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Photogrammetric Interpolation*

Different interpolation methods should be used for different
photogrammetric tasks.

INTRODUCTION

T his paper intends to draw attention to
the fact that interpolation in photo­

grammetry is too important a problem to be
approached with an attitude that "linear in­
terpolation is good enough," that "one
method is perfect in all applications," or that
"the best method of interpolation is the one
which costs the least effort." Instead, in
evaluating the problem one has to differen­
tiate many aspects.

ence or data points. Interpolation consists of
estimating the same phenomenon at inter­
mediate points using the given data. The
phenomenon under consideration may be
described by a scalar, or by a vector ofdimen­
sion m > 1 (see Figure 1, upper).

This definition is rather practical and does
not specifically refer to "smoothing," "HIter­
ing" or "regression." These concepts will
become relevant if the data in the reference
points are measured, and thus composed of
the "signal" and an uncorrelated measuring

ABSTRACT: A number of typical tasks of photogrammetry are defined
as interpolation problems. Experiences in some of these are used to
advocate a more differentiated judgement of interpolation methods.
Some are compared with each other and an attempt is made to show
that it is quite useful to rely on a number of different interpolation
methods for different photogrammetric tasks.

This is attempted first by a number of
theoretical considerations. These are then
supported from specific photogrammetric in­
terpolation experiences concerning projec­
tion errors in Dutch test field photography,
HIm deformation correction, SLAR mapping,
and interpolation for Digital Terrain Models
(DTM).

INTERPOLATION

A phenomenon is known at a number of
discrete points in n-dimensional space (Ref­
erence space). These points are called refer-
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error, "noise." In this case it becomes a
meaningful problem to separate in the data
points the observational errors from the
signal, and to obtain at non-data points esti­
mates of the signal only ("filtering of the
noise" or smoothing (Figure 1, lower)).

Interpolation as defined here is part of the
more general mathematical theory ofapprox­
imation, of which it represents a particular
application. Further pertinent terminology
refers to "curve" and "surface fitting" and to
"prediction" (to denote interpolation and ex­
trapolation).

These concepts will be explained by a
number oftasks ofpractical photogrammetry.
In this context, it is the term "interpolation"
which is used to denote problems covering
also smoothing, filtering, or surface fitting.
Although this nomenclature might not satisfy
representatives ofother fields of science, it is
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bserved phenomenen
(1 dimension)

observed phenomenon
(1 dimension)

non data point ~
reference space

(1 dimension)

FIG. 1. Explanation of the concepts used
for the definition of interpolation (upper)
and interpolation and filtering (lower).

the one traditionally understood in photo­
grammetry.

PHOTOGRAMMETRIC INTERPOLATION TASKS

Table 1 summarizes a number of photo­
grammetric tasks which involve interpola­
tion. It also specifies the dimension of the
reference space as well as observed
phenomenon. It turns out that correction of
radial symmetric lens distortion is one of the
simplest interpolation problems. The refer­
ence space is one dimensional: the radial dis­
tance. The observed phenomenon is the
one-dimensional radial lens distortion. A
more complicated task is interpolation of
Ih, l::.y, l::.z block- or strip-deformation in the
three dimensional coordinate system of the
strip, block, or terrain.

In a number of cases, such as lens distor­
tion and film deformation the phenomenon to
be studied is observed directly. In others, the
observations are indirect, as in strip- and
block deformations. Typically, these indirect
observations are obtained as residuals after a
transformation by the method ofleast squares
in which the mathematical model was imper­
fect. In this context it is relevant to note that
transformation and interpolation are tasks
performed sequentially. They can to some
extent substitute each other. In the example
of absolute orientation of a well-controlled
photogrammetric model, a conformal trans­
formation followed by an interpolative cor­
rection of model deformation might be as ef­
fective as a sole transformation with more
than just the conformal parameters. A perfect
mathematical model for a least squares ad­
justment can result in purely uncorrelated
residuals. If, however, the mathematical
model is simplified, there will be a "signal"
left in the residuals, so that post-processing of
the least squares adjustment results can be
useful. Least squares adjustment, filtering
and interpolation can be combined into one
algorithm. This is called by Moritz "least
squares collocation."

A CLASSIFICATION OF INTERPOLATION

METHODS

Interpolation methods could be classified
according to the purpose for which they
would be suited, e.g., according to Rice12

whether they are for mathematical represen­
tation (derive values at non-data points); for
data analysis (smoothing, extract signal,

TABLE 1. PHOTOGRAMMETRIC TASKS INVOLVING INTERPOLATION.

Task

Determination of refractive index

Lens distortion correction in
photograph (a)

Lens distortion correction in
photograph, only radial (b)

Film deformation correction
Rectification
Instrumental error correction

(a) comparator
(b) plotter

Model deformation correction

External strip adjustment,
planimetry and height

External block adjustment
planimetry + height

Digital terrain model (DTM)

Dimensions of Reference
Space

3 (x, y, z coordinates, plus
event. time?)

2 (x, y image coordinates; or
radial distance rand
azimuth)

1 (radial distance r)

2 (x and y image coordinates)
2 (x and y image coordinates)

2 (x, y coordinates)
3 (x, y, z model coord.)
3 (x, y, Z model coord.)

3 (x, y, z strip coordinates)

3 (x, y, z block coordinates)

2 (x, y reference plane)

Dimension of
Phenomenon

1 (refractive index)

2 (tangential and radial
distortion; or tu, !:>.y image
errors)

1 (radial distortion)

2 (tu, !:>.y film deformations)
2 (tu, !:>.y image deformations)

2 (tu, !:>.y)
3 (tu, !:>.y, !:>.z)
3 (tu, !:>.y, !:>.z model

deformations)
3 (planimetry: tu, !:>.y; & height:

!:>.z)
3 (planimetric + height

deformations)
1 (z ... height)
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analyse trend); for data compression (elimi­
nation of redundant information); or for easy
manipulation and evaluation.

Photogrammetric interpolation tasks often
combine some or all of these four objectives.
In such a case another classification might be
appropriate, depending on whether interpo­
lation is with a single, global function; inter­
polation is by piecewise, locally defined
functions; or interpolation is pointwise.

For example, interpolation with a global
function is applied in strip adjustment. All
data points are used simultaneously to define
the interpolating function.

This might be acceptable for strip adjust­
ment with only a few control points, but for a
large number of control points, a low order
function cannot conform to all data points.
High order functions, on the other hand, tend
to be unstable, if an orthogonalization proce­
dure is not used. A solution to this dilemma is
interpolation with piecewise functions6 . The
reference space is subdivided into patches,
and for each patch another interpolation
function is defined. Often the necessity
arises of enforcing some continuity between
neighbouring patches to avoid cracks. This
does not necessarily require explicit consid­
eration of boundary or joining conditions2 .

Typical piecewise interpolatioT\ employs
linear interpolation, piecewise polynomial
interpolation, double linear interpolationl3 ,

or spline functions.
Pointwise interpolation defines a new in­

terpolation function for each non-data point,
using the surrounding subset of data points.
Pointwise interpolation is flexible, and does
not require extensive computer memory, but
is often slower than the other two classes of
interpolation. Typical pointwise interpola­
tion methods are with moving averages3, 14,
linear prediction5 , and weighted arithmetic
mean.

A detailed description of each of these in­
terpolation methods can be found in the ref­
erences indicated. A short review is in­
cluded in the appendix.

Rather than speaking about "methods of
interpolation," Rice 12 refers to "algorithms."
With these, he denotes basically a computer
program performing an interpolation task.
This algorithm, however, is composed of dif­
ferent constituents, namely: interpolation
form (polynomials, piecewise functions,
etc.); error measure (least squares, perfect fit
at data points, etc.); and method of solving for
the unknown. Rice12 mentioned that the
same constituents can produce a number of
alternative algorithms and compared the
situation with "cooking."

CONCEPTS FOR EVALUATION OF

INTERPOLATION METHODS

General. At present there is a need for ob­
jective comparison of interpolation methods
in photogrammetry. In the past, the parame­
ters of a specific method have usually been
optimised for a specific application. One of
the reasons for this might be the great deal of
intuition that is often used in choosing an
interpolation method, and a lack of criteria
beyond accuracy to differentiate between
methods. An often encountered attitude is
therefore to assert that all interpolation
methods work equally well, so that the sim­
plest and thus cheapest should be used. How­
ever, experience has shown that there are
cases where significant differences exist in
the performance of different interpolation
methods, even with respect to overall accu­
racy. And in other cases, this accuracy might
indeed not differ from one method to another.
The performance of an interpolation al­
gorithm may vary considerably as a function
of the structure ofthe input data (distribution
of data points).

In addition to having performance criteria
other than accuracy, evaluation of interpola­
tion methods is made difficult by this depen­
dence on input data structure. But for a given
input, Rice 12 identifies a series of properties
of interpolation algorithms to be used for
comparative evaluation: speed (of solving for
unknowns); flexibility (overall accuracy and
maintaining shape of small features); smooth­
ing power; constraint imposition (terrain
break lines in DTM); memory requirement;
smoothness (continuous, derivatives); and
speed of evaluation (of interpolating func­
tion).

Speed of solving for the unknowns and
speed of evaluation cannot be considered
separately in pointwise interpolation, but can
be separated in, for example, piecewise
polynomials. Smoothing power refers to the
capability of filtering a measuring error from
the given data, whereas smoothness refers to
the appearance of an interpolated curve or
surface, and whether it is continuous or not.
From practical experience it seems to be use­
ful to add to these properties: usefulness for
extrapolation, and reliability (sensitivity to
right choice of parameters).

The Accuracy of Interpolation Methods.
Generally, evaluation of interpolation
methods is attempted on the basis of their
accuracy, which can be described by a root
mean square interpolation error. What is this
error and how can it be obtained?

In a controlled experiment, the interpola­
tion error can be foundiJy using checkpoints,
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in which the interpolated and the known val­
ues are compared. Such an error is composed
of the propagation ofthe measuring error into
the interpolated value, and of the loss of in­
formation through the sampling of the
phenomenon at discrete points.

In actual application, the interpolation
error can be estimated by interpolation in
data points without using the information of
the data point, except for a comparison with
the interpolated value. Ifsampling were reg­
ular, then this method might produce an error
estimate which is too large, since the distance
between any non-data point to the closest
reference value is at least half as small as the
distance of such check points to the closest
data point. The error estimate can however
be used for a comparative evaluation of dif­
ferent interpolation methods, or the optimi­
zation of parameters within a methodS. Prop­
agation of variances into an interpolated
value does not result in an estimate of the
interpolation error. Such propagation would
only account for the effects of measuring er­
rors (noise) which often will be much smaller
than the effect ofa limited sampling density.

An approach to evaluating the accuracy of
interpolation can be derived from the theory
of random functions l . Assuming that a
phenomenon can be defined as a stochastic
function Z = f(x), which is characterized by
the covariance function cov (Xi> x) be"tween
the random variables Zj = f(x j), Zj = f(Xj); Xi>
XjEX, where x is the continuous range ofdefin­
ition of the independent variables.

All interpolation methods mentioned in
the classification can be described as a linear

relation between the interpolated value zp
and the values in the data points zl> Z2 . .. Zn:

zp = al . Zl + a2 . Z2 + ... + an . Zn = Q.l . ~

The coefficients a are specific for each inter­
polation method (and also specific for each
position of the non-data point). Variance
propagation is applied to the expression

with the result:

a~ = cov(xp , xp ) + Ql . Cov

(Xi' X) . !!:. - 2 . ~l • cov(Xp, Xj)

Here, cov (xp, xp) is a scalar, namely the
variance of the phenomenon.

!&!! (Xi' Xj) is a matrix of covariances among
all n data points (i = 1, ... , n;j = 1, ... , n).

cov (x p , x) is a vector of covariances be­
tween the interpolated and given values. The
elements of this vector depend on the posi­
tion of the non-data point.

Clerici and Kubik l used a~ for a compara­
tive evaluation of linear prediction and
linear interpolation. The conclusion was that
there is hardly a significant difference be­
tween the accuracy of the two methods. This
conclusion is, however, based on the assump­
tion that the phenomenon can fully be de­
scribed by the covariance function. Often,
this might not be the case. This might explain
why, in contradiction to the conclusion
reached by Clerici and Kubic l , significant
differences between linear interpolation and
other methods were encountered in an exper­
iment with DTM data9 •

TABLE 2. SUBJECTIVE EVALUATION OF A NUMBER OF INTERPOLATION METHODS; F ..• FAVOURABLE;

M . " . MEDIUM; U •.. UNFAVOURABLE. SQUARE-GRID INTERPOLATION ASSUMED.

Speed
Accuracy
Smoothing

power
Constraint

imposition
Memory

requirement
Smoothness
Speed of

evaluation
Use for

extrapolation

F
U

U

U

F
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F

U

F
U

M

M

F
F

F

U

F
M

U

U

F
M

F

U
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U
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U
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M

F
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F
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F

F

M
F

F

M
F

F

F

U
F

F

U
F

F

F

F
F

U

U
F

M

M

F
F

F
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Properties ojSome Interpolation Methods.
Preferably, a judgment of interpolation
methods should consider the structure of
input data to which the methods are to be
applied. A thorough effort in this direction
should be undertaken, since at the present
time only a subjective judgment for square­
grid interpolation can be presented in Table
2. Its main purpose is to give an example of
an attempt to evaluate interpolation methods.
It can only be intended as a basis for discus­
sion rather than as an authoritative classifica­
tion.

~" ........
Total residual
(signal &. noise)

...................
"",

~
. "-"

-',
...... .... .......

......... _--......... ... ..........J
", I

Uncorrelated component --------1
(noise)

SOME EXPERIENCES WITH INTERPOLATION

PROBLEMS

Filtering ojProjection Errors in Test Field
Photography. For the Dutch Photogrammet­
ric Society, a large set of aerial photographs
was obtained over the testfield "Flevopol­
der," with different cameras and at different
flying heights. The purpose was to study the
errors of the central projection, comparing
photogrammetric points with the "theoreti­
cal" points derived from terrestrial surveys
by a resection in space. Consequently a set of
projection errors was obtained for each of the
given photographs, representing a two­
dimensional phenomenon on a two­
dimensional reference space. Part ofthe data
analysis was to study the trend and the
amount of random noise in these errors.

The details of the projection will be pub­
lished. What is of interest here, is the interpo­
lation aspect of it. The usefulness of four dif­
ferent algorithms was compared for the pur­
pose. Since one objective was data analysis,
use of a number of methods without smooth­
ing power was not possible (e.g., linear in­
terpolation). So the methods selected were a
single regression polynomial with I-to-1O
coefficients, independent for .:u and l:J.y er­
rors; a meshwise third-order polynomial ac­
cording to Jancaitis and Junkins2 ; a moving
average of order I-to-1O; and linear predic­
tion.

It was soon found that, for the present proj­
ect, these methods all produced the same
results, which are shown in Figure 2. A simi­
lar result was obtained by Kupfer7 , com­
paring a single polynomial with linear pre­
diction in an application to test photography
ofthe Rheidt test area near Bonn, Germany: a
third-order polynomial with 10 coefficients
was found to be sufficient to describe the
signal in the data. "Sufficient" was defined
by a lack of correlation in the residuals left
after filtering.

The conclusion which one might be tempt­
ed to draw from these results is that there are

Scale Number

FIG. 2. Separation of projection errors into
signal and noise.

no differences between the accuracy or
power of interpolation methods. It will be
demonstrated that such a conclusion would
be premature. One can state safely only that
the specific data do not show such a differ­
ence.

The interpolation aspect of the study dem­
onstrates the importance of the concept of
filtering in photogrammetry. By means of the
correlation function, presence of a signal in
the data can be verified. In the particular case
of the analysis ofprojection errors, one might
use a "signal" found in the data analysis step
for correction of projection errors in future
flight missions. Such an objective would
mean mathematical representation. The
pointwise interpolation algorithms are inap­
propriate for this purpose. Instead of such a
pointwise numerical trend, a mathematical
global function can be used. Since the global
polynomial proved sufficient in the data
analysis step, it would be the obvious func­
tion to be used for correction of projection
errors.

Planimetric Mapping with Side-Looking
Radar Imagery. As part of a large mapping
project in Colombia, South America, it was
necessary to perform a planimetric triangula­
tion with SUR imagery covering approxi­
mately 400,000 km2 and 41 ground control
points10. The task was split into an internal
and external adjustment. First, SUR strips
were transformed into a common block sys­
tem using piecewise third-order polynomials
with continuous 1st derivative. The inter­
nally adjusted block of SUR images was
then transformed into the set of ground con­
trol points. Discrepancies in these points
were used to compute corrections in radar­
grammetric points (external adjustment). The
corrections were interpolated by global
polynomials, pointwise linear prediction,
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TABLE 3. RESULTS OF INTERPOLATIVE CORRECTION OF SLAR BLOCK DEFORMATIONS IN X AND Y, USING

A NUMBER OF DIFFERENT METHODS. THE VALUES IN MM AT IMAGE SCALE, COMPUTED FROM 41 CONTROL- AND
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Residuals in control points
RMSEX 3.93 0.55 3.69 0.42 0.50 1.42 0.83
RMSE Y 3.50 0.69 2.48 0.58 0.75 1.58 1.00

Corrections in non-data points
RMSEX 3.58 3.34 5.76 4.66
RMSE Y 3.25 3.00 3.92 7.18

arithmetic mean, and moving averages of or­
ders 1 and 3. The results are shown in Table 3
and are self-explanatory.

The lack of check points prohibited a reli­
able estimate of the accuracy. But interpola­
tion in each control point, without using it in
the computation, leads to an upper bound for
the residual errors in non-data points (RMSE
X = ±2.15 mm; RMSE Y = ±2.14 mm).
However, this upper bound is far from the
actual accuracy, since control spacing is very
large.

The data point distribution created the
problem that in some areas extrapolation
rather than interpolation was to be done.
Figure 3 shows clearly how a third-order
polynomial degenerates in areas of no con­
trol, while linear prediction produces correc­
tions of the order of magnitude of the dis­
crepancies in control points. This suggested

that, for the given project, it had to be an
interpolation method such as linear predic­
tion, rather than global polynomials.

In conclusion, an interpolation which
might turn into extrapolation requires great
care in selecting the algorithm. If no check
points are available as in PRORADAM, the
danger of extrapolation remains hidden. To
be safe, linear prediction can always be used
in this case. It has the property of producing
zero-corrections in areas of no control. Simi­
lar to this is the arithmetic mean, which,
however, is often less accurate and without a
quantitative filter control. A global function
can only be used for interpolation with large
areas of no control, if constraints can be im­
posed on the function pulling it towards zero
in areas of no control.

Correction of Film Deformation with
Reseau. 4 ,17,18 The importance of filtering the

FIG. 3. Interpolated correctionS for block deformations of SLAR imagery obtained (a) wi'th a
lO-parameter polynomial and (b) with linear prediction. Extrapolation occurred in the northeast
and southwest of the area.
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measuring error, or at least an uncorrelated
component of the observations, is demon­
strated by the results obtained with two
methods of correcting film deformation with
reseau photography. The observed coordi­
nates of a reseau are compared with the
theoretical coordinates. The differences are
the sum of film deformation and the measur­
ing error, and represent the data points for the
interpolation of corrections in photogram­
metric points.

One method ofcorrecting film deformation
in non-data points was based on the assump­
tion that it is equal in both a non-data point
and the nearest reseau point, which in all
cases is at a distance smaller than 7 mm in
reseau photography. To reduce the effect of
systematic measuring errors, the nearest re­
seau point was always measured after a
measurement at a photogrammetric (non­
data) point.

The other method of film deformation cor­
rection was with linear prediction, using ex­
actly the same observations as before. Table 4
shows the results of the experiments after
relative and absolute orientation: the photo­
grammetric model coordinates are compared
with accurate terrestrial points. The root
mean square coordinate differences without
film deformation correction, and with correc­
tions using the two above methods, are
shown in the table. It is demonstrated that
linear prediction produces significantly

smaller root mean square differences than
the simpler method, which does not allow for
any smoothing of observed data.

In Table 4, results after linear prediction as
obtained by two different authors are shown.
The fact that these results are somewhat dif­
ferent indicate that the performance might be
considerably altered through the parameters
used within an interpolation method.

In conclusion, this interpolation demon­
strated that there can be differences between
accuracies obtained in one or another al­
gorithm, as opposed to a conclusion drawn
from a previous experience.

Interpolation in Square Grid DTM. In a
controlled numerical experiment to relate
the accuracy of a Digital Terrain Model
(DTM) with the density of sampling the ter­
rain along a regular grid, and with the type of
terrain9 , it was also possible to compare a
number of interpolation algorithms. The
methods were compared in their application
to six different types ofterrain, eight different
sampling densities, and also with a variation
of the number of data points to be used in an
interpolation of a new value. Table 5 illus­
trates the overall results of the comparison of
methods. The numbers in this table are ob­
tained as root mean square values of the re­
sults of over a million interpolations. Each
interpolated value was compared with the
"true" terrain height. In order to allow com­
parison of interpolation methods applied to

TABLE 4. ROOT-MEAN-SQUARE DISCREPANCIES BETWEEN 2 PHOTOGRAMMETRIC STEREMODELS AND

TERRESTRIAL CONTROL, IN JJ.M AT PHOTOSCALE, WITH AND WITHOUT USE OF RESEAU=

SCALE 1:10500,23 CONTROL POINT NESTS WITH 3 POINTS EACH.

With reseau, no With reseau, With reseau,
Without reseau 17 filtering 18 linear prediction 4 linear prediction 18

Modell Model 2 Modell Model 2 Modell Model 2 Modell Model 2

RMSEX 7.8 7.2 8.8 8.0 6.2 6.8 4.6 6.7
RMSE Y 7.9 9.1 8.0 7.0 5.8 5.5 5.5 6.0
RMSE Z 15.8 11.8 12.2 11.8 11.8 10.1 9.8 10.9

TABLE 5. RELATIVE COMPARISON OF INTERPOLATION METHODS, ApPLIED TO SQUARE GRID DTM.

VALUES ARE IN % RELATIVE TO LINEAR INTERPOLATION, AND REPRESENT INTERPOLATION ERRORS

IN CHECKPOINTS.

Method of Linear Bi-linear Weighted Moving Meshwise Linear
Interpolation Interpol. polynomial arithm. mean Average polynomial prediction

Weights lId4 e-4d' q/d4 (a+d2/4)-1

Number of data
points used per
interpolation

4 1.00 0.89 0.92 0.88
16 0.97 0.76 0.76 0.76
36 1.03 0.77 0.76
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TABLE 6. COMPARISON OF VARIABLE COMPUTING TIME PER INTERPOLATION OF A POINT.

VALUES ARE SECONDS, VALID FOR THE PDP 11/45 OF ITC.

No. of points
used per
interpolation

4
16
36

0.04 0.04 0.04
0.05
0.08

0.21
OA3

0.25
0.04
0.12
0.23

different terrain and different sampling den­
sities, the interpolation error of any method
was always divided by the interpolation error
after linear interpolation. Consequently,
linear interpolation produces an interpola­
tion error of"IOO per cent." In general, other
methods produce smaller interpolation er­
rors. The differences in performance amount
to 24 per cent in the experiment.

It is beyond the scope of the present con­
siderations to go into details of the study.
Instead, these are given in reference 9, and
only some conclusions relevant to the pres­
ent topic are presented here.

Table 5 shows conclusively that linear in­
terpolation produces larger errors than the
more complex algorithms of linear predic­
tion, moving averages or piecewise polyno­
mials. On the other hand, it also indicates that
there are two groups of methods performing
differently: the "simple" methods (linear in­
terpolation, bilinear polynomial, double
linear interpolation, weighted arithmetic
mean); and the "complex" methods. Within a
group, differences are not distinct.

Table 6 then compares the efforts to be
made using each of these methods. The split­
ting into two main groups also persists there:
a slight reduction of the interpolation error
can be obtained only with considerable in­
crease of time of computation. It should be
noted, however, that linear prediction must
not be more expensive than linear interpola­
tion, if it also is applied only with the four
closest reference points, and not more. But in
general it is also clear that the further benefit
of reduced interpolation errors often might
not be worth the extra effort. Only for specific
purposes, it will have to be a "complex"
method which is to be used, perhaps not for
the interpolation error, but for other proper­
ties.

The efforts shown refer to data points on a
regular square grid. It must be stressed that,
for irregular distribution ofdata points, linear
interpolation becomes as expensive as linear
prediction: a point selection algorithm will
demand considerable effort to define the
three closest data points.

DTM interpolation does not necessarily
require filtering, if it can be assumed that
measuring errors are comparatively small. A
possibility to filter might, however, be desir­
able in applications where measuring errors
are significant, or where smoothing is essen­
tial (generalization).

An important problem in photogrammetric
work with DTMs is the consideration of ter­
rain break lines. Typically this is a matter of
imposing constraints on the interpolated sur­
face. A number of solutions exist to this prob­
lem. They have in common that a pointwise
interpolation algorithm be used*. Successful
attempts to consider terrain irregularities in
piecewise interpolation have not yet come to
the attention of the author. An unsuccessful
effort was mentioned by Jancaitis and
}unkins.f

CONCLUSIONS

The number and importance of photo­
grammetric tasks which make use of interpo­
lation and filtering suggest that the theory
and methods of interpolation can be an emi­
nent tool for the photogrammetrist although
approaches to interpolation often are intui­
tive and not systematic. Fortunately, how­
ever, there has been a new stimulus to study
the problems of interpolation and filtering,
namely the Digital Terrain Model (DTM).
The DTM itself does not pose the largest
problems, nor does it require the most ad­
vanced theories of interpolation. These may
rather be useful in problems of data analysis,
thus filtering applied to strip and block ad­
justment, for example.

Although some applications may require
very specific solutions, experience has
shown that a majority of problems can be

• For example: Assmus, E., "Extension of Stutt­
gart Contour Program to treating Terrain Break
Lines," IPS-Comm. III Symp., Stuttgart, W. Ger­
many, 1974.

t Jancaitis, J. E. and Junkins, J. L., Personal
communication.
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treated with the same set of algorithms. An
important element of these is the possibility
of computing correlation functions. These
may show quantitatively whether the data
contain a correlated component. This is
rather important for data analysis and helps to
avoid interpolation and filtering being at­
tempted in completely random noise.
Further, the set of algorithms should contain
a component to compute regression polyno­
mials. This is required for simple smoothing
problems (trend analysis), for mathematical
representation, and to preprocess data for
linear prediction. This latter method, then,
should be available as a general purpose in­
terpolation and smoothing algorithm. Al­
though it is a computer-intensive method
(expensive) it is useful because it allows for
well-controlled smoothing and does not de­
generate in cases of extrapolation. As a last
algorithm it is recommended to have availa­
ble piecewise polynomials (spline func­
tions). If a more flexible mathematical rep­
resentation of phenomenon is required,
these might be of greater use than a global
polynomial.

With this set of algorithms, a number of
photogrammetric interpolation tasks have
successfully been carried out at ITC. Some of
these tasks have been described in this paper
to justify conclusions on a comparison of in­
terpolation methods. Interpolation errors
have been shown to vary up to 24 per cent
using different methods of interpolation. But
an attempt was made to evaluate methods or
interpolation not only on the basis of the in­
terpolation errors but also according to
criteria such as smoothing power, usefulness
for extrapolation, etc. It is this spectrum of
properties which should be used to decide on
the choice ofa particular method ofinterpola­
tion, rather than the traditional considera­
tions concerning only interpolation errors
and efforts.
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ApPENDIX - INTERPOLATION METHODS

The following description of interpolation
methods assumes a one dimensional
phenomenon on a two dimensional reference
space.

LINEAR INTERPOLATION

The three closest data points with ob­
served values Z}, Z2, Z3 are used to define a
new valueZ,) by fitting a plane surface, so that

Z" = ao + at x + a2Y (I)

Coefficients ao, a}, a2 can be solved from the
three data points.

Coordinates (Xi, y) give the location of a
point i in the reference space.

DOUBLE LINEAR INTERPOLA:rION

The four closest data points forming a
quadrangle are selected. The four points de­
fine two triangles, each ofwhich contains the
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new point. Two linear interpolations can be
carried out, one linear interpolation in each
triangle. The arithematic mean produces Zp
as: Cov=

1

1 cov(d2,n)

Zp = (Z'p + Z"p)/2

where Z'p' Z"p are produced according to (1).
1

BILINEAR POLYNOMIAL Distances dij are between data points i and}.
Also a correlation vector cov is defined be­

The four closest data points define a quad- tween the new and data points:
rangle. This allows computation ofZp using
the bilinear polynomial

ARITHMETIC MEAN

From n data points, a new value Zp is found
from:

The new point obtains:

Careless application of linear prediction can
be detrimental. Therefore, in depth study of
literature (e.g.,5,1l) should precede actual use
of the method.

PATCHWISE POLYNOMIALS [SPLINE FUNCTIONS]

There are many ways to compute patch­
wise polynomials. Within the interpolation
area, a not necessarily regular grid is chosen.
Within each mesh of the grid, a different
polynomial is defined. If the polynomials of
order n join along the boundaries of adjacent
meshes with all derivatives up to order n-1
being continuous, one speaks of"spline func­
tions."

Continuity can be obtained by interpolat­
ing values and eventually also tangents ofthe
phenomenon in the grid points. This repre­
sents a simple, fast, memory saving process
and can be done, e.g., with a moving average.
Next, the generated function values (and
tangents) are used to define the polynomial
in each mesh. Making an appropriate choice
of the polynomials, and having sufficient val­
ues at the grid points, the generated polyno­
mials will have continuous (n -1) st, ... 2nd,
1st, zero derivative.

The method evaluated in the section on
Interpolation in square gridDTM applied 3rd
order polynomials with 12 coefficients. In
each grid point one function value and two
tangents (tx, t y) were computed. These were
per mesh the 12 given data points to define
the 12 coefficients of the polynomial piece.

1/d k
t

n

(x;ld/)/ I
i = 1i = 1

Here, di
2 = (Xi - Xp)2 + (Yi - Yp)2, and k is

selected according to the intuition of the
user. Weight 1/d/ can also be replaced by
other functions.

LINEAR PREDICTION

A (polynomial) regression function (trend
t(x,y)) is computed from n data points. The
residuals can be input only to linear predic­
tion. From the residuals, a correlation func­
tion cov (d,a) is computed, or chosen a priori.
The correlation function cov (d,a) describes
the dependency of two residuals being a dis­
tance d apart and defining the direction a.
Usually, dependency on a is not assumed, so
that one uses cov (d) only. A correlation mat­
rix Cov is defined:

MOVING AVERAGE

For each new data point, the n surrounding
reference points are selected. The new point
is chosen as the origin of planimetric coordi­
nates. The absolute term of a polynomial of
order m is computed from the n data points,
giving each of them a different weight, e.g.,
according to distance from the new point.
The computed absolute term is the interpo­
lated Zm since xp = YP = o. The described
process is a weighted moving average of
order m, using n points.


