cases of camera calibration. The camera was
assumed to have the same geometry as the return-beam-vidicon (RBV) television cameras being
flown on board the ERTS·I satellite. It had a 126-mm focal length, and a narrow (16.2°) field of
view. The camera had 81 reseau points arranged in a 9 x 9 rectangular pattern at its focal
plane. The directional angles to these reseau points were measured through the lens with a
travelling telescope. These directional angles were used as controls in the determination of
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TABLE 1. TRUE ERRORS vs. RMS ERRORS IN COORDINATE TRANSFORMATION

Parameters.
Final

Correction
Final
Value

Expected
RMS Error

True
Error

O.
-.6

+ .5
-.9
-1"
-2"

o

± .00002
.4
.4
.4
1"
1"
1"

Case 1. a XJ' = a y. = a Z. = ± 1 m
J J

.14 X 10-6 0.50000
-.01 219.4

.03 220.5

.015 29.1

.01" 29° 59' 59"

.01" 29° 59' 58"

.06" 60° 0' 0"

Scale
X-translation
Y-translation
Z-translation
w-rotation
<f>-rotation
K-rotation

Scale
X-translation
Y-translation
Z-translation
w-rotation
<f>-rotation
K-rotation

Case 2. aX. = ay.= a Z.= ± 10 m
) J )

.86 X 10-7 .50001 ± 0.00008
.03 217.3 1.7
.02 220.8 1.7

+.008 27.6 1.7
0" 29° 59' 58" 5"
.01" 29° 59' 48" 4"
.15" 60° 0' 0" 4"

.00001
-2.7
+0.8
-2.4
-2"
-12"

o

Scale
X-transalation
Y-translation
Z-translation
w-rotation
<f>-rotation
K-rotation

Case 3. aX. = a y.= aZ. = ± loo0m
J J )

.15 X 10-3 .5009 ± .0007
~ -~ 1~

33 255 160
-39 -141 167
-41" 29° 57' 55" 8' 2"

-1'47" 29°40'59" 6' 10"
l' 44" 60° 0' 7" 6' 17"

.0009
-253

35
-171

-2' 5"
-19' 1"

7"

All translation parameters are expressed in meters.

the interior geometry ofthe camera. The coordinates ofthe reseau points were assumed to be
measured with an RMS error of ±2ILm. The horizontal (aj) and vertical ({Jj) angles ofthe light
ray incident on the reseau pointj were assumed to be measured with an RMS error of ±2 sec
±4 sec, and ± 10 sec of arc for Cases 1, 2 and 3, respectively.

In spite ofthe poor geometry caused by the narrow field angle ofthe lens, the true errors in
the computed parameters were all less than 3cr.

TABLE 2.TRUE ERRORS vs. RMS ERRORS IN CAMERA
CALIBRATION

(Xp = YP = 0.0,1 = 126.00 mm.)

RMS Error
of Directional Expected True

Case Controls Parameters RMS Error Error
(± mm) (mm)

1 ± 2 sec. x ±.06 .002
p

.06 .014yP
f .03 -.04

2 ± 4 sec. xp .08 -.006
Yp .08 -.028
f .04 -.054

3 ±10 sec. xp .16 .16
yP .16 .22
f .07 -.17
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FIC. 1. A 25-photo block.

BLOCK AEROTRIANCULATION

Figure 1 shows the location of the pass points and the control points in a 25-photo (5 x 5)
block. There are 47 pass points and 8 control points. The photographs had a nominal scale of
1:4000. The block was triangulated by a simultaneous solution program called SAPCO-A. The
image coordinates were weighted with a standard error of ±51Lm and the ground coordinates
of the control points were weighted with a standard error of ±0.01 m.

Table 3 lists the true errors vs the expected RMS errors in the computed coordinates of six
pass points. All the true errors were less than 30-.

LUNAR PHOTOTRIANCULATION

The data for a strip of 11 photos was generated to simulate the metric photography from the
Apollo 15 mission. The camera had a focal length of76.7 mm and the nominal flight altitude
was 1l0.3 km. There were 25 pass points in each photo and adjacent photos had 60 percent
overlap. The image coordinates of the pass points were perturbed with a standard error of
±5ILm.

The strip was first triangulated using all the controls which were available on the Apollo 15
photography: tracking data, laser altimeter measurements, and attitude data from a stellar
camera. The tracking data was assumed toprovide the velocity vector with an RMS error of
±0.5 m/sec. Assuming that the position vector ofthe first photo was error free, an RMS error of
±0.5 m/sec. in the velocity vector was equivalent to an RMS error of ±20 m, ±29 m, ± 35 m,
±40 m, ±45 m, ±50 m, ±54 m, ±57 m, ±61 m, and ±64 ffi. for the coordinates of the 2nd,
3rd, ... and lith photo, respectively. The laseraltimeter measurements were assumed to be ±3
m. The stellar camera was assumed to provide attitude data with an RMS error of ± 10 sec for
both the w- and K-rotation and ±20 sec. for the <p-rotation.
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TABLE 3. TRUE ERRORS vs RMS ERRORS IN BLOCK
AEROTRIANGULATION

Final Expected True
Point Coord. Correction RMS Error Error

(meters) (± meters) (meters)

X -.01 .04 -.03
y -.03 .05 -.01
Z -.3 .4 -.2

3 X .003 .02 -.01
y .004 .03 .01
Z -.2 .4 -.1

5 X .000 .04 .02
Y .02 .05 -.06
Z -.3 .4 -.2

16 X -.01 .03 .01
Y .01 .04 .01
Z .02 .3 .4

18 X .003 .02 .01
y -.01 .02 -.01
Z .01 .3 .3

20 X -.01 .03 .02
Y .01 .04 -.02
Z .02 .3 0.2

Five different sets offictitious data were generated for the same strip. The perturbations in
the measured parameters of each data set were generated independently. Each data set was
triangulated independently.

Tables 4, 5, and 6 list the last corrections, true errors and expected RMS errors for the X, Y
and Z coordinates of the exposure stations. In all five instances, the true errors were within
three times the expected RMS errors (30-). With the exception ofthe Z coordinates in Case 5 of
Table 6, the last corrections were all within the expected RMS error (lu).

Figure 2 is a graphical plot of the true errors in the computed coordinates of the pass points
located at the center of each photo. With the exception of three data points, all the true errors
were within three times the expected RMS errors (3u).

To provide a more rigorous test ofthe method ofpropagation ofvariance and covariance, the
five data sets for the same II-photo strip were triangulated as cantilever extensions. In each
instance, the six orientation parameters of the first photo and the rectangular coordinates of

TABLE 4. EXPECTED RMS ERROR VS. TRUE ERROR IN X-COORDINATE OF EXPOSURE STATIONS
(TRACKING + ALTIMETER +ATTITUDE CONTROLS WITH O'v = ±O.5 m/sec)

Station Expected True Error in Case Last Correction in Case

RMS 1 2 3 4 5 1 2 3 4 5
Errors

(± meters)
(meters)

1
2 10 -5 -10 4 26 -6 -3 -3 5 -6 1
3 11 +3 -13 1 6 6 -6 -3 6 -6 2
4 12 25 20 18 3 -10 -9 -2 5 -4 3
5 13 -1 -10 -19 -4 -6 -10 2 7 -8 2
6 13 -2 -32 -28 2 14 -10 6 7 -2 7
7 14 -7 -17 -31 2 21 -5 -2 4 -7 5
8 15 3 -14 -39 7 -4 -9 -6 8 -6 5
9 15 -16 -25 -36 9 -25 -11 -7 8 -9 0

10 16 -16 -11 -38 13 -33 -12 -3 10 -9 1
11 18 13 0 -36 17 -8 -9 -2 5 -7 0
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FIG. 2. True error in computed pass point coordinates offive cases (tracking + altimeter
+ attitude controls).

the second photo were held fixed in the solution. No other control data were used, and the
image coordinates of the pass points were weighted with a standard error of ±5 J.l.m.

Tables 7, 8 and 9list the last correctioJls, true errors and expected errors for the coordinates
of the exposure stations. It is obvious in these tests that the computed RMS errors completely
broke down as an accuracy estimator. Many of the computed coordinates had true err0rs far
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TABLE 5. EXPECTED RMS ERROR VS TRUE ERROR IN Y-COORDINATES OF EXPOSURE STATIONS
(TRACKING +ALTIMETER + ATTITUDE CONTROLS WITH lTV = ±O.5 m.lsec.)

Station Expected True Error in Case Last Correction in Case

RMS 1 2 3 4 5 2 3 4 5
Error

(± meters)
(meters)

1
2 7 -14 4 -16 - 5 +3 -2 3 0 1.0 1
3 7 11 13 -9 - 3 -5 -4 2 0 0 1
4 8 4 11 4 -15 -13 -3 4 0 0 1
5 8 -17 5 -9 -24 -4 -5 3 0 -1 0
6 8 8 4 -4 -1 0 -5 5 0 -1 2
7 9 6 19 -6 -8 -8 -4 5 0 -1 3
8 9 12 27 -5 -9 -16 -5 8 0 -1 3
9 10 1 19 -1 -17 11 -6 8 0 0 3

10 11 2 16 16 -12 -8 -5 10 1 -1 5
11 11 16 17 10 -15 4 -5 9 0 -2 4

TABLE 6. EXPECTED RMS ERROR VS TRUE ERROR IN Z-COORDINATES OF EXPOSURE STATIONS
(Tracking + Altimeter + Attitude Controls With (Tv = ±O.5 m.lsec.)

Station Expected True Error in Case Last Correction in Case
RMS 1 2 3 4 5 1 2 3 4 5
Error

(± meters)
(meters)

1
2 6 10 - 8 2 -4 9 -2 0 2 1
3 8 8 -20 -6 2 0 -4 -1 0 3 -3
4 9 13 -13 -4 0 8 -4 -2 -2 3 -5
5 9 23 -14 -1 0 11 -3 -5 -2 5 -8

-6 10 23 -15 -7 -5 8 -3 - 7 -3 5 -13
7 11 12 -19 -9 -6 13 -5 -10 -2 4 -17
8 11 15 -19 -18 1 5 -7 -10 -2 4 -20
9 12 11 -12 -14 -14 6 -9 - 8 -4 5 -22

10 14 11 -6 -18 -14 7 -8 - 6 -4 8 -25
11 16 16 -8 -21 -23 11 -12 - 5 -6 10 -24

TABLE 7. EXPECTED RMS ERRQR VS. TRUE ERROR IN X-COORDINATES OF EXPOSURE STATIONS
(CANTILEVER EXTENSION)

Station Expected True Error in Case Last Correction in Case

RMS 1 2 3 4 5 1 2 3 4 5
Errors

± meters (meters)

1
2
3 31 109 70 -19 -18 -5 16 -19 -15 47 -1
4 37 100 79 61 -137 2 16 -34 26 17 -6
5 35 74 -188 116 -184 12 7 -35 1 -19 -11
6 35 24 -356 171 -190 33 16 -13 -32 9 -5
7 36 -105 -467 248 -231 93 33 -7 -20 -19 -2
8 37 -168 -553 244 -325 137 59 33 2 -15 0
9 37 -299 -573 169 -454 192 71 79 19 -43 -3

10 43 -670 -637 III -590 216 74 102 68 -83 -6
11 59 -360 -667 -4 -753 219 57 142 77 -103 -16
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TABLE 8. EXPECTED RMS ERROR VS. TRUE ERROR IN Y-COORDINATES OF EXPOSURE STATIONS
(CANTILEVER EXTENSION)

Station Expected True Error in Case Last Correction in Case
RMS 1 2 3 4 5 2 3 4 5
Error

± meters (meters)

1
2
3 20 42 -15 -17 -57 1 4 -16 -6 21 -5
4 26 -8 -34 -28 -92 27 5 -27 15 24 -10
5 30 -92 -26 27 -127 61 -4 -17 6 17 -17
6 29 -139 -35 10 -131 84 -16 -11 -21 24 -26
7 30 -187 -46 -12 -127 107 -20 -12 -24 36 -34
8 30 -233 -13 -40 -110 133 -30 -1 -34 59 -50
9 32 -277 29 -58 -113 160 -44 19 -25 38 -60

10 37 -391 77 -52 -158 195 -52 4 -37 65 -81
11 46 -542 122 -103 -153 223 -37 58 -70 35 -99

TABLE 9. EXPECTED RMS ERROR vs. TRUE ERROR IN Z-COORDINATE OF EXPOSURE STATIONS
(CANTILEVER EXTENSION)

Station Expected True Error in Case Last Correction in Case
RMS 1 2 3 4 5 2 3 4 5
Error

± meters (meters)

1
2
3 12 -36 21 27 -27 11 -5 12 4 -15 5
4 19 -71 11 29 1 34 -5 21 -17 -16 11
5 22 -85 23 17 15 58 0 27 -17 -2 20
6 23 -104 87 -1 7 85 2 34 -3 -9 31
7 23 -114 178 93 -2 114 -4 38 8 -2 36
8 23 -101 285 -91 -34 125 -14 28 22 4 39
9 26 77 381 -141 -17 124 -26 9 36 18 40

10 37 -31 499 -168 -7 128 -36 -9 49 42 40
11 55 -7 613 -149 27 140 -39 -55 65 93 45

exceeding their expectedRMS errors. It was observed that beyond Exposure Station 7, the last
corrections generally exceeded the estimated RMS errors of these parameters.

Figures 3, 4 and 5 show the true errors in the computed coordinates of the pass points
located at the center ofthe photos. These figures showed the rapid accumulation ofsystematic
errors along the strip. Furthermore, the systematic pattern varied from strip to strip. The
computed RMS errors failed to detect these systematic errors and clearly underestimated the
inaccuracy of the solution.

CONCLUSIONS

Based on the above experimental results, the following conclusions can be drawn:
* In photogrammetric adjustment problems where only low-order accuracy controls are available,

the correction parameters generally will not reach zero in the iterative least-squares solution.
However, the correction parameters should converge to a value less than the estimated RMS
errors computed from the propagation of variance and co-variance.

* Generally, if a well-distributed system of controls is available and if the correction parameters
converge to a value which is less than the computed RMS errors, then the computed RMS errors
should be reliable estimators for the accuracy of the computed parameters.

* The computed RMS errors cannot detect the rapid accumulation of systematic effects caused by
random errors. It is well-known that the double-summation effect of random errors produces
systematic errors in phototrian'gnlation.
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* Generally, if the corrections in the last iteration exceed the computedRMS errors even though the
solution has stabilized, then the RMS errors are not reliable as estimator of the adjustment
accuracy.

It is recommended that in simulation studies, true errors of the adjusted parameters should
always be computed to check on the computed RMS errors. For problems in which the
controls are sparsely distributed and/or are oflow-order accuracy, several independent simu
lation cases should be performed to provide a check between the estimatedRMS errors and the
true errors. For actual problems in practice, check points should always be used as the primary
verification of adjustment accuracy.
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(Continued from page 64)

FORUM

Dear Editor:
The recent article by Bob Reeves on "Edu

cation and Training in Remote Sensing"
(Photogrammetric Engineering, June 1974)
cites and briefly discusses an article I wrote
(Photogrammetric Engineering, Sept. 1972)
entitled "Remote Sensing Education in the
U.S.A.". Although the citation is appreciated
by this author, I believe that many, including
Dr. Reeves, have not grasped the true focus of
my article. Allow me to list some pertinent
observations.

• My article was submitted to ASP in August
1971 and, for many of us authors who are not
yet household words, it takes some time to
see the fruits of our labor in print - in this
instance some 13 months. Needless to say,
as the field of remote sensing was rapidly
developing at that time, many new pro
grams and course offerings sprang up almost
overnight, thereby making the list some
what inconclusive.

• The focus of my article was on college and
university courses, especially those that
were listed in current school catalogs. For a
student surveying the field, it is appropriate
to review the various catalogs in search of a
special program or unique course in remote
sensing.

• The intent of my article was not to focus on
traditional aerial photo interpretation
courses (many other articles have done that
in the past) but on those courses specifically
involving other than black-and-white aerial
photo study. Those courses in photo in
terpretation that also indicated some addi
tional focus in unique sensor systems were
separately treated.

I considered that my article was only an
introductory incision into the field of remote
sensing training and education. The article
was directed to those scientists and resource
managers, either practicing or students, who
were in search of academic institutions in

which they could obtain introductory formal
training through lectures and labs or to re
ceive an updating of their skills. The general
response to the article was quite favorable as
many believed that this article served as an
excellent guide for prospective students
seeking training in this dynamic field.

There were some, however, who were of
the opinion that (a) a non-academician had no
business in writing such an article and (b)
surely far more courses in remote sensing
were offered than those listed. To answer the
second part ofthe criticism first (even though
the printer did make a serious omission by
deleting, for some reason, several graduate
specializations which I had listed) the fact of
the matter is, for the most part, the college
catalogs did not list other additional courses,
even though the latest catalogs were ob
tained. It was not the intention of my article
to list industrial short courses, seminars,
symposia, or research programs and grants.

As to the first charge, that a non
academician should not have even prepared
such an article, I hasten to point out that still
to this day, no other listing of remote sensing
courses is readily available. True, as Dr.
Reeves states" ... the ... Education Com
mittee ... is going to conduct a survey of ...
courses in remote sensing ... ", butthe initial
demand for such a survey was during the
formative stages of remote sensing.

I did not envision working against any
committee or against any university image.
However, I did see the need and attempted to
fill the void.

- Dean F. Eitel

U.S. Army Corps of Engineers
North Central Division
Chicago, Illinois, 60605


