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Connecting Adjacent Models

The distribution of residual errors in the connection of
adjacent models in a strip is discussed.

STRIP TRIANGULATION with independent
models is used widely in photogrammet­

ric practice. One of the problems inherent in
various triangulation procedures is the con­
nection of two consecutive models in the
strip to each other. Whatever procedure is
employed to perform the connection, it is
usually based on an adjustment which
utilizes redundant observations, these being
the observed coordinates of points common
to the two adjacent models. Because of the
redundant observations, the adjustment
yields residual errors, so that after the con­
nection of the models has been performed,

in which:

X = coordinates of a point observed in the pre­
vious model,
x = coordinates of the same point observed in
the new model,
Xv = a translation,
A = a scale factor, and
U = an orthogonal rotation matrix whose
elements are computed from three angles.

Each common point (including the projec­
tion centers) contributes one equation of type
(1), i.e., three equations in coordinates, for
the solution of the unknowns. Since Equa­
tion 1 is non-linear with respect to the sought
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each point common to both models is as­
sociated with two sets of strip coordinates:
one set that was determined while observing
coordinates in the previous model, and
another that resulted from the transformation
of the observed coordinates of the "new"
model. The differences between the values
of these two sets of coordinates are the re­
sidual errors. Since each point should be de­
termined by a unique set ofstrip coordinates,
the question arises of how to handle the re­
siduals in order to assign a single set of coor­
dinates to each point. An analysis ofthis prob­
lem is presented.

It is assumed that the connection of a new
model in the strip to the previous one is car­
ried out by a coordinate transformation, the
transformation elements being derived from
the equation:

scale factor and rotation angles, the un­
knowns have to be solved for by an iteration
process which makes use of linear expres­
sions obtained from expanding the above
equations around an initial solution. Sec­
ondly, in order to fulfill Equation 1, all the
measured quantities X and x have to be cor­
rected. Hence, the demand for a unique de­
termination of the coordinates of the com­
mon points, while solving the unknown ele­
ments for the connection procedure, leads to
an adjustment which involves condition equa­
tions with unknowns

X o + AU (x+vn) - (X +vp ) = O. (2)

The subscript n denotes the new model,
and p - the previous one.

After linearizing Equation 2 the follow­
ing expression is obtained:

x = Xo + Aax (1) (3)
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(11)

(13)

(12)

the ob-

1K = - ,..".....-;-, W
A· + 1

where the W represent the final dis­
crepancies between the coordinates and
are defined as follows: .

W = X (transformed) -X.
The corrections to be added to
served coordinates are given by

(5)

BV + AX + W = O.

V =BTK

K = - (BBT)-I (AY+W)

Y = - (AT (BBT)-I A)··I AT (BBT)-I W

where A is a coefficient matrix and Y is a
vector which represents the sought correc­
tions to the elements assumed in the ini­
tial solution (denoted in the equation by a
bar).

Each common point yields three equa­
tions for solving the unknowns and the
entire system of the condition equations
has the form

that which would be obtained if the prob­
lem were stated in terms of usual observa­
tion equations.

The solution of the orientation elements
is based on an iteration process; for each
step the matrix A and the discrepancies W
are computed anew utilizing the correc­
tions Y found in the previous step. After
the last iteration step (convergence of the
process) the corrections Y will be very

(4) small, practically equal to zero. Thus, the
The V are the corrections to the observed correlates K may be computed from
coordinates and W the discrepancies (the
bracketed term is Equation 3).

If the correlations between the observed
coordinates are disregarded, which is
common practice in many triangulation
procedures, and the observations are as­
sumed equally weighted, the condition
Equation 4 provides the following solu­
tions:

(14)

Taking into account the form of the matrix
B, the required correction to the observed
coordinates are computed as follows: The
corrections for the coordinates of the previ­
ous model equal

(6)1]
The matrix B has a quasi-diagonal form
and can be presented by

[

BI 0
o B 2

B = . .

o 0

and the unknown corrections to the orien­
tation elements are solved from

According to Equation 10 the solution of
the required quantities Y is identical with

(15)

and, for the corrections of the new model,
one has

The corrections vn ought to be added to
the observed coordinates of the new
model, and the corrected coordinates in­
serted into the transformation equations.
Instead, regarding the fact that the trans­
formation is linear with respect to the
coordinates, the values V n can be trans­
formed separately, and their transformed
values then added to the transformed
coordinates which were obtained during
the solution of the orientation and utilized
for the determination of the discrepancies
W.

v - >..av - - 1..
2

W (16)
n (transformed) - n - 1..2 +1 .

Equation 16 holds because a is an or­
thogonal matrix, and aaT is a unit matrix.

Now we arrive at the following conclu­
sions: The discrepancies between the coor-

(8)

(10)

BBT = (1..2 + 1) I

(BBT)-I = 1..2 ~ 1 I.

Each matrix B i is associated with the cor­
rections to one common point. All mat­
rices B i are equal to each other and have
the following form:

B i = [Xii -I]. (7)

Since ii is an orthogonal matrix and I a
unit matrix, we have

It follows therefore that the correlates for
computing corrections to the observed
coordinates are given by

1
K = - 1..2 +1 I (AY + W) (9)
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dinates which remain after performing the
connection between two models are distrib­
uted according to the ratios stated by Equa­
tion 14 and 16.

Usually the scale variations between two
consecutive models are small and the value
of A is very close to unity. Hence,

It follows, therefore, that when the scale
alterations between consecutive models

are small, the common practice of averag­
ing the two sets of coordi nates for each
point is fully justified.

The author believes that the justification
for averaging the coordinates as presented
above will satisfy all who have intuitively
applied that rule, even when they had
doubts about its theoretical basis.
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New Sustaining Members
GEOD Aerial Mapping, Inc.

G EOD Aerial Mapping, Inc., was or­
ganized in 1971 to provide profes­

sional photogrammetric, cartographic, sur­
vey, and related services. Executive of­
fices are located at 73 Oak Ridge Road,
Oak Ridge, New Jersey, with branch of­
fices at Cranbury, New Jersey, Warwick,
New York, and Delhi,_ New York.

Our services include, but are not limited
to, the following: Aerial photography, to­
pographic mapping, orthophotography,
photogrammetric cross sections, earthwork
measurements and computations, stockpile
measurements, digital data recording, tax
mapping, photo enlargements or reduc­
tions, photo mosaics, drafting service,
computing services for engineers and sur­
veyors, automatic flat bed plotting, and
electronic distance measurements.

Aerial photography is obtained from
precision aerial mapping cameras which

include two Wild RC-8s and one Zeiss
RMK-A 15/23.

Ground control is established with the
most recently developed equipment, such
as one-second Kern DKM-2AE theodolites,
Laser Ranger and Hewlett Packard elec­
tronic distance measurement equipment,
Zeiss and Geotec automatic levels and a
Cushman Trackster all terrain vehicle.

GEOD performs large scale map compi­
lation on K & E or Kelsh type stereo plot­
ters. Drafting is accomplished by the
scribing method.

GEOD welcomes the opportunity to as­
sist clients in planning the most economi­
cal approach to satisfy their specific re­
quirements. The planning includes selec­
tion of appropriate photo scales, research
of existing controls or methods of estab­
lishing controls, photogrammetric in­
strumentation to be used, and photo
laboratory or cartographic techniques.

Industrial Geodetic Surveys Ltd.

I NDusTRIAL GEODETIC SURVEYS LTD., lo­
cated in Calgary, Al berta, Canada,

specializes in triangulation and control
surveys, industrial engineering geodesy
and mine surveying, control surveys for
aerial photogrammetry, photogrammetric
surveys, and seismic and gravity surveys.
The company also provides general con­
sulting services in these areas.

Services performed in the area of indus­
trial engineering include geodetic analysis
of project sites; layout of bridges, dams,
tunnels, and large industrial complexes;
measurement of deformations and dis­
placement in industrial buildings, bridges,
high-rise structures, concrete dams, and

hydro-electric power plants; and meas­
urement of movement, settlement and dis­
placement of natural features such as land,
rivers, glaciers, etc.

The company is well equipped with in­
strumentation to perform the above ser­
vices, including the Topo Cart B and the
Phototheodolite P-30. A Technocart is cur­
rently under order. Both of the company's
top officers have masters degrees in sur­
veying and broad experience in terrestrial
photogrammetric applications. For details
contact Ivan Gontko or Milan Martis at
Industrial Geodetic Surveys Ltd., 703 ­
14th Avenue, S.W., #204, Calgary, Alberta,
Canada T2R ON2 (Tel. 264-4498).


