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Geologic Mapping Using
LANDSAT Data

The range of wavelength bands sensed by LANDSAT were
found to be unsatisfactory in a test of several algorithms for
automated lithologic classification.

INTRODUCTION

THE SUCCESSFUL LANDSAT missions have
provided the scientific community with

vast quantities of new data about the earth.
For the geologist, the synoptic view pro­
vided by satellite imagery has proved espe­
cially useful. Of additional value is the mul-

32,000 km2 , is acquired in the four spectral
bands by the MSS. Each scene contains over
3 x 107 bits of information, representing the
reflected brightness values (DN) of each
pixel in each wavelength band.

This is far more data than can be meaning­
fully displayed in one image. Therefore, one
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tispectral information obtained for each
scene by the satellite's multi-spectral scan­
ner (MSS). This scanner simultaneously
sensed the ground in four spectral bands, 0.5
- 0.6 JLm (band 4), 0.6 - 0.7 JLm (band 5),0.7 ­
0.8 JLm (band 6), and 0.8 - 1.1 JLm (band 7),
with a resolution element (pixel) size of59 x
79 meters. One LANDSAT scene, about

major problem facing the user is how best to
display and analyze this data. One solution is
to display only that subset of the data which
is useful to the analyst. Because the data are
acquired in digital form, a digital computer
can be used to handle what would otherwise
be an unmanageable amount of information.

Basically, two techniques have been de-
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veloped and used for computer processing of
this data: enhancement and classification.
Enhancement procedures (Goetz et aI.,
1975) attempt only to optimize the display of
some particular feature or parameter implicit
or explicit in the image. Various methods
used include contrast stretching, spatial fil­
tering, and band-to-band ratioing. The last
method is particularly useful since, to the
first order, it removes the variations of al­
bedo due to topography, and gives a truer
picture of the spectral characteristic of a
material by describing the slope of the spec­
tral curve (Rowan et aI., 1974).

Classification procedures seek to interpret
an image in terms meaningful to the user.
They have been successfully applied in the
fields of agriculture (Draeger et aI., 1973;
Wigton and Von Steen, 1973; Bauer and
Cipra, 1973) and land use (Anderson et aI.,
1972; Ellefsen et aI., 1973). In the field of
geology, classification routines, in general,
have not been so successful. This is prima­
rily due to the inhomogeneity of geologic un­
its, presence of gradational boundaries, con­
fusing influence of both vegetative cover
and soil mantling, and similarity of the
spectral signature of different lithologies.
These problems are absent or not so pro­
nounced in remote sensing studies in land
use or agriculture.

Although some investigators (for example,
see Melhorn and Sinnock, 1973) have
applied one particular classification scheme
to the problem of lithologic identification, a
comparison of different techniques applied
to the same area has not been reported. This
paper presents the results of a recent study
using three different classification
techniques applied to the problem of
geologic mapping. The techniques analyzed
were a hybrid classifier, which is a modifica­
tion of Purdue's LARSYS: CLUS, an itera­
tive unsupervised classifier which provides
optimum natural classification; and a linear
discriminant analysis algorithm. The relative
success of the schemes are evaluated by com­
parison with the known geology of the study
region, and by analysis of the reflectance
spectra of representative samples of each
geologic unit as determined in the field.

CLASSIFICATION

Classification is the process of recognizing
classes or groups whose members have cer­
tain characteristics in common. Ideally, the
classes should be mutually exclusive and
exhaustive; that is, there should be one and
only one class to which an element is as­
signed, and all elements in the domain of

interest may be so assigned. In practice,
these requirements are difficult to fulfill and
often are not achieved (Griffiths, 1968).

The classes or groups are based on proper­
ties possessed by the elements of a popula­
tion, and classes are formed by grouping to­
gether those elements of a population that
are alike, where likeness is defined by cer­
tain selected properties or criteria (Griffiths,
1968; Block, 1972). An optimum classifica­
tion will group elements together into class­
es which are separated from one another by
discontinuities in the ranges of their ob­
served properties (Imbrie and Purdy, 1962).

Classifications can be either natural or ar­
tificial. In a natural classification, not only
are the classes mutually exclusive and
exhaustive, but they are based on the essen­
tial characteristics of the elements under in­
vestigation, and those elements are grouped
together which possess fundamental
similarities. In an artificial classification, the
grouping is determined by superficial re­
semblances or external criteria. The bound­
aries between the groups are artificial even
though they may have been objectively de­
termined (Hempel, 1952; Imbrie and Purdy,
1962).

In general, most classification schemes
used for LA DSAT data are artificial.
Analysts are concerned with classifying
LA DSAT images into various subsets, each
corresponding to features or themes of
specific interest, such as geologic units,
soils, cultural features or vegetation. Two
different approaches to classification of
LANDSAT imagery are generally used. The
classification can be supervised, in which
training areas are established by the analyst,
or unsupervised in which the boundaries are
objectively determined from a computer al­
gorithm to delineate natural clusters. In
supervised classification, each training area,
which supposedly is representative of a
specific feature of interest, is determined
from a priori knowledge, i.e., "ground
truth." Statistics are computed for each
theme and are used in various automated
techniques to identify other areas within the
LANDSAT image which have similar
characteristics. In unsupervised classifica­
tion, no a priori knowledge is assumed, and
the classes are based on the actual relations
among the variables. In such classification
schemes the number of classes can be estab­
lished by the analyst or, more objectively,
through the use of an algorithm in which the
data itself is used to suggest the number of
natural categories; that is, to find the number
of clusters.
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where g is the number of groups, ng is the
number of objects in group g, X ikll is the mea­
surement, for variable i, on the nth object in
group k, n is total number of objects; and i
and j run from 1 to p, the number of vari­
ables. The "best" classification is the one
which maximizes the between-group and
minimizes the within-group variation.

The CLUS algorithm includes five criteria
which may be used to determine the "best"
classification (see Siegal and Griffiths, 1975).
One criterion function is the logarithm of the
ratio between the determinant of T and B
(log ITI / IBI) where T/B = 1 + W so that
maximizing log ITI / IBI is the requirement.
The value of this criterion function may be
used as an informal indicator of the best

CLASSIFICATION TECHNIQUES ANALYZED

UNSUPERVISED APPROACH (CLUS)

The unsupervised classification scheme
considered here, CLUS, is an iterative
technique (Rubin and Friedman, 1967) in
which the "best" partition of n objects into g
groups is based on evaluation of variance
and covariance matrices.

The Rubin and Friedman method is
applicable to the general problem of classifi­
cation even when the number of groups is
unknown. The algorithm followed is one in
which the data itself (p measurements on n
objects) is used to suggest "natural
categories"; that is, to find the clusters.

The best partition of n objects into g
groups is defined as that partition, out of all
possible partitions of the objects into g
groups, for which a numerical valued criter­
ion function achieves its maximum value.
Several criterion functions exist in the CLUS
program. They all depend on the fundamen­
tal relationship T = W + B, where W is the
pooled within-group matrix of cross products
of deviations, T is the matrix of cross prod­
ucts of deviations for the total sample, and
B is the matrix ofcross products of deviations
of groups from the grand means weighted by
group size (Cooley and Lohnes, 1962). The
elements of each of the matrices are

number ofgroups by examining its change in
value as the number of groups is increased
(Rubin and Friedman, 1967).

A second criterion uses Mahalonobis D2, a
multi-dimensional Euclidean distance func­
tion in which the distance between groups is
compared with the distance within groups;
the aim is to maximize variation between
groups as compared with the distance within
groups.

A third procedure examines the trace ofW
(Tr. W) and attempts to minimize this func­
tion (i.e., minimize the sum of squares
within groups).

The other two criteria are approximations
to log ITl / fBI and to Mahalonobis D2.

The CLUS algorithm also contains
routines for improving the initial grouping;
for example, it is possible to apply or sup­
press hill-climbing routines, forcing passes,
and reassignment passes (Rubin and Fried­
man, 1967). One may also start from a single
group (the conjoint partition of Rubin and
Friedman, 1967), from a chosen or previ­
ously obtained grouping, or from a random
start (see Griffiths, 1970). Finally, after
achieving an optimal grouping, it is possible
to establish a key by using linear discrimin­
ant functions which may be used to assign
additional samples to one of the established
classes.

Although iterative unsupervised classifi­
cation techniques such as CLUS provide an
optimum classification, these procedures are
time consuming and require large amounts
of computer core. Classification of LAND­
SAT data by such algorithms must therefore
be based initially on the classification of a
random, representative, small sample of the
population under study.

SUPERVISED APPROACH

In a supervised classification scheme, at
least one training area must be defined for
each class or theme. The training areas
should be representative of the classes to be
investigated and consist of a subset of the
original data in p-dimensional space,
where each dimension is a spectral band or
ratio of bands. (As noted earlier, the use of
ratios describes the slope of the spectral
curve and gives a truer picture ofthe spectral
character of a material.) The two classifica­
tion schemes considered here are linear dis­
criminant analysis and a hybrid approach
which incorporates a parallelepiped al­
gorithm and the Bayesian maximum likeli­
hood function.

Linear Discriminant Analysis. Discrimi­
nant function analysis consists of finding a

n.
I (X ikll - Xk) (X jkll - Xjk)

n=l

n

g

Wii = I
k=l
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the largest F-statistic, where, for the entry of
thejlh variable.

where n is the total number of cases and g is
the number of themes. The degrees of free­
dom are g-1 and n-r-g+l. An iterative
technique is used to determine the best
linear combination of spectral bands (or
ratios).

Hybrid Approach. The hybrid classifica­
tion technique combines two existing clas­
sification schemes, the Parallelepiped al­
gorithm and the Bayesian maximum likeli­
hood function (Addington, 1975). In this
classification scheme, the means and
covariance matrix are computed for each
theme specified, assuming Gaussian dis­
tributions. These statistics define the
themes; the number of standard deviations
about the mean can be specified by the
analyst to represent the ideal decision boun­
daries for each class. In p-dimensional
space, these decision boundaries are
hyperellipsoids. The Parallelepiped al­
gorithm approximates the hyperellipsoids
with hyperrectangles. If an unknown pixel
falls within one of the hyperrectangles, it is
assigned to that class; if it does not fall
within one of them, it is considered un­
known; and if it falls into an area where
hyperrectangles overlap, it is considered
ambiguous.

Computationally (Addington, 1975), each
picture element (pixel) of the multi-spectral
imagery data is considered as the transpose
of a p-dimensional vector XT (XI X2 .•• Xp)T,
where p is the number of spectral bands.
The mean and standard deviation of the jlh
class out of a possible m classes are JL and ui>
respectively. The Parallelepiped algorithm
assigns a pixel to class)o if and only if /-LiJ

o
­

SUi,io~ Xi ~ /-Li,io + SUi.io for each i = 1,2, ... ,
p and S = constant defining the confidence
interval.

The Bayesian algorithm is used to resolve
ambiguities or to assign unknowns which
arise through use of the Parallelepiped al­
gorithm. In the former case, the statistical
likelihood that a pixel falls into each of the
ambiguous classes is computed; in the latter,
the likelihood for all classes is computed.
The class with the maximum likelihood is
then chosen as the class to which the pixel is
assigned. The likelihood of XT being a
member of class) is defined by the normal
multivariate probability density function Pi>
where

transform which minimizes the ratio of the
difference between group multivariate
means to the group multivariate variances.

The algorithm used here (after UCLA
BMD07M Program) computes a classifica­
tion function for each of the themes by
choosing and inputting the independent var­
iables in a stepwise manner. The variable
entered at each step is selected on the basis
of its F statistic. At each step of the analysis a
classification function is computed for each
theme. The equation of the classification
function Dki for the kth theme for the ith vari­
able is given by

r

Dki = Cko + I eki Zlki

; = 1

where Cko is the constant term for the kth

theme, r is the number of input variables
(spectral bands or ratios), eki is the discri­
minant coefficient for the kth theme and the
ith variable, and Zlki is the measured spectral
parameter of the [Ih case of the klh theme for
the ilh variable.

The constant term Cko is computed from
r

-112 I eki Xki , where Xki is the mean of
;=1

variable i for theme k. The coefficient eki is
r

computed from (n-g) I Xki au. At each
j=l

step of the procedure the variables are di­
vided into two disjoint sets: those included
in the discriminant functions (r) and those
not included. The within-group matrix of
cross products of deviations (W) and the mat­
rix of cross products of deviations for the
total sample (T) are computed as previously
described. The Wand T matrices are par­
titioned into

where W" and T" are r x r, and r is the
number of variables included in the discrim­
inant functions.

The elements au are derived from matrix
A, and the elements bu from matrix B:

A = [W;-i W- t W 12 wJ={au}" W- tW21
W- 1 W22 -W21" "

_ [T~i T- 1
T'2B " T ]={b}T- 1 T 22 -T21 T- 1- T 21 " " 12 IJ

The optimum input variables (spectral
channels or ratios) are chosen on the basis of

aii - bjj

bii

n-r-g+ 1
g-1
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1
Pj = (27T)P12 k

j
l}i

exp [-112 (X" - ji;)TKj-t (X - ji;)j

where Kj is the covariance matrix (p x p) of
thejlh class and Kj = det(Kj ). In practice, it
is not Pj which is computed, but In Pj' This is
appropriate since In is a monotonic increas­
ing function and only the maximum Pj is de­
sired.

STUDY AREA AND TRAINING AREAS

The 20-by-20 km study area (200-by-300
pixels on the LANDSAT image) is located in
the Coconino Plateau in north central
Arizona (see Figure 1). The Plateau has been
geologically mapped in detail (Goetz et ai.,
1975) and consists of a stripped Miocene sur­
face formed on the Permian Kaibab Forma­
tion. This formation has been subdivided
into five mappable units: the oldest unit,
unit Beta, consists of a thick sequence of
gray dolomitic limestones, with minor thin
chert beds; unit 2 is a 5-10 m thick yellow
dolomitic limestone; unit 3 is a 10 m thick
red-brown sandstone and siltstone bed; unit
4-5 consists of a yellow dolomitic limestone
overlain by red-brown shale and siltstone;
and unit 6 is a yellow-gray dolomitic lime­
stone, 5-10 m thick. The Moenkopi Formation
(TRM) overlies the Kaibab Formation and
consists of red siltstone and sandstone (see
Plate la). Topography is generally subdued
except where Cataract Creek has formed
precipitous canyons, with relief of 1200 m or
more. Vegetation is sparse to moderate and
consists of grasses and scrub brushes.

ARIZONA

FIG. 1. Location map of the study area.

Training areas for the supervised classifi­
cation algorithms were chosen from within
the study area. For each of the five subdivi­
sions of the Kaibab Formation, two training
areas were used; only one area was used for
the Moenkopi Formation because of its li­
mited outcrop area in the study region. Each
training area covered 25 pixels and its size
and location were selected on the basis of
large areal extent of the unit, homogeneity as
determined from examination of LANDSAT
imagery, and minimal but not insignificant
soil covering. The spectral radiance of the
individual pixels in the LANDSAT MSS
bands was extracted for each training area.
Ratios of MSS spectral bands (4/5, 4/6, 4/7,
5/6, 5/7, 6/7) were computed and used with
the raw spectral values as variables in the
classification schemes.

ANALYTICAL ApPROACH

UNSUPERVISED CLASSIFICATION (CLUS)

The reflected brightness values (DN) for
every nineteenth line and sample of the
study area were extracted and ratioed, yield­
ing a 361 x 10 data matrix(n x p). As would
be expected if different groups are present,
the univariate frequency distributions are
polymodai.

The data matrix was transformed to the
equivalent (p x p) correlation matrix (Table
1) in which all means are zero and variances
are unity (Xj = 0, &/ = 1), thus removing the
effects of different scales of measurement.

The correlation matrix was transformed to
a components matrix, Cu (see Table 2). This
procedure enables the determination of the
number of linearly independent sources of
information which occur in the matrix of ob­
servations; i.e., the rank of the matrix. The
extracted components are orthogonal to each
other, thus statistically independent. Each
component is expressed as some linear com­
bination of the variables, where each vari­
able has a specific factor loading (Dahlberg
and Griffiths, 1967).

The rotated matrix of factor loadings is
given in Table 2. The first factor is heavily
loaded on the MSS ratios 4/5, 4/6, 4/7 and
accounts for over 31 per cent of all the infor­
mation in the original data matrix. The sec­
ond factor accounts for an additional 31 per
cent and is heavily loaded on MSS bands 5,
6, and 7. The third factor explains an addi­
tional 18 per cent and is loaded primarily on
the MSS ratio 6/7. The remaining 19 per cent
of the variation of the original data matrix is
accounted for by the fourth component
which is heavily loaded on the MSS ratio 5/7,
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TABLE 1. CORRELATION MATRIX'

MSS 4 5 6 7 4/5 4/6 4/7 5/6 5/7 6/7

MSS 4 1.00
5 0.62 1.00
6 0.51 0.79 1.00
7 0.51 0.83 0.83 1.00

4/5 0.48 0.37 0.27 0.31 1.00
4/6 0.55 0.11 0.42 0.25 0.78 1.00
4/7 0.58 0.11 0.23 0.38 0.82 0.84 1.00
5/6 0.19 0.35 0.27 0.15 0.48 0.18 1.00
5/7 0.24 0.39 0.17 0.13 0.23 0.43 0.57 1.00
6/7 0.35 0.21 0.30 0.23 0.53 0.36 1.00

1 Correlation less than 0.110 omitted (criterion,-u for 300 df = 0.113 at the 5 per cent level)

TABLE 2. ROTATED MATRIX OF FACTOR LOADINGS' [k X p, P = 10, k =4)

C. C2 C3 C4 Comm.

MSS 4 0.69 0.70 -0.13 0.99
5 0.91 -0.38 0.99
6 -0.17 0.91 -0.37 0.99
7 -0.18 0.95 0.20 0.16 0.99

4/5 0.94 -0.18 0.26 0.99
4/6 0.89 -0.13 0.36 -0.22 0.99
4/7 0.92 -0.13 -0.17 -0.30 0.99
5/6 0.66 -0.74 0.99
5/7 0.12 -0.22 -0.97 0.99
6/7 -0.99 -0.15 0.99

Eigenvalues 3.11 3.13 1.80 1.90
Variation expo 31.16 31.30 18.04 19.05

Cumulative % 31.16 62.46 80.50 99.56

I Loadings less than 0.110 omitted (criterion rij for 300 df = 0.113 at the 5 per cent level)

with a secondary loading on MSS ratio 5/6.
As expected and as indicated by the com­
munalities (h 2 = 1.00), the four components
account for all the variations in the variables

The loadings of the first two factors of the
principal component analysis reflect: (1) the
strong interrelationship of three of the origi­
nal variables (MSS bands 5, 6, 7) and (2) the
orthogonality and interrelationship of their
ratios with MSS band 4. The apparent "in­
dependence" of MSS ratios 6/7 and 5/7 with
respect to each other and with respect to the
first two factors also reflects the effects in­
duced by ratioing correlated data. Neverthe­
less, as noted earlier, the use of ratios de­
scribes the slope of the spectral curve of a
material's surface, and is independent of al­
bedo. Although different materials may have
similar MSS DN values due to the uneven­
ness of illumination intensity caused by to­
pography, the ratios of their MSS bands
would be different, and hence the materials
should be separable.

Classification using the CLUS procedure
(Rubin and Friedman, 1967) was performed

for 2, 3, 4, 5, 6, and 7 groups, according to the
following program specifications:

(1) the criterion maximized was the
logarithm of the ratio of the determinant of the
total variation to the determinant of the varia­
tion within groups (i.e., log (ITI / IWI));

(2) principal components were not taken,
and the input variables (MSS bands 4, 5 and
ratios 4/6, 5/6 and 6/7) were chosen on the
basis of the principal component analysis of
the ten variable data sets and were standar­
dized with mean 0 and variance 1; and

(3) several alternative options were used to
achieve an optimum classification.

Over 130,000 partitions of the data were
evaluated. The partitioning criterion func­
tions for the best partitions of the data into 2,
3, 4, 5, 6, and 7 groups are tabulated in Table
3. The value of the criterion log (ITI / Iw\)
increases over the 2-to-7 group range with a
maximum difference between groups 2 and
3. Similarly, with the Mahalanobis D2 criter­
ion the largest difference occurs between 2
and 3 groups. This difference is considered
to be significant, suggesting an optimum
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TABLE 3. PARTITIONING CRITERIA
UNSUPERVISED CLASSIFICATION.

n = 361

No. of Groups Log (ITI/IWI) Diff. (Log !TI/IWI) D2 Diff. (D2)

1 0.00 0.00
1.05 1.86

2 1.05 1.86
0.86 2.43

3 1.91 4.29
0.74 0.23

4 2.65 4.52
0.53 1.97

5 3.18 6.49
0.40 1.68

6 3.58 8.17
0.20 0.61

7 3.78 8.78

O.196r--~--~-~--~-~-----,

-O.33S_,:-0."'"',,:-,---".o"'.,,:=-,--;:-.0.7.,,:-:-,--;:-'07..0 ,"-,--;:-0."",,7'0-'CCo."",,-;-.----;;-0.~302

'I
FIG. 2. Plot of the 361 pixels partitioned into
three groups. The coordinates of the graph, 2,
and 2 2 , are the first and second discriminant
functions, respectively. A, B, and C represent
one or more pixels in their respective groups.

Hybrid Classifier. As a preliminary step in
using the hybrid classifier algorithm, the
four MSS bands and six ratios were analyzed
to determine the minimum number of inputs
necessary to separate the themes. For each
of the ten variables, the means (Xi) and stan­
dard deviations (oJ of the themes were com­
puted. The themes were compared pairwise
for each variable, and were deemed separa­
ble if

The multiple discriminant functions com­
puted from CLUS for the three and five
group classifications were used to classify all
the pixels within the study region. The re­
sults for the three group classification are
shown in Plate Ib; the five group classifica­
tion picture was not significantly different.
Using an IBM 360/44 computer, the three
group classification required 2-1/4 minutes
for the entire study area.

SUPERVISED CLASSIFICATION

X, - )(2 > 1
C(O,+Ch)

where c is a specifiable weighting factor.
The best separability of the six themes re­
quired the use of six variables, bands 4, 5, 7
and ratios 4/5, 4/6 and 4/7.

These variables and the associated statis­
tics of themes were passed on to the hybrid
classifier, and the study area was classified.
The result is shown in picture form in Plate
lc. In order to classify the 63,516 pixels of
the study area the Bayesian algorithm was
called 59,429 times; a total of 6-1/2 minutes
of Computer Processing Unit (CPU) time
was required.

,
<

0.090

-0.017

"
< <,

-0.123

-0.229

number of 3 groups. A second maximum in
the Mahalanobis D2 criterion occurs be­
tween 4 and 5 groups.

A graphical illustration of the 3-group clas­
sification is presented in Figure 2 using dis­
criminant functions 1 and 2 as the coordi­
nates of the graph. As illustrated, the split
between the three groups, A, B, and C, is
almost entirely along discriminant function
1; over 91 per cent of the separability of the
groups occurs along this function.

The five group classification was similar to
the three group classification. In general, the
members of group A in the three group clas­
sification were split into two groups. Four
individual pixels, originally members of
group C in the three group classification,
comprised the fifth group.
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Discriminant Analysis. The ten variable
data set for each theme was analyzed accord­
ing to the linear discriminant algorithm pre­
sented previously. On the basis of the
F-statistics and the improvement in the clas­
sification of each of the themes, as indicated
by the classification matrix computed from
the discriminant analysis algorithm (see
Analysis of Results section), three variables,
MSS bands 4, 5 and ratio 4/5, were used to
compute the classification functions.

The unknown pixels within the study area
were classified into one of the specified
themes by computing their classification
function for each of the themes and assign­
ing them to the class for which they had the
largest classification function. The results
are shown in picture form in Plate Id. Two
minutes of CPU time were required for the
classification.

CLASSIFICATION RESULTS

The thematic maps produced by the un­
supervised classification algorithm (CLUS)
and the two supervised classification
schemes, the hybrid algorithm, and the
linear discriminant analysis algorithm, were
overlaid on the geologic map (see Plate la)
and areas correctly and incorrectly classified
were identified.

Both supervised classification schemes
correctly classified approximately half of the
study region. By using the discriminant clas­
sification algorithm, all outcrops of the
Moenkopi Formation were correctly iden­
tified; however, an equal area was incor­
rectly assigned to this unit. By using the
hybrid classifier, all outcrops of Moenkopi
were correctly identified; misclassification
was minor.

Unit 6 was more accurately mapped by the
discriminant analysis classifier, and approx­
imately one-third of the outcrop areas was
correctly classified; however, about one­
tenth of the remaining study area was incor­
rectly classified as unit 6. Approximately 5
per cent of this unit was correctly classified
by the hybrid algorithm, with only minor
misclassifications.

Units 3 and 4-5 taken together were
equally well mapped by both classification
programs; approximately half of the outcrop
area was correctly mapped. The hybrid clas­
sifier misidentified a greater per cent of the
study area than the discriminant algorithm.

Approximately 40 per cent of unit 2 out­
crop was correctly classified by the hybrid
scheme and an equal area was misclassified.
The discriminant analysis algorithm cor-

rectly recognized only half as much area as
the hybrid classifier and also misclassified
approximately half as much as the hybrid
classifier.

The hybrid classifier correctly identified
about half ofthe Beta unit; only a third of the
unit was correctly identified by the other al­
gorithm. Both misclassified an insignificant
portion of the study area.

By using the unsupervised three group
classification (see Plate Ib) many lithologic
boundaries were correctly delineated,
though identification of units was not accu­
rate. Blue areas on Plate Ib correspond to
outcrop areas of units 6, 2, and some of units
3, and 4-5. Red areas include all outcrops of
the Moenkopi Formation, some of the Beta
outcrops along Cataract Creek, and miscel­
laneous areas of the other geologic units.
The green areas are, in general, outcrops of
units 3 and 4-5. It is not possible to deter­
mine the per cent of the area correctly clas­
sified, when classifying six geologic units
into three groups.

ANALYSIS OF RESULTS

Two important considerations in choosing
an automated classification algorithm are
computational time and accuracy. In this
study, the preliminary processing of the data
for both supervised classification algorithms
required approximately 30 seconds of CPU
time on an IBM 360/44 computer. However,
classification of the 63,516-pixel area study
was three times as fast using the linear dis­
criminant analysis algorithm (2 minutes vs.
6-112 minutes of CPU time) and required
fewer inputs than the hybrid approach. The
hybrid approach, nevertheless, is more effi­
cient than classification schemes such as Pur­
due University's LARSYS, which computes
the maximum likelihood function for every
pixel for every class.

The unsupervised iterative partitioning of
the grid data using the CLUS algorithm for 2
through 7 groups required 30 minutes of
CPU time. By using the discriminant func­
tions computed from CLUS for the three
group classification, the study area was clas­
sified in two minutes of CPU time.

In terms of accuracy, both of the super­
vised classification schemes were compara­
ble though they correctly classified only 50
per cent of the study area. The unsupervised
algorithm delineated the major lithologic
boundaries and, in a very general way, de­
lineated each of the lithologic units.

The Beta unit and the Moenkopi Forma­
tion were most accurately mapped by all
three algorithms. Identification of the other
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UNIT

FIG. 3. Mean and two standard deviation plots
of the spectral reflectivity of the geologic units
from LANDSAT data.

units was not so successful. There appear to
be several reasons for this lack of success.
Facies changes of geologic units are preva­
lent but not generally recognized in de­
lineating mappable units for regional map­
ping. This was not a serious problem in the
study region because changes were slight
and consisted of an increase or decrease in
the siltstone/sandstone composition of the
clastic units. Vegetation cover can pose a
very important problem in lithologic iden­
tification. In the study area, vegetation cover
is minimal. Vegetation communities were
constant for anyone lithologic unit, and the
only significant change observed was as­
sociated with the change from one lithology
to another. Problems of alluvial outwash
masking or covering the bedrock is a sig­
nificant factor affecting comparison of
LANDSAT-derived classification maps with
geologic maps. Because a geologic map rep­
resents bedrock geology without soil cover,
it is an idealization of the true physical set­
ting. LANDSAT senses only the surface of
the ground, it does not penetrate through the
soil mantle. In some instances, transported
surface material may be derived from differ­
ent lithology, unrelated to the underlying
bedrock. Another effect of this transport
phenomenon is to obscure sharp lithologic
boundaries and produce gradational bound­
aries.

The above factors contribute to producing
inhomogeneity in the spectral signatures of
the training areas. To assess the significance
of this effect, the spectral homogeneity of the
training areas was examined by use of the
CLUS algorithm. Using four principal COm-
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ponents for the ten variable data set of the
training areas taken together, classification
was performed for two through seven
groups. Various options were used to im­
prove the initial grouping. The results are
tabulated in Table 4. As indicated, the
geologic themes are not spectrally
homogeneous for the range of groups tested,
i.e., the variation within groups is greater
than the variation between groups.

A second major reason for the inability of
the classification schemes to discriminate
the geologic themes is the similarity of their
spectral signatures in the four LANDSAT
bands. (See Figure 3).

There are two possible solutions to this
problem. First, increase the sample size for

TABLE 4. UNSUPERVISED CLASSIFICATION OF

THEMES (A = TRM; B = UNIT 6; C = UNIT 4-5;
D = UNIT 3; E = UNIT 2; F = UNIT f3)

4-5TRM

o MSS 4

I I0

I I I I
0

5 MSS 5

I I5 I I I I
5

5 MSS 6

I I5 I I I I
o MSS 7 I0 I I I I
0

11

95

13

11

11

ON

13

13

11
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each theme-this is difficult to do unless the
study area is very well known (in which case
there is no need for classification). Second,
examine the spectral reflectance in
wavelength bands different from LANDSAT
to determine if greater lithologic separation
is possible.

To evaluate the second solution, reflec­
tance spectra of representative samples of the
five geologic themes were acquired in the
field by use of a portable reflectance spec­
trometer (Goetz et al., 1975). Reflectance
was measured continuously over the range of
0.45 to 2.4 J.Lm, which includes the 0.5 to 1.1
J.Lm region scanned by LANDSAT. The
spectra were digitized at 0.05 J.Lm intervals in
the region of 0.4 to 1.0 J.Lm and at 0.1 J.Lm
intervals thereafter. A total of 83 spectra
were analyzed. Using the stepwise linear
discriminant analysis algorithm, the four
best wavelengths for separability of themes
were determined. They are, in order of
separability, 1.3 J.Lm, 1.0 J.Lm, 0.5 J.Lm, and 1.2
J.Lm. On the basis of the optimum linear
combination of these bands, the probability
of each sample coming from each of the
themes was computed, and the samples
were assigned to the theme for which their
probability was the greatest. The classifica­
tion matrix is presented in Table 5. The clas­
sification is much better than that obtained
by using the LANDSAT bands, and only unit
3 is not, in general, classified correctly. Ifthe
spectral reflectivity ofthe samples measured
in the field is representative of the geologic
units, then greater discrimination of rock
type could be obtained by use of wavelength
bands outside the region of LANDSAT.

SUMMARY AND CONCLUSION

Three different classification algorithms
were applied to the problem of automated
lithologic mapping of LANDSAT MSS data.
The two supervised classification algorithms
analyzed, the linear discriminant analysis
algorithm and the hybrid algorithm which
incorporated the Parallelepiped algorithm

TABLE 5. CLASSIFICATION MATRIX
UMBER OF CASES CLASSIFIED INTO GROUP

Group Tnn Unit 6 Unit 4-5 Unit 3 Unit 2

Trm 19 0 0 1 0
Unit 6 0 14 0 1 0
Unit 4-5 0 0 14 3 3
Unit 3 0 4 3 5 0
Unit 2 0 0 5 0 13

and the Bayesian maximum likelihood func­
tion, were comparable in terms of accuracy,
although both correctly classified only 50
per cent of the study region. The unsuper­
vised classification algorithm which incor­
porated the CLUS procedure delineated
some of the major lithologic boundaries but
classification accuracy was far less than the
supervised schemes.

The inability of the various classification
schemes to portray correctly the lithologic
units recognized in the field reflects the ef­
fects of spectral inhomogeneity of geologic
units and the similarity of their spectral sig­
natures in the LANDSAT bands.

More accurate lithologic classification may
be possible by using spectral reflectance
data from a wider wavelength region than
that sensed by LANDSAT.
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