
DR. R. L. HARDY*
Iowa State University

Ames, IA 50011

Least Squares Prediction

Multiquadric and covariance functions are compared, and
applications in topographic interpolation, gravity anomaly
prediction, and image processing are presented.

INTRODUCTION

L EAST SQUARES PREDICTION with covariance functions has been applied to photogrammetry
during recent years (Kraus, 1972; Kraus and Mikhail, 1972; Schut, 1974). This theory,

originally developed from time series analysis, is now most rigorously handled as a part of
the theory of stationary random functions. The expression "covariance function" was
popularized in geodesy by Heiskanen and Moritz (1967). From the point of view of com­
munications engineering, the more appropriate term is "autocorrelation function"
(Blackman and Tukey, 1959). The autocorrelation function is the normalized autocovariance
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function (i.e., normalized to variance equals one at the origin). In a time series, the au­
tocovariance function expresses the covariance betweenX(t) andX(t+r), where t is time and
T is a "lag" on the time axis. Yaglom (1962) uses the more general term "correlation func­
tion", in lieu of autocorrelation or covariance. These different terminologies are mentioned
to aid the reader who may wish to study these functions in greater depth than can be given
here. The terms "covariance", "correlation" and "autocorrelation" will be used more or less
synonymously throughout this paper.

Another type of interpolation or prediction method, called "multiquadric functions" has
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also been applied in photogrammetry (Hardy, 1972b). This method first appeared in the
geophysics literature in 1971 (Hardy, 1971). It has been compared with the bicubic spline
function in hydrological applications by Shaw and Lynn (1972) who reported several advan­
tageous features of multiquadric analysis. Brown (1973) and Trotter (1975) have also re­
ported favorably upon the use of multiquadric functions for applications in the use of satel­
lite altimetry to determine the geoid. Thus multiquadric theory and applications have been
considered by other investigators from time to time as a topic worthy of examination. Mean­
while, new developments in multiquadric equations have been studied by Hardy and his
colleagues (Hardy, 1972a, 1975b; Hardy and G6pfert, 1975a).

In 1974 several authors in the photogrammetric field took note of multiquadric equations
as an incidental aspect of studies involving covariance functions. In one case, multiquadric
equations were included in the class of covariance functions without qualification (Rauhala,
1974). In another case multiquadric equations were said to involve the formalism of
covariance theory, but an ambiguity in correlation at the origin of coordinates was noted,
leading to a conclusion that multiquadric theory is a non-rigorous application of covariance
theory (Schut, 1974). In the third case, multiquadric analysis was said to be identical with
least squares interpolation (without filtering), if the hyperboloid is chosen as a covariance
function. On the other hand, it was noted that some functions (such as the hyperboloid) do
not seem to have a statistical basis. Thus it was concluded that these functions for which the
expression "covariance function" is really unsuitable, should be included as special cases in
a more broadly defined general interpolation model, which would still be called the
covariance function (Assmus and Kraus, 1974). Needless to say, the preceding references
have stimulated a more thorough study of covariance functions on this author's part.
Conseque~tly, the situation will be clarified at this time (1976) with respect to the

similarities and dissimilarities of multiquadric and covariance methods. During this presen­
tation it will be shown that some multiquadric functions cannot possibly be covariance
functions, based on strictly theoretical definitions applied to covariance theory. Moreover it
will be shown that comparative studies conducted at Iowa State University indicate superior
interpolation or computational characteristics for multiquadric functions over covariance
functions in applications involving topography and gravity anomalies. A possible reason for
this is that variations of topography and gravity are not necessarily stationary random func­
tions, which is at the heart of the justification for the use of covariance functions. With
respect to gravity in particular, the point of non-stationarity has been made previously by
Williamson and Gaposchkin (1973). This may be true for many other phenomena, including
those encountered in photogrammetry and remote sensing. If so, research beyond that re­
ported in this presentation will be needed to develop an optimal prediction theory for
non-stationary random functions. Meanwhile, multiquadric functions should be considered
as an experimental alternative to the use of covariance functions for phenomena that are not
strictly stationary.

Results of an experiment in image analysis using multiquadric functions are also included,
not involving a comparison with covariance functions.

COVARIANCE KERNEL FUNCTIONS

The bare essentials of covariance function theory will be presented, modeled to a great
extent on the text book presentation by Heiskanen and Moritz (1967). The symbol Z will be
used for generality to represent the ordinate of any phenomenon, in lieu of Ag for gravity
anomalies which was the text book application.

The computation of one-sided covariance functions with respect to a profile, rather than on
a two-dimensional plane or other surface, will be used. One-sided covariance functions can
generate symmetric covariance surfaces by revolving them around the Z axis. The arbitrary
function profile in Figure l(a) has been pre-adjusted so that the first moments of the ordi­
nates are zero, Le.,

n

i = 0,1,2, ... , 16. (1)

This produces a centered arbitrary function for use in determining the covariance func­
tion. For discrete sequences a common formula for the covariance is

N

C(s) = _1_ I g(x + s) g(x) s = 0,1,2, . . . (2)
N + 1 x=o
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FIG. 1. Arbitrary and covariance functions.
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in which the symbols x and s replace t and T respectively. The symbol { represents a random
variable.

The empirical covariance C(s) for a computation for s = 1,2,...,6 is shown in Figure l(b)
which is sufficient in this case. After s = 3, C (s) oscillates near zero and theoretically should
remain near zero. There are precautions one should consider in developing the empirical
covariance function. For s = 0, N = 16, Le., N + 1 = 17 which is the number of ordinates that
can be squared at zero distance, meaned, and normalized to variance C (0) = 1. With s = 1, N
= 15; with s = 2, N = 14; etc. Thus the number N steadily decreases and the mean becomes
less reliable as s increases. According to Blackman and Tukey (1959) less than 10 percent of
the available record in time series analysis is normally used to compute "apparent"
covariances in communications engineering. .

According to Yaglom (1962) the analytical definition of a correlation function produces the
following characteristics

C(O) > 0 (a)
C(-s) = C(+s) (b)
IC(s)1 <: C(O) (c)

Specification (a) requires that correlation at the origin of coordinates be positive. Specifi­
cation (b) requires the correlation function to be an even function, Le., symmetric with
respect to the origin. Specification (c) requires that the correlation at any distance s cannot
be greater than the correlation at the origin. In other words the correlation at the origin is at
least one of the maxima, if not the only maximum of the function. Several possible correla­
tion functions are illustrated in Figure 2.

MULTIQUADRIC KERNEL FUNCTIONS

The first multiquadric kernels were standard quadric surfaces, of which the cone and hyper­
boloid are the principal examples (Hardy, 1971). In a profile mode these reduce to the absolute
value function and hyperbola as illustrated in Figure 3. Although they are even functions as in (b)
above they obviously do not satisfY the important specifications (a) and (c) for covariance func­
tions. Moreover, the "bounded" cone and "bounded" hyperboloid fail to have non-negative
Fourier transforms. Non-negative Fourier transforms are an indirect requirement of the famous
Wiener-Khintchine relations for cOlTelation functions and power spectra. These relations state
that the covariance function ofa function is the Fourier transform ofthe spectral density ofthat
function. Spectral densities must be non-negative. Therefore a negative; or partially negative
Fourier transform of an assumed covariance function, is proof that the assumed covariance
function is incorrect (Figure 4(a)). Yaglom (1962) used this criteria over and over again in exam-

FIG. 2. Shapes of possible covariance kemels.
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pIe problems to determine whether or not a specified analytical function qualified as a
covariance function.

Thus there is no direct theoretical relationship ofthe quadric surfaces mentioned above to true
covariance functions.

LEAST SQUARES PREDICTION WITH COVARIANCE FUNCTIONS

First it is assumed that a predicted z:, anywhere is related linearly to measured or known
values of Z at various positions in the region of consideration, i.e.,

ZiP = (XIZI + (X2Z 2 + ... a" Zn = I IX; Zi

i=l

(3)

Any prediction method should be capable of predicting its own data ordinates exactly as in
collocation polynomial theory (Scheid, 1968), or very closely in the more general sense of least
squares. Thus, ifa set of "predicted" Zp's are exactly coincident with the Z/s at each X position of
the record, i.e., Xp = Xi, i = 0,1,...,16, as in Figure l(a) then we should have perfect correlation.
For this case of ze'c "lag", i.e., distance 8pi = 0,
we have

(4)

which is the mean value of the set of products Zp2 in this case, in fact the variance rather than
covariance.

Now consider a set of Zp's at regularly spaced intervals along the X axis, but not coincident
with the Z/s, i.e., they all have a "lag" or distance 8pi '* O. Then, in terms of covariance computa­
tions with ordinates Zp and Zi we have

(5)

Also we may assign a pair of subscripts to the same sequence of data points in the same order.
Then the covariance at a distance 8ik is

(6)

Now we let the error of a predicted Zp with respect to the true Zp be expressed as

Then from Equation 3, and squaring Ep
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Rearranged, including the use of i and k subscripts to distinguish products at different posi­
tions on the X axis, we have

Noting that

and substituting the symbols for covariance from Equations 4, 5, and 6 for the various ordinate
products, we have

fl fl

Ep
2 = L La;lXkCik-2La;CPi+CO'

i~l k~l i~l

(7)

We can minimize the error ofprediction by partially differentiating (Ep
2) with respect to a; and

setting the new function equal to zero. Thus

a(Ep
2

) fl _ ._

--- = 2 L lXk Clk - 2Cpi - 0 t - 1,2, ..., n.
aa; k~l

(8)

The result in Equation 8 may be viewed as a system ofn linear equations with n unknowns

L lXk C ik = C pi i = 1,2, ... , n .
k~l

Then the solution for the lXk'S is
fl

lXk = LClk-1 Cpi
i~l

(9)

(10)

where Glk -I indicates the elements ofan inverse of a matrix with elements G lk . Substituting the
now known elk'S into Equation (3) we have

fl

or in matrix notation

Zp = LlXkZk =L LClk-ICPiZk
k~l i~l k~l

ZP = [CP1 Gp2 •••• GPfl] Gil C l2 .••• G lfl -I ZI
G21 G22 ••.• G2fl Z2

(ll)

(12)

In this form the covariance prediction method does not handle the general case of more
equations than unknowns as indicated later for multiquadric prediction. Nevertheless Heiska­
nen and Moritz (1967) successfully applied covariance methods for determining the error
covariance function and the standard error ofleast squares prediction. Moritz has subsequently
improved and generalized this method in many ways, including filtering. However these details
are not essential in a fundamental comparison involving pure prediction only. The most impor­
tant point to note here is that the system of equations in Equation (9) corresponds to the nom1al
equations in a least squares adjustment, thereby implying correctly that the more general case
can be developed as in least squares adjustment theory.

LEAST SQUARES PREDICTION WITH MULTIQUADRIC FUNCTIONS

Least squares prediction with MQ (multiquadric) functions is conceptually different from least
squares prediction using covariance functions. Nevertheless, because the principle of least
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squares is involved, the matrix manipulation can be made identical for both cases. This aspect of
similarity probably accounts for the existing confusion about the covariance and multiquadric
functions.

MQ kernels were based originally (Hardy, 1971) on exclusively geometric or physical consid­
erations rather than stochastic processes. In fact the paper by Hardy (1972a) was virtually a
polemic against what was considered to be an over-emphasis on statistical methods in some
cases, without adequate consideration of geometry and physics in the "prediction" of topo­
graphic surfaces.

The basic hypothesis of multiquadric analysis is that any smooth mathematical surface, and
also any smooth arbitrary surface (mathematically undefined), may be approximated to any
desired degree of exactness by the summation of a wide variety of regular, mathematically
defined surfaces, paIticularly quadric forms. The favoring of quadric forms came about through
trial and error procedures with actual problems in topography, and more recently in geodesy
(Hardy, 1974, 1975a). This reinforces an original conclusion that quadric forms were not only the
simplest, but also the most efficient in converging on irregular surfaces.

It should be noted that the original approach to MQ analysis did not, and still does not exclude
any kernel function from being considered as having an optimum role in some application. To
make the innumerable possibilities more clear we now consider the concept of "any workable
kernel". Let W(X,Y,Xj,Yj ) be the workable kernels in a linear prediction function of the
Cartesian form

!(X,Y) = Z = (XI W(X,Y,Xj,Y I ) + (X2 W(X,Y,Xj!,Y2 ) + ... + 0;, W(X,Y,Xn,Yn) = Lex; W(X,Y,Xj,Yj )
j~l

(13)

The basic requirement for a workable kernel is that with n or more data points (Xi,YhZi), the
system of equations formed from Equation (13) will lead to a non-singular coefficient matrix of
the normal equations. As a result the solution for the coefficients is optimum in an ordinary
least squares sense, regardless ofthe deterministic, stochastic, or other interpretation that can
be placed onf(X,Y) by other means.

From a purely geometric point of view the kernel functions in Equation 13 are interpretable
as continuous single valued surfaces extending over the entire region ofconsideration. In a broad
sense these kernels are not necessarily symmetric or even in the SaIne class, e.g., quadric, cubic,
or other. But for simplicity let us assume symmetric kernels. Then the coordinates Xj,Yj represent
the translation of the center of symmetry ofeach individual surface from the origin atX,Y = 0,0 to
its respective Xj,Yj, in general not 0,0. Thus!(X,Y) in Equation 13 is represented by a series
which applies the principle of superposition to an array of n separate geometric surfaces, each
translated to different XjYj coordinates. By summation a single multiquadric, multicubic, or other
combined surface is produced (Hardy, 1971).

If the workable surface functions in Equation 13 are not COVariaI1Ce functions, it is possible to
interpret !(X,Y) as representing at least one class of a broad field of non-stationary random
functions. Yaglom (1962) indirectly permits this type of generalization. On his page 10 we see
"There exist oilier meiliods of specifYing a random function. Thus it is often convenient to define
a random function by an analytic formula, containing parameters which are random variables.
For eXaInple one may consider polynomials (ordinary or trigonometric) with random coefficients,
We shall occasionally use this method of specifYing a random function." Yaglom obviously
recognized that in a general sense this method will produce non-stationary as well as stationary
random functions. Since Yaglom was only interested in stationary random functions he invari­
ably applied the Wiener-Khintchine theorem when he used this method, to determine if the
random function was stationary.

Considering the broad implications above, we now substitute a quadric kernel function for the
more general W(X,Y,X;,Y;) in Equation 13. This will illustrate least squares prediction and error
analysis with multjquadric functions in paIticular, using a quadric kernel that is known not to be
a covariance kernel. Thus we let

W(X,YX;,Yj) = Q(X,YX;,Yj) = ((X - Xj )2 + (Y - Yj )2 + 8)~ (14)

which is a hyperboloid. Arbitrarily letting a = °we CaIl form a system ofm linear equations with
n unknown coefficients Cj, involving the cone as the kernel

n

LC j ((Xk - Xj )2 + (Yk - Yj)2)~ = Zk k = 1,2, ... , m, m S n
j~J

(I5)
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Thus the problem involves m data points (or data and test points), of which any number n may
be selected as nodal points for the functions centered at XjYj. Now we will go to matrix notation,
using Qki as an abbreviation for the cones ((Xk - X)2 + (Yk - Yj )2)v..

Then the observation equations are

or more simply

Qml Qm2 ..... Qmn Gn

QG - Z = V

(16)

(17)

From this the unit weighted least squares solution for the column vector of coefficients is

(18)

~ With the known coefficients Gj, the summation formula for the prediction of a column list of
Zp's at the coordinates Xp,¥p, is

"
Zp = L Gj((Xp - Xj )2 + (Yp - Yj )2)Y' P = 1,2, ....

j~l

or in matrix' notation, a column vector of predicted Zp's is

For an analysis of the error of prediction we can detennine ~ V2 with

VTV = (Q(QTQ)-I (QTZ) - Z)T (Q(QTQ)-I (QTZ) - Z)

(19)

(20)

(21)

For a comparison with the covariance function development by Heiskanen and Moritz we take
n = m in Equation 15, then Equation 18 reduces to

C = Q-I Z .

Now if we predict only one Zp instead of a vector as in Equation 20 we have

Expanding from Equation 23 for comparison with Equation 12 we have

Zp = [QPl Qp2 ..... QpnJ QII QI2 QIn -I Z,
Q21 Q22 Q27. Z2

(22)

(23)

Qnl Qn2 ..... Qnn Zn (24)

Thus the solution for coefficients (unknowns) and the determination of the error of least
squares prediction (adjustment) for any function, multiquadric, covariance or other "workable"
kernel function can be found by the routine procedures of least squares adjustment. Con­
sequently, least squares prediction is a matter ofevaluating any analytical function whose coeffi­
cients can be solved for and adjusted by least squares. Optimality beyond that provided by least
squares is a question involving the degree of correspondence between the intrinsic nature of a
phenomenon, and the intrinsic nature of the kernel function used to replicate the phenomenon.

SIMILARITIES AND DISSIMILARITIES

The similarity of the covariance and multiquadric methods of analysis is represented almost
entirely in the identity of Equation 12 and Equation 24, provided G = Q, Le., a covariance



482 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1977

kernel is identical with a quadric kernel. Since this has been shown to be incorrect for specific
cases, we are led to significant generalizations concerning the inequalities

Q 't- C, necessarily

or even more generally that

W 't- C, necessarily

where W is an arbitrary workable kernel. Careful consideration of the derivations of Equation
12 and Equation 24 show that covariance kernels are merely one of the many explicit work­
able kernels that are possible. A multiquadric kernel is another explicit fonn, with apparent
advantages in some applications involving non-stationary or marginally stationary processes.

As will be suggested and verified to some extent in the section on applications, the competi­
tion among a variety of "workable" kernel functions (including covariance functions) that can be
used in least squares prediction is likely to be decided by certain engineering considerations.
Among these are economy of effOlt, efficiency, and the suitability of the results in actual applica­
tion.

An important difference between the multiquadric and covariance function approach is that
the choice of a covariance kernel is often (but not always) based on the computation ofa discrete
covariance sequence variously tenned "empirical" or "apparent" covariance. After an apparent
covariance is computed, an analytical function resembling the "apparent" covariance is usually
chosen as the kernel. An exact fit of an "apparent" covariance with a single analytical kernel is
seldom, if ever, possible. This, in itself, leads to a preliminary least squares problem. In other
words an analytical covariance kernel function is frequently selected by means of a least squares
fit to the apparent covariance. In the multiquadric approach this preliminary procedure is not
relevant.

CAN SOME MULTIQUADRlC KERNELS BE SPECTRAL DENSITY FUNCTIONS?

The stimulation of the papers by Rauhala (1974), Assmus and Kraus (1974), and Schut (1974)
led to a determination that the cone and hyperboloid are not covariance functions, according to
any cUlTently existing theOlY. On the other hand it may be highly significant that a large part of
the mathematical fonnulation for the least squares prediction is identical in the two cases. This
may be true of relevant Fourier and inverse Fourier transform relationships also. Therefore the
author has speculated somewhat on how "bounded" multiquadric kernels and spectral density
functions may be related. The interest in spectral density functions is due to the Wiener­
Khintchine Fourier transfonn relation, already mentioned in connection with proof that the cone
and hyperboloid cannot be covariance functions.

Since the specb'al density is required to be non-negative by definition, the bounded absolute
value function in Figure 4a fails to quality as a correlation function because its Fourier transfonn
in the frequency domain is partially negative. On the other hand, if we view the bounded
absolute value function as a specb'al density function in the frequency domain, we appear to
have no inconsistency (Figure 4b). The absolute value function is non-negative which enables it
to satisfY the definition of spectral density. Geometrically the Fourier transfonn of the bounded
absolute value function is the same as that in Figure 4a, but now it is in the time (distance)
domain. Note that it resembles the sine function in Figure 2(c) which is also a covariance
function in the time (distance) domain. There is no restriction by definition or otherwise that the
cOlTelation ofa centered arbitrary function is non-negative. Superficially at least, inconsistency
has been exchanged for consistency by reversing the role ofthe Fourier transfonn pair in Figure
4a to that shown in Figure 4b. It is easy to show that this new consistency applies to the cone
(generated by rotating the absolute value function around the Z axis), and for the same reason
also applies to the hyperbola and hyperboloid.

It is also easy to show that the principle ofleast squares prediction with multiquadric functions
is not affected by using an appropriate "bounding" of the otherwise indefinitely increasing
multiquadric kernels (cone and hyperboloid). Assume that the region ofavailability ofdata and of
interest for prediction is between ± 7T on the frequency axis cP in Figure 4b. Then let

"
Z = Q(cP) = I Cj IcP - cPj I, but Z = 0, if IcP I "" I±7T I

j=l .

Thus each kernel is 27T in width and each covers the entire region of interest. Con­
sequently, there is no effect whatsoever on the least squares prediction in the region.
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In conclusion, for this section, it appears that whereas an arbihoary fimction may be decom­
posed into covariance kernels for least squares prediction in the time (distance) domain, the
same arbitrary function may possibly be decomposed into spectral density kernels for least
squares prediction in the frequency domain. If so, the role of multiquadric functions for
prediction purposes may be better understood in the future.

What has been said in this section is somewhat speculative, and studies in this area are
continuing; however, it is hoped that others will also consider the possibility of some quad­
ric kernels being spectral density functions, rather than considering them incorrectly to be
covariance functions. Evidence that the cone and hyperboloid kernels are not covariance
functions is overwhelming. Whether or not a satisfactory Fourier transform relationship
relating multiquadric kernels to covariance kernels can be developed is not certain.

A COMPARISON OF COVARIANCE AND MULTIQUADRIC METHODS FOR PREDICTING REAL

TOPOGRAPHY IN HAWAII

A 1000 by 1000 foot square area with 240 feet of relief in the Haleiwa Quadrangle, Oahu
Island, State of Hawaii was selected for a detailed comparative test. A topographic map of
this area, greatly enlarged over the original 1:24,000 scale, is shown in Figure 5. Sample
elevations Z and distances s in the area were used to compute the normalized apparent
covariance, discretely as shown in Figure 6. Distances were scaled to unity for the length of
the diagonal across the test area. Then these three analytical covariance kernels

C,(s) = e-a' (s - sJ2

3

C2(s) = I bk(s - Sj)k
k=O

6

C 3(S) = I ak(S - Sj)k
k~O

2120

2083

2110

2135

Test Area Boundary (1000 x 1000 ft)

Mopped Boundary (1200 • 1200 ft)

21904>-......,.--=:..:;;;i::c.~~:..:::~+-.;.~~l.-~2:.:::040::<:>_-==~~::......::--..:.19~7..:;0C>
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FIG. 5. A Portion of Haleiwa quadrangle, Oahu Island, State of Hawaii.
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were fitted (with s; = 0) to the apparent covariance by least squares with constraints. The
resulting curves are also shown in Figure 6. It is easy to recognize the analytical covariance
functions as being (he Gaussian distribution curve, a third degree polynomial, and sixth
degree polynomial respectively.

The fourth curve in Figure 6 is a multiquadric kernel, specifically a hyperboloid

Q(s) = ((s - S;)2 + 00 )1'2

There is obviously no relation of the hyperboloid kernel to the apparent covariance, and
pre-fitting by least squares to correlation was irrelevant in its selection. A numerical value
for 0

0
was determined, using a relationship which indicates that an approximate optimum 00

can be determined from
(27)

where D is the grid spacing ofthe nodes. Using any positive 0, no matter how small, proVides
continuity of slope at data points which is not true of the absolute value function Is I = (S2)"'.
Sometimes a larger 0 is desired for greater smoothing but if 0 is too large some difficulties in
"warping" may be experienced. Equation 27 provides a good working value for 00 in all
cases encountered to date.

The layout of map control data made available for the various approximations of the terrain
in the test area were 41 elevations at specified horizontal locations on and inside the bound­
ary, plus 24 elevations outside the area as shown by the spot elevations in Figure 5. Inside
the test area no map control point was closer than 141 feet on the ground to another control
point. Outside the test area no points were closer than 200 feet.

After a collocated fit of the multiquadric equations to the 65 map control points the
multiquadric function was used to "predict" 90 elevations in a 6 by 15 grid array as shown
also in Figure 5. The 90 predicted values were compared point by point with evaluations
determined independently, by manual interpolation, in the same grid array. In other words,
the original quadrangle map was used as a source of map control data for determining
coefficients of the prediction function, and also as a source of data for testing the prediction
function, the control and test sets being generally displaced relative to each other. A few
points were nearly coincident by accident.

One hundred percent ofthe multiquadric predictions at the 90 test points were within one
contour interval (40 feet), and 91 percent were within one half contour interval. This was
without using the 0.02" allowable shift at publication scale (1:24,000), or requiring the test
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elevations to be at significant topographic or cultural features, both of which are permissible
under National Map Accuracy Standards. Thus the technical standards with respect to con­
touring were more than satisfied. The mean difference in Z between the 90 predicted and
the 90 manually interpolated values was +2 ft. The standard deviation was ±13 ft.

As shown in Table I, the covariance predictions were compared with the multiquadric
predictions and also with each other. The differences between the multiquadric predictions
for the 90 test points and the cubic and sixth degree polynomial covariance kernels are
negligibly small. On the other hand there are significant differences when the Gaussian
prediction result is compared with the multiquadric, cubic, and sixth degree polynomial
predictions. The Gaussian prediction should be regarded as quite marginal in this case for
meeting National Map Accuracy Standards.

In summary one can say that the multiquadric function performed as well or better than
two covariance functions and certainly better than the third covariance function for predic­
tion purposes.

A COMPARISON OF COVARIANCE AND MULTIQUADRIC METHODS FOR PREDICTING REAL

GRAVITY ANOMALIES IN IOWA

After the comparative test of covariance and multiquadric functions for predicting topog­
raphy as described above, it was decided to perform a similar test in Iowa involving pre­
dicted gravity anomalies.

Seven free air gravity anomaly maps of Iowa were manually interpolated at a 10 milligal
contour interval by six students and staff at Iowa State University, using 43 free air anomalies
distributed throughout the state. (Anomalies outside the state boundary were not used, and
the anomaly maps were not extrapolated to the state boundary.) One hundred non-data
points were interpolated in each map, at identical locations in each map, and the mean was
determined at each point. The standard deviation of a single point was found to range from
± 1.2 to ±2.3 mgal. Later, based on a sample of 20 of the 100 points, the average standard
deviation of a single point was found to be ± 1.6 mgal. Figure 7 is an example of the manually

TABLE 1. MODEL COMPARISONS

Model Differences

Mean Differences
in feet for

90 Test Points

0.2
0.1

-0.1
-1.8
-2.0
-1.9

Standard Deviation
of a Single
Difference

±0.8
±0.8
±0.8
±6.6
±7.0
±6.8



+29.8 mgal
+ 1.42 mgal
± 11.13 mgal

+29.6 mgal
+ 2.88 mgal
±10.46 mgal
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interpolated maps. This one was found on the whole, to be the closest to the mean values of
the 100 points. The mean values of these points were used later to judge the quality of
predictions by the covariance and multiquadric methods.

Two covariance functions and two multiquadric functions were used for prediction pur­
poses. A Gaussian and also a sixth degree polynomial were used as kernels in the covariance
functions. A hyperboloid was used as the kernel in a non-harmonic form of the multiquadric
function and the reciprocal distance was used as a kernel in a harmonic form of the mul­
tiquadric function. The graphical results of the prediction of the gravity anomalies is given
for these four functions in Figure 8 through 11. These contour maps were determined by
computer evaluation of the respective functions.

In each case the analytical predictions from the respective functions were compared with
the mean manual interpolation of each of the 100 points. The maximum deviation, the mean
deviation, and the standard deviation are given below for each function.

(a) Gaussian
Maximum deviation
Mean deviation
Standard deviation

(b) Sixth Degree Polynomial
Maximum deviation
Mean deviation
Standard deviation

(c) Non-harmonic Multiquadric (hyperboloid)
Maximum deviation + 7.60 mgal
Mean deviation + 0.11 mgal
Standard deviation ±2.78 mgal

(d) Multiquadric Harmonic (reciprocal distance)
Maximum deviation + 8.80 mgal
Mean deviation 0.26 mgal
Standard deviation ± 3.31 mgal

As to computational efficiency, the non-harmonic multiquadric requires no precomputa­
tion except for optimum 00 which is very easy. It is the most efficient of the four functions.
The multiquadric harmonic requires an a priori determination of the best radius of point
masses with the best r-formula (Hardy and G6pfert, 1975) but this is easier than the a priori
determination of the empirical covariance and least squares fit of an analytical kernel func­
tion in the covariance method. The evaluation or prediction aspect, after solving the func­
tion, is also computationally easier with the multiquadric kernels than with the covariance
kernels.

ApPLICATIONS OF MULTIQUADRIC FUNCTIONS IN PHOTOGRAMMETRY AND REMOTE SENSING

The applications of multiquadric functions to photogrammetry and remote sensing cer­
tainly encompass all the possibilities that have already been mentioned in the literature for
covariance functions, and possibly for other computational methods as well. Among these
possibilities are

(1) lens distortion corrections
(2) film deformation corrections
(3) prediction of corrections to pass points in strip and block triangulation
(4) digital terrain model (DTM) contouring and profiling
(5) camera and reseau calibration
(6) geometric correction of radar imagery
(7) geometric correction of panoramic camera imagery
(8) image function processing and analysis

Multiquadric equations have been applied to a limited extent at Iowa State for items (1),
(3), (4), and (8). At the present time item (8) is receiving the most attention, and consequently
will be the particular application presented here.

Image processing and analysis, has in itself, the potential for a breakdown into many
sub-applications. Among these are

(1) pattern recognition
(2) boundary location (or more generally, gradient analysis)
(3) density slicing, color coding, and B & W to color conversion
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FIG. 10. Free air anomaly map of Iowa using a hyperboloid as the
kemel in a multiquadric function.
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FIG. 8. Free air anomaly map of Iowa using a Gaussian kemel in a
covariance function.
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FIG. 11. Free air anomaly map of Iowa using the reciprocal distance as
a kernel in a multiquadric harmonic function (depth of43 point masses,
30km).

(4) image function compression
(5) image function reconstruction (expansion)
(6) correlation of perspective image functions
(7) orthoprojection of perspective image functions

Of these, experiments with items (4) and (5) will be reported in this paper. In a sense,
items (4) and (5) involve an inverse or transform relationship with respect to each other. It is
possible to describe an application and the corresponding process by starting with either (4)
and (5) as the problem and ending up with (5) or (4) respectively as being essential to the
solution. This is probably why Fourier, Hadamard, Walsh, and other transforms have re­
ceived so much attention in communications engineering for the efficient transmission and
reconstruction of images. It is possible for multiquadric equations to accomplish somewhat
the same result in a conceptually more direct and more understandable fashion. However, it
remains to be seen whether multiquadric analysis could be more computationally efficient
than fast Fourier transform methods, for example. Meanwhile, the fundamentals of the
multiquadric method will be presented.

The picture elements in Figure 12(b) may be viewed as containing the coarsely sampled and
quantized information from Lincoln's portrait in Figure 12(a). Each pixel contains a uniform
distribution of intensity (gray level) within its respective boundaries. It is more or less obvious
that the gray level in each pixel of 12(b) is the mean value of the variable gray level in a
corresponding, but unbounded "block area" of the original picture 12(a). From a close inspection
point of view the original picture appears to have been degraded in Figure 12(b) to the point of
extinction by this process. On the other hand, if both pictures are viewed from a distance of
fifteen to twenty feet without magnification they are both recognizable and mutually indistin­
guishable. Another analog solution for restoring a substantial part of the "lost information" is to
project a slide of Figure 12 (b) with deliberate defocusing. Generally there are analytical solu­
tions which correspond to analog solutions and this case is no exception. One of the solutions
involves Fourier transfonn methods as mentioned above. Figures 12(a) and 12(b) have been
reprinted from the cover of Science, 15 June 1973 with the permission of the magazine
(copyright 1973 American Association for the Advancement of Science), and of authors Harmon
and Julesz (1973). As indicated in their article, Figure 12(a) is a reconstruction of a high resolu­
tion Lincoln photograph (not shown) by Fourier processing of the coarsely sampled and quan­
tized infonnation in Figure 12(b). The reader is referred to their article and references for a more
detailed understanding of the Fourier processing. What we have done recently at Iowa State is to
partially repeat this experiment, using multiquadric functions.

First we may view a photograph as being a picture function (Rosenfeld, 1969) or, more
generally for remote sensing, an image function. The gray levels ofa black and white photograph
correspond to Z ordinates of a function Z = f(X,Y) in which X and Yare plane coordinates for
locating the Z infomlation. For a picture quantized in pixels it is easily understandable that we
can represent an image function in a general sense with the multiquadric function
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(0) (b)

(28)

FIG. 12. Two images of Lincoln. (Reprinted by permission from the cover of the 15 June, 1973 issue
of Science magazine. Copyright 1973 by the American Association for the Advancement of Science.)

Z = I Cj Q(X,Y,x;,Y)
j=l

Now let us represent a particular image (say that in Figure 13 which is very similar to Figure
12( b) using the cone as a quadric kernel and a linear system of equations as follows

Zi = I C j ((Xi - Xj )2 + (Y j - Yj )2)'h i = 1,2, ... , n
j=l

(29)

Ifwe solve the coefficients for the whole image simultaneously, then n = 266, since the pixel
array is 19 x 14. For large images this could become a formidable computational problem, but
fOltunately there are at least two approaches to computational simplification. One method is to
use the one-time matrix inversion property ofmultiquadric functions for fixed or fonnatted arrays
of input data. The inverse of the coefficient matrix of the normal equations is always the same in
such cases since it is unaffected by a new vector ofZ ordinates. Thus the reconstruction of any
number of images in a specified X,Y format involves matrix multiplication only, using a once­
inverted and stored inverse. Another feature of multiquadric analysis, could be called the "os­
culating sub-picture principle". In other words we can choose to reconstruct a subpicture of the
total picture with a small matrix inverse and repeat the process until the entire picture is
reconstructed. Moreover the subpictures can be forced to fit each other at each discrete element
on the boundaries, using an osculating mode (Hardy, 1971; 1975). Details will not be given here.

A reconstruction ofthe coarse picture in Figure 13 is given in Figure 14. It is far from a "perfect
reconstruction" because it involved only a 4 by 4 subpicture matrix covering the same area as a
single pixel in the coarse picture, and I did not use the osculating principle to force fits at the
edge of the subpicture. The multiquadric equation of the subpicture was then evaluated in 16
subpixels, thereby replacing an original large pixel with a set of 4 by 4 smaller ones. The
boundaries of some of the 266 subpictures are visible in the reconstruction, particularly in the
light areas. However the result is striking, considering that the entire computation was done on a
Wang 600-14 programmable calculator, and the plot with an on-line Wang 602 typewriter plotter.
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FIG. 13. Another coarse sample of a Lin­
coln image.

FIG. 15. A multiquadric reconstruction of
the Lincoln image with a one-time 16 x 16
coefficient matrix inversion.

FIG. 14. A multiquadric reconstruction of
the Lincoln image with a one-time 4 x 4
coefficient matrix inversion.

FIG. 16. Photograph of off-line TV recon­
struction of the Lincoln image with a one­
time 4 x 4 coefficient matrix inversion.

By contrast the reconstruction in Figure 12(a) was accomplished with a Facsimile transmitter/
receiver in conjunction with a Honeywell DDP-224 computer for photographic-digital conver­
sion, plus a Honeywell 6078 computer using a conventional two dimensional fast-Fourier­
transform program to process the digitized information.

Another reconstruction of the coarse picture in Figure 13 is shown in Figure 15. It is also a
Wang 600-14 Calculator-Wang 602 Plotter output. In this case, a one time inversion of a 16 by



LEAST SQUARES PREDICTION 491

16 subpicture matrix covering the same area as nine pixels in the coarse picture (Figure 13) was
used. The evaluation or "prediction" mode was the same as for Figure 14. Each original pixel
was evaluated in 16 sub-pixels. In this case the boundaries of the 266 coarse pixels have virtually
disappeared, even though the more rigorous "osculating mode" was not applied.

The improved appearance of the reconstruction of the coarse picture in Figure 13 as shown in
Figure 16, using the basic Wang generated "predictions", was accomplished at the Remote
Sensing Institute of South Dakota State University. Digital tape data involving a "stretch" from
the original 8 gray levels of Figure 14 to 32 gray levels was input to a video monitor and
photographed. Although the overall appearance is improved, this procedure introduced geomet­
ric distortions and edge effects that were not in the data.

This experiment has suggested a new application, an extension of the image function recon­
struction concept. The output of any data collection system involving pixels can be enlarged
until the infonnation content "appears" to be virtually desb'oyed as in Figures 12(b) and 13.
Some computational processes, in this case multiquadric equations, are capable of restoring
relative continuity to such an enlarged step function in a logical manner, thus bringing out
"predicted" details of continuity that were never directly recorded in the original image.
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Membership of the Society entitles you to The Photogrammetric Record which is published

twice yearly and is an internationally respected journal of great value to the practicing photo­
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those who are already members of the American Society.

•••••••••••••••••••••••••••••• '.0 ••••••••••

APPLICATION FORM
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The Photogrammetric Society,
Dept. of Photogrammetry & Surveying
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Gower Street
London WC1E 6BT, England

I apply for membership of the Photogrammetric Society as,
o Member - Annual Subscription - $12.50 (Due on' application
o Junior (under 25) Member - Annual Subscription - $6.25 and thereafter on
o Corporate Member - Annual Subscription - '$75.00 July 1 of each year.)

(The first subscription of members elected after the 1st of January in any year is reduced
by half.)
I confinn my wish to further the objects and interests of the Society and to abide by the
Constitution and By-Laws. I enclose my subscription.
Surname, First Names
Age next birthday (if under 25)
Professional or Occupation
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Present Employment
Address

ASP Membership
Card No .

Signature of
Date Applicant .
Applications for Corporate Membership, which is open to Universities, Manufacturers and
Operating Companies, should be made by separate letter giving brief information of the
Organisation's interest in photogrammetry.

Ninth Surveying Teachers' Conference
University of New Brunswick, June 19-23, 1977

The Department ofSurveying Engineering at the University ofNew Brunswick, Fredericton,
Canada will be hosting the ninth Surveying Teachers' Conference from June 19th through 23rd,
1977. Surveying teachers' conferences are held every three years and provide a forum for the
exchange ofideas about the nature and function ofsurveying education. It is expected that more
than 150 surveying teachers from universities and colleges throughout Canada, the United
States, and other countries will participate in this year's meeting. The theme ofthe conference is
"resources for more effective teaching." Further information may be obtained from Professor
Angus Hamilton at U.N.B.


