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Bayesian Decision Theory and
Remote Sensing
Bayesian decision theory may be employed to determine the
net benefits of remote sensing data obtained from small
scale imagery versus that obtained from more accurate but
more costly large scale imagery.

INTRODUCTION

W ATER RESOURCES PLANNING in urban
areas commonly employs mathemati­

cal models that simulate the hydrology of the
watershed. A number of these models are so
designed that remote sensing, i.e., multi­
spectral, can provide some of the required
input data.

A recent investigation of the Anacostia
River Basin (Ealy, Ragan, and McCuen

determination of the most economically effi­
cient data source requires the evaluation of
the net benefits of the information provided.
Net benefits is the difference between ben­
efits and costs. The costs are deterministic
and procedures such as those developed by
Cheeseman (1973) can be used for estima­
tion. The benefits are difficult to quantify.

Economic analysis using Bayesian Deci­
sion Theory allows the potential user of re-
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(1975)) in the Maryland suburbs of Washing­
ton, D.C., showed that the landcover and
percent imperviousness needed in urban
hydrologic modeling could be obtained by
computer aided analysis of LANDSAT data.
Overall, the results were good but errors
were noted. However, the investigation pro­
duced the information in four man-days. A
previous investigation (Ragan and Rebuck
(1974)) based on human interpretation of
1:4800 scale aerial photographs gave more
accurate results but required 94 man-days.

A decision maker, forced to choose be­
tween data accuracy and the cost of collection
and processing, should attempt to evaluate
the trade-off in dollars and cents. A criterion
for evaluation is economic efficiency. The

motely sensed information to determine the
expected value of the information before he
purchases it. In essence, the technique con­
verts statistical information of source perfor­
mance into monetary terms.

REMOTELY SENSED INFORMATION AS AN
ECONOMIC COMMODITY

Marschak (1968) presents an instructive
way of viewing the decision-making process.
Decision making is a production process that
uses inputs of information and man-hours in
a model that produces the decision variable.

Microeconomic analysis of production
processes requires that profit be maximized.
Profit maximization requires the determina­
tion of the optimal input combination. Profit
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POSTERIOR ANALYSIS

The expected opportunity loss of any ac­
tion, a;, is the sum ofthe opportunity losses of
choosing ai weighted by their respective
prior probabilities. The optimal action is that
which minimizes the sum,

The variable Ro is the cost ofuncertainty or
the expected value of perfect information. A
logical decision maker should be willing to
spend up to Ro to obtain the true value of Sj
since on the average he will lose this amount
due to uncertainty.

Most decisions are made based upon the
knowledge of one or more parameters. The
parameters identify the optimal action. With­
out knowledge of the parameter values, the
decision maker must employ a decision rule
such as minimax to choose an action. Deci­
sion rules such as minimax can lead to illogi­
cal actions.

(1)
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The decision maker may be able to obtain
additional information and must know if it
will be of any value to him. An information
source can be represented by an information
structure. Marshack and Radner (1972) de­
fine an information structure as a function
which identifies a signal (Yk; k= 1, 1) with a
subset of parameter values. To completely
define a source a performance index also is
needed. The index is the probability of cor­
rect and incorrect parameter identification
based on past performance.

In remote sensing the signal might be a
classification and the parameter values the
true classes. The information sources, [SCM),
may reduce the cost ofuncertainty by provid-

PRIOR ANALYSIS

The decision maker usually has some in­
formation concerning the parameter values.
The information may be based on his own
experience, observation, or other sources.
The acceptance of the principles of Bayesian
Decision Theory allows the decision maker
to translate the information into subjective
prior probabilities for the parameter values.
The only restriction placed on the prior prob­
abilities is that they sum to one over the set of
n values for the parameter, Sj.

ECONOMIC ANALYSIS OF INFORMATION SOURCES

USING BAYESIAN DECISION THEORY

The discussion of Bayesian Decision
Theory presented here focuses on the type of
problem in which there is a closed set of
discrete values for the information variable,
such as land use classification. The presenta­
tion is by necessity cursory. The interested
reader is referred to the works ofRaiffa (1968)
and Schlaifer (1959) for a more comprehen­
sive treatment of the subject.

A decision problem can be defined as the
choice of an action to optimize a criterion.
The criterion will be called the payoff and is
identical to the net benefits ofa project. Ifthe
decision maker chooses a nonoptimal action,
he suffers an opportunity loss. An opportun­
ity loss is defined as the difference between
the payoffs of the chosen nonoptimal action
and the optimal action (OLij; the opportunity
loss of choosing actionj when action i is op­
timal).

and input units must be measurable, and
knowledge of the value of the input is as­
sumed to be perfect.

Conventional analysis fails to provide the
answers in evaluating remote sensing infor­
mation for a number of reasons. First, appli­
cations of remote sensing are commonly as­
sociated with public projects. The measure­
ment of profits becomes difficult, but not im­
possible, due to the occurrence of nonmone­
tary benefits. Techniques such as benefit/cost
analysis are used for estimation.

A second reason for the failure of conven­
tional economic analysis is that a general
measure of information hasn't been de­
veloped. Therefore it isn't possible to employ
techniques that optimize the input mixture.

Finally, the information provided by a
source will not be perfect. The potential user
cannot know the value of the information
without possessing and applying it. There­
fore, if he must pay for information knowing
that it is imperfect, he will be reluctant to do
so. On the other hand, if he is allowed to
examine the information before purchase, he
will then possess the knowledge it contains
and will have no reason to buy it. Bohm
(1973) identifies the conflict as the central
problem of information economics.

The problems discussed are those which
currently prevent the full exploitation of re­
mote sensing techniques as information
sources. Rather than give up and rely on po­
tential users to gamble on remote sensing, a
second-best solution to the problem can be
attempted. One approach is to use Bayesian
Decision Theory.
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ing additional data on the parameter values.
The additional information is the conditional
probability of a particular signal given a true
parameter value (P[Yk ISj]), the performance
index discussed previously. The complete
set of the conditional error probabilities can
be presented in matrix form. In remote
sensing the set is commonly called the con­
fusion matrix.

Given a particular signal Yk the decision
maker can apply Bayes' Theorem for the revi­
sion of prior probabilities to obtain the pos­
terior probability of each variable of the pa­
rameter

analysis was performed for each possible
signal the decision maker would know the
optimal action and expected opportunity loss
for each signal. The marginal probability of
each signal was defined as

(6)

n
P(Yk) = I peS) ·P(Yk I Sj).

j=l

Using the marginal probability and expected
opportunity loss for a signal, an expected
value of the expected opportunity loss can be
calculated. The value is obtained by sum­
ming the multiples of the results of Equation
6 and Equation 5 over the set of signals.

1
RiIS(M)) = I P(Yk)'minEOL(aj I Yk)

k=l i (7)(3)

n
I P(Sj) ·P(Yk I Sj)

j=l

The posterior probability, P(Sj IYk),
represents the probability of the parameter
value after the signal has occurred. The de­
nominator of the right hand side of Equation
3 is the marginal probability of the signal
occurring.

After calculating the posterior probability
for each class, the decision maker can use the
values in the same manner as he used the
priors to calculate the expected opportunity
loss. The minimum value is selected from the
set of expected opportunity losses and iden­
tifies the optimal action given the signal Yk.

RlYk) = minEOL (ai I Yk)
i

n
= min I OLij • P(Sj I Yk)

i j=l (4)

The variable R{Yk) is the value of perfect
information after the additional information
provided by the signal has been considered.
The value of the information, V(IS(M),Yk)'
provided by the signal is the reduction in the
cost of uncertainty and is calculated by sub­
tracting the results of Equation 4 from Equa­
tion 3.

V(IS(M)'Yk) = Ro-R{Yk) (5)

Posterior analysis typifies the problem of
considering information as an economic
commodity. The decision maker sacrificed
resources to obtain the signal Yk but was un­
able to judge the worth ofhis effort until after
he knew the signal. If the cost of the informa­
tion was greater than the value as determined
by Equation 5, he made a wrong choice.

PREPOSTERIOR ANALYSIS

If the procedure outlined for posterior

The value of the information source is the
reduction in the cost of uncertainty and is
calculated by using Equation 8.

V(IS(M)) = Ro-RiIS(M)) (8)

If the value of the information exceeds the
costs there is a net gain to the decision maker.
The net gain is defined as

G(IS(M)) = V(IS(M)) - C(IS(M)) (9)

If a number of alternative sources exist the
net gain for each should be computed and the
source that maximizes Equation 9 chosen.

CONCLUSION

In remote sensing a number of alternative
techniques can usually perform the same
task. However, these techniques will differ
in accuracy and cost. The approach presented
employs Bayesian Decision Theory to de­
velop a rational method to evaluate the
trade-off in cost and accuracy.

The approach is problem specific. In some
situations the development of the economic
data; i.e., the opportunity loss matrix, may
create its own collection problems. However,
the data requirements for Bayesian analysis
are complementary with those of current
water resources investigations and cost ben­
efit studies.
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ApPENDIX

Hypothetical Example Problem
An agency is charged with reducing flood

damages in a particular region. The only run
off control to be considered is a reservoir of
varying capacity. The required capacity is de­
termined by a watershed model that requires
land use, area, and rainfall as inputs. Existing
policy determines the specific rainfall event
that is used for design.

The states of nature, S;, are the land uses,
classified in order of increasing magnitude of
runoff. The actions, aj, are the reservoir sizes.

The benefit provided by a reservoir is
based upon flood reduction and a probabilist­
ic function. For any land use the watershed
model calculates the change in the flood re­
gime caused by a particular reservoir. The
benefit is the reduction in future flood dam­
ages and the cost includes construction, op­
eration, and maintenance.

A particular reservoir is optimal for the
land use if it maximizes net benefits, i.e.,
benefits minus costs. Ifa nonoptimal action is
taken then the maximum net benefits are not
obtained and an opportunity loss is incurred.
An opportunity loss can occur if, due to data
inaccuracy, the land use is incorrectly iden­
tified. The opportunity loss matrix for this
example problem is presented in Table 1. It
is noted that underdesign will result in larger
losses than overdesign.

The agency has at its disposal a land use
prediction model that uses population and
geographic data. The model is not very reli­
able but does provide a first pass estimate of
the land use class. The model is applied with
a prior probability vector for the classes of

land use is developed. The results are pre­
sented in Table 2.

The agency can also purchase remotely
sensed land-use information. Two sources
are available. These might be LANDSAT and
aerial photographs or two different methods
of LANDSAT analysis. Both sources have
performed land-use classification previously
and based upon their experience have de­
veloped error matrices which are the best
indication of future performance they can
provide to the agency. The cost of the two
sources are C(l) and C(2). The confusion or
error matrices are presented in Tables 3 and
4.

The agency's first step in analysis is the
determination of the expected opportunity

TABLE 1. OPPORTUNITY Loss MATRIX.

State Sj
Action at 1 2 3 4 5 6

1 0 10 25 45 70 100
2 5 0 15 35 60 90
3 10 5 0 20 45 75
4 15 10 5 0 25 55
5 20 15 10 5 0 30
6 25 20 15 10 5 0

TABLE 2. LAND USE PRIOR PROBABILITY VECTOR.

State Sj 1 2 3 4 5 6

P(SJ) 0.02 0.15 0.40 0.25 0.10 0.08

TABLE 3. CONFUSION MATRIX FOR INFORMATION
SOURCE IS (1).

State Sj 1 2 3 4 5 6
Signal Yk

1 0.70 0.10 0.00 0.00 0.00 0.00
2 0.15 0.60 0.05 0.00 0.05 0.00
3 0.05 0.20 0.60 0.10 0.05 0.00
4 0.05 0.10 0.30 0.55 0.05 0.05
5 0.05 0.00 0.05 0.30 0.70 0.15
6 0.00 0.00 0.00 0.05 0.15 0.80

TABLE 4. CONFUSION MATRIX FOR INFORMATION
SOURCE IS(2).

State Sj 1 2 3 4 5 6
Signal Yk

1 0.75 0.05 0.00 0.00 0.00 0.00
2 0.15 0.85 0.10 0.00 0.00 0.00
3 0.05 0.10 0.80 0.05 0.00 0.00
4 0.05 0.00 0.10 0.75 0.10 0.05
5 0.00 0.00 0.00 0.15 0.80 0.05
6 0.00 0.00 0.00 0.05 0.10 0.90
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EOL 37.75 28.05 16.45 10.70 10.30 12.50

TABLE 8. VALUE OF THE INFORMATION SOURCES.

IF Choose IS(M)

TABLE 7. EXPECTED VALUES OF THE EXPECTED

OPPORTUNITY Loss.

65

2
2.90

2
7.40

43

1
5.13

1
5.17

210,

IS (M)
R.J.IS(M))

IS(M)
V(IS(M))

(1) (b)
IS(I) IS(2)

Yk 0, R,(Yk) Yk 0, R.(Yk)

1 4 8.92 1 3 7.32
2 3 4.92 2 2 3.59
3 4 4.27 3 3 1.60
4 4 5.53 4 4 3.07
5 5 6.02 5 5 3.23
6 6 2.19 6 6 1.68

TABLE 5. EXPECTED OPPORTUNITY LOSSES WITH

PRIOR INFORMATION.

TABLE 6. EXPECTED OPPORTUNITY LOSSES OF THE

OPTIMAL ACTION GIVEN THE SIGNAL.

TABLE 9. DECISION RULE FOR CHOOSING THE

INFORMATION SOURCE.

C(2) - C(I) > 2.23
and C(I) ~ 5.17 M = 1

C(2) - C(I) ~ 2.23
and C(2) ~ 7.40 M = 2

C(I) > 5.17 and C(2) "" 7.40 Neither

loss with only the prior information. Equa­
tion 2 is used and the results are presented in
Table 5.

The optimal action is to choose land use as,
the value ofRo , the value of perfect informa­
tion, is 10.3.

The next step of the analysis is to perform
the preposterior procedure for each of the
alternative information sources. The optimal
actions and their associated expected oppor­
tunity losses are presented in Tables 6a and
6b for the two sources.

Equation 7 is applied to the results in order
to obtain the expected value of the expected
opportunity loss for each structure. The re­
sults are presented in Table 7.

The value of the information source is de­
termined by applying Equation 8. The re­
sults are presented in Table 8.

The results presented in Table 8 indicate
that both sources can reduce the cost of un­
certainty. The chosen source will be that
which yields the highest positive net gain as
determined by Equation 9. The final deci­
sion rule for the agency is presented in Table'
9.

It was noted previously that the Bayesian
approach is problem specific and generaliza­
tions should not be based on one study. Con­
sider the decision rule presented in Table 9
and the results of the Anacostia River Study.
If the man-days were valued at one hundred
dollars each, then the difference in the costs
of the two sources would be $9,000. Next
consider the difference of2.23 in value of the
two information sources in Table 9. If the
difference in value was $223,000, then the
cost difference would be insignificant. At the
other extreme, if the difference in value was
$2230, the cost difference would dominate
the decision.
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