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Fourier Spectra for
Non-Homogeneous Patterns

An optimal optical field size exists for any component of the
power spectrum that one may wish to consider.

INTRODUCTION

T HE APPLICATION of opti.cal fourier transforms
to the processing of photographic data in

the earth sciences in general has been dis
cussed by a number of authors (Pincus and
Dobrin, 1966; Dobrin, 1968; Nyberg, Orhaug
and Svensson, 1971). The use of such trans
forms in obtaining the power spectra ofocean
surface waves was worked out by Stilwell
(1969). Almost all the patterns being
analyzed are non-homogeneous; however,
the problems peculiar to the analysis of non
homogeneous patterns have not been ade-

!:>.k ~ ;;. V2 (1)
where t:.k is the root-mean-square (rms) dis
persion in the fourier transform of a function
whose rms dispersion is t:.x.

Applied to a photograph, the fourier trans
form of the area of the photo acts as a filter on
the fourier transform of the pattern photo
graphed. In one dimension, the transform ofa
rectangular photo is the classical one for dif
fraction from a rectangular slit.

F (k) = V2 sin Vz kl
7T k (2)

where 1is the width of the photo in the direc-

ABSTRACT: Non-homogeneous patterns are subject to intrinsic limita
tions on the degree ofspectral resolution possible in pattern analysis
by optical fourier transforms. The construction of nearly optimal
spectra for such patterns deals with ocean surface waves in shoaling
water as an example.

quately dealt with previously. In a recent
paper (Polis, 1974) the present author ad
dressed himself to the determination the op
timum field size for the analysis of a particu
lar component ofthe ocean-wave spectrum in
a non-homogeneous regime. The present
paper deals with the construction of optimal
power spectra from photographs of non
homogeneous patterns, using ocean surface
waves as an example.

tion under consideration. This pattern, taken
in its entirety, has an infinite width; however,
in the optical fourier transform technique,
only the central lobe is used, i.e., the portion
-7T < Vz kl < 7T. The rms width of this portion
is given by

(t:.k(l))2= J27Tll k2F(k)dk(J27TllF(k)dkjl
-:!.7Tll -27T1l

(3)

which is consistent with Equation 1.
A non-homogeneous pattern is one whose

spectral properties change from point to
point. Obviously, this is an imprecise defini
tion as the spectrum of a mathematically

GENERAL PRINCIPLES

It is well known in optics that, as was first
pointed out by Rayleigh (1879, 1880), the re
solving power of an optical system is ulti
mately limited by the size of its apertures.
This principle was generalized by Heisen
berg (1927) who postulated the uncertainty
relation of quantum mechanics. In terms of
fourier transforms, the uncertainty relation is

t:. k (l) = 2V7T
1

(4)
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(6)

well-behaved spatial pattern is a uniquely
defined function; however, this uniqueness
applies only the global pattern.

One is usually concerned with the spatial
properties of a small area and these will vary
from location to location. For example, the
spacing and direction of streets differs be
tween the older, historically Mexican section
of Los Angles, and the more recent adjacent
areas. Similarly, ocean surface waves will
vary in their direction and wave length as they
enter shallow water.

CONSTRUCTION OF OPTI\'1AL SPECTRA

Following the method outlined above one
can determine the optimal field size for the
analysis of a particular vector wave number;
however, the field size will vary with the
wave number under consideration. For sur
face gravity waves in shoaling water Polis
(1974) obtained

2[3 'TT (sinh 2kh + 2kh) ] 112
I"Pt = k m (sin (J sin 2(J - 2 cos (J) (5)

pendent on vector wave number. This means
that in order to construct an entire optimal
spectrum it is necessary to use a variable field
size.

A given field size will be optimal for an
entire set ofvector wave numbers. The loci of
this set in k-space can be found by inverting
the equation corresponding to Equation 5 for
the particular phenomenon under considera
tion. Here Equation 5 is transcendental, and
must be solved numerically; however, for
purposes of illustration, we can consider the
approximate form of Equation 5 which ap
plies to shallow water. For kh < < I,

I"I,t = 1.. [3 'TT kh ] V2 f ((J)
k m

where

f((J) = (sin (J sin 2 (J - 2 cos (J) -%. (7)

Inverting Equation 6 one finds that a given
field size is optimal for two lines in k-space
symmetric about origin and given by

If the non-homogeneity causes a variation
in the vector wave number of a particular

where k is the magnitude of the wave
number, h the water depth, m the bottom
slope (m < 0), and the (J the angle between
the direction of wave propagation and the
bottom gradient. Thus, I "pt is strongly de-

k _ 48 'TT hf2 ((J).
o/JI----

mf2 (8)

8=0

Flc. 1. Sample spatial filter for the optimal analysis of shoaling wave spectra in shallow water.
The pass band has for its lower bound k 0l't (12,0), and for its upper bound k opt (I" 0), as calculated
from Equation 8, with 12 >1,. This filter would be used in conjunction with a photo with filed size, I,
intermediate between I, and 12 .
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component such as occurs in the shoaling of
waves, then one may proceed to optimize the
spatial analysis of the pattern using the
method employed by Polis (1974). Namely, one
estimates the rms variation in the wave number
ak of a given component caused by the non
homogeneity over a variable distance, I.
This variation will usually increase mono
tonically with l. At the same time t:.k from
Equation 4 is a monotonically decreasing
function ofl. If t:.k = ak, one has the optimum
pattern size for the analysis of the given com
ponent l"l'f (k). For values of I > I "I'f (k), the
non-homogeneity will be limiting, whereas
for I < I opl (k), the uncertainty principle will
be limiting. One consequence of this is that
there are ultimate limits of resolution for each
vector wave number in a spatial pattern, viz.,
the value of k corresponding to lo",(k).

One may be able to make some marginal
improvements in the resolution by going
from a uniform coherent illumination ofa rec
tangular photograph to a· coherent beam
with a carefully tailored cross-sectional dis
tribution of intensity in order to obtain a lllter
function superior to that given by Equation 2;
however, improvements along these lines are
ultimately limited by the uncertainty prim:i
pIe, Equation 1. In some instances t:.k will be
so large compared to the central value of k
that the whole notion of a spectrum for the
local area is meani ngless, e.g., if t:. k/k ~ 1.
Thus, one must be carehd in interpreting the
spectra of non-homogeneous patterns, as no
thing in the physical technique of optical
fourier transforms will prevent the genera
tion of meaningless spectra. The analysis
must be limited to the domain of k-space
where the results are physically meaningful.

Actually, because only limited resolution
is possible, smearing of the spectrum will
occur over a band t:.k (I (l1'f) wide in k-space.
This means that if one wants to piece a spec
trum together as a mosaic, there is no point in
using bands much smaller than t:.k (lop I) for
any particular band centered on k. If there is
reason to believe that the spectrum is rela
tively smooth, then one might be able to use
bands much wider than this. In general, it
turns out to be impossible to construct a
mosaic from hands of constant t:.k usi ng, say,
successively larger rectangular photographs.
This is because ofthe usually non-linear rela
tionship between k opl and I demonstrated in
Equation 8 f()J' waves or in its analogue for
some other phenomenon.

It is simplest to take as the boundaries of
each mosaic section, lines given by Equation
8 for values of I intermediate between the
successive field sizes used. If this is done,

one will have a pass-band for each field size
similar to that shown in Figure 1. This is
simply a spatial filter, except that the inverse
transform is not taken after filtering. Using a
series of such filters in conjunction with suc
cessively larger fields it is possible to con
struct a nearly optimal spectrum for any pat
tern whose spatial variation can be described
theoretically.

This leaves a very large question for further
research on the analysis of non-homogeneous
patterns, viz., how does one determine the
optimal field sizes and appropriate spatiallll-,
tel'S for patterns about which we have no a
priori knowledge? Such patterns do, after all,
constitute the majority of those encountered
in remote sensing.

CONCLUSION

In analyzing non-homogeneous patterns
by the optical fourier transform technique, an
opti mal fleld size exists for any component of
the power spectrum one may wish to con
sider. If one seeks to analyze patterns smaller
than this, the spectral resolution will be poor,
whereas for larger field sizes the in
homogeneity of the pattern will mask the
local features one is trying to investigate.
Such considerations place ultimate limits on
the possible spectral resolution of local pat
terns. We have discussed the analysis of pat
terns for which theoretical models exist;
however, further work is needed for the op
timal analysis of non-homogeneous patterns
which are not adequately described theoreti
cally.
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