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Reflexive Pred iction and
Digital Terrain Modelling
Array algebra is well suited for reflexive prediction when
used with data sets in a grid pattern.

INTRODUCTION

BJERHAMMAR (1975) formulated an estimation process which he called reflexive predic
tion. A set of n given values f is related to m fictitious, unknown observations h by

optimal prediction, Le., with minimum variance, by using an a priori prescribed covariance
function. The unknown observations are indirectly represented, in selected carrier points,
by means of computed parameters x used later for any new predictions. The basic relations
are

and

f= FQ-J h = Fx

f = KQ-l h = K x

(1)

(2)

(4)

(3)

where K( n,m) and Q( m,m) denote matrices with rows represented by covariance vectors kT
•

ABSTRACT; Two-dimensional prediction is often used in connection
with data points distributed over a rectangular grid. If the predic
tion process is based on a covariance function separable in coordi
nates, conditions are set for an effective use of Rauhala's array
algebra. Its advantages are demonstrated for the 'reflexive' type
of prediction implemented with or without least squares filtering.
Some effects of this formulation upon digital terrain modelling
are discussed.

Parameters x typical for the carrier point configuration are computed from givenf with the
use of known K. Bjerhammar presents four versions of the procedure, two of which are of
interest to this paper:

• pure prediction without filtering, for n = m

x = K-l f , h = f ,
• prediction with least squares filtering, for n > m

f = K x , x = (KTPKt ' KT P f ,
where p-l is a covariance matrix of the noise in f.

GRID-STRUCTURED REFLEXIVE PREDICTION

Both formulations can be conveniently applied to grid-structured sets of data points. In
this instance, one can achieve a considerable saving in computation time by reducing the
size of solution matrices to be inverted, in a modification of formulas based on the concept
of array algebra (Rauhala, 1974, 1976; Kratky, 1976). In this formulation data elements are
always considered to form full and regular arrays in the appropriate n-dimensional space,
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i.e., they are organized in regular grid patterns with no gaps within. A vector can represent
only one-dimensional distribution of data and is not used to assemble data of arbitrary
patterns fi'om higher order spaces. In connection with reflexive prediction, two additional
conditions must be met:

• the noise in! should be random and stationary, i.e. P = I,
• the adopted covariance function must be separable in coordinates x and y (Woltring, 1977).

Deviating now from Bjerhammar's original notation throughout this paper, in favor of a
more frequently used one, the covariance function dependent on the distance d between
two points is written as

c(d) = c(Lll:) . c(~y)

Based on the assumption of a square grid with a total ofn 2 data points arranged in a vector I,
the predicted value s for an arbitrary point is derived by a formula equivalent to Equation I,
i.e.,

(Ia)

where c is a covariance vector, Q is a covariance matrix and g is a vector of the auxiliary
parameters associated with the given configuration ofcarrier points. Following Bjerhammar's
reversal one can consider the values in 1as nonexistent, unknowniJbservations, ignore them
in Equation la and introduce a set of new, given observations I instead of predictions s.
These new observations described by vector I are distributed in a raster of m2 points in
another, denser grid over the same area of carrier points. Since the resulting equation
system is now overdetermined, corrections v are associated with observation 1 to make the
equations consistent

I + v = i C g. (2a)
(m',1) (m',n') (n',I)

If the elements of 1, I, v, and g are arranged in two-dimensional arrays L, L, V, and G,
respectively, in accordance with the natural location of individual data points in rows and
columns of both grids, Equations la and 2a change into a form

and

i = cL G C x

(1,1) (I,Ti) (n,n) (n,l)

L + V = i = C y G q;
(m,m) (m,n) (n,n) (n,m)

(5)

(6)

where c x , C y are vectors formed from coordinate components of covariance functions, and
C x , C y are corresponding matrices composed of row vectors c~, cL, respectively.

Covariance functions are very often expressed by a Gaussian function

c(d) = exp( -k d 2
) ,

and since

d 2 = ~X2 + !1y2 ,

the factorization of c(d) obviously yields

c(d) = c(Lll:) . c(~y) = exp(-k xLll: 2) . exp(-ky~y2)

A side benefit of the covariance factorization is that the spread of the Gaussian function
can be controlled independently in both basic directions if the grid intervals are different
(Kratky, 1975). • _
• T_he original vectors 1, 1, v, and g can be considered as row-wise expansions of matrices
L, L, V, and G, respectively, and the bilinear form in Equation 5,

_ n n

I = c~G Cx = I I C(~Y)igjjC(Lll:)j ,
i~lj=1

(7)
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is then equivalent to the original Equation la, i.e.,

n2

S = C
T g = L C(d)k gk

k=1

where k = n(i-l) + j, k = 1,2, ... ,n2
, i,j = 1,2, ... ,n.

SOLUTION OF PARAMETERS AND EW PREDICTION

The least squares condition of minimizing the sum of squares of corrections v leads in
the array algebra fornlUlation to

CrVCx=O

which is an equivalent to the well-known condition

CT V = 0

in the conventional matrix-vector formulation (Kratky, 1976). From Equations 6 one can
directly derive the normal equations

qCyGCiCx=CIEcx (8)

and then solve for the matrix of parameters

G = (CrCy)-1 CrLCx(CiCx)-' = Ct L C:i?
(11,11) (11,11) (11,11) (lI,n) (lI,m) (m,m) (m,II),

(9)

where the simpler form is achieved by using symbol C+ for the pseudoinverse of a rectangu
lar matrix. Obviously, the conventional solution will yield

g = (CTC)-I cTf = c+ I (9a)
(11'.1) (11',11') (11'.1) (1I',m') (m'.I)

The array solution for grids in which the number ofx- or y-intervals differs, will involve the
following matrix patterns for G and g

(n",ny)-I (n",n x) (n...,nxt 1 ~ (nyn...,n,fixt I (n,fix,l)

From the computed parameters, predictions z for a single new point and Z for an array of
points can be determined using Equations 5 and 6, respectively, i.e.,

z = cr G C x , Z = C y G Ci (10)

COMPUTATIONAL ASPECTS

COMPUTER TIME REDUCTION

Comparison of Equations 9 and 9a shows immediately that a single (n 2,n2
) inverse in

Equation 9a is replaced by two (n,n) inverses in Equation 9. In fact, the two (n,n) inverses
are numerically identical if the number of grid intervals in both directions is the same. Since
the number of multiplications and divisions in an (n,n) matrix inversion is proportional to n3,
the solution ofG is faster than that ofg by a factor of n 3 . Not only does this fact represent an
enormous saving of computer time, but it also makes feasible solutions which otherwise
would be beyond practical means.

When computing new predictions from Equation 10, the number of operations involved
can be quite high and it is interesting to make a comparison between the array and conven
tional solutions. The following products are based on computations for M2 new points from
n 2 parameters

Z = C y G Ci z C g.
(M,M) .(M,II) (11,11) (II,M) (M',l) (M',II') (1I',l)

The total of needed multiplications is Mn(M +n) for the array' solution and M2n2 for the
conventional one. The array solution again proves economically superior by a factor of
Mn/(M+n).

The most frequently repeated routine in the prediction process is the computation of
covariance vectors. Since values of the Gaussian function die off rapidly with the increased
distance, the useful bandwidth of the covariance vector is rather limited. Furthermore,
covariances are computed only for regularly spaced series of grid points and, thus, a fairly



(lla)

(llb)
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limited number of values fully determine the covariance vector needed in the computations.
For a Gaussian function whose standard deviation cr is equal to the grid interval, the useful
bandwidth includes only seven or nine elements. It is obvious that the computation of
covariance vectors can then be conveniently replaced by extracting their values from a look
up table prepared for values ranging from 0 to 4.5 cr. A new point is always within half of
the interval to the nearest grid line. This distance defines the position of a pointer in the
table, and the rest of the values are extracted automatically by further assignments at equal
intervals. Experiments showed that the use of tabulated covariances is about twice as fast
as the direct computation of covariance vectors.

COMPUTER SPACE ORGANIZATION

Considering the usually high volume of data in a prediction process, it is imperative that
the three (n,n) matrices in Equation 9 needed for the solution be computed in an economical
way without wasting computer memory. This could be achieved by forming the matrix
products CLC y, CiG x directly from individual covariance vectors by a sequential accumula
tion of their column-row products

m m

C~ C y = I CYrC~r ' Ci C x = I C Xs cis

(n,m) (m,n) r~1 (11,1) (1,11) (n,m) (m,n) s=1 (n,l) (l,n)

The C~L ex product in Equation 9 is more intricate and should be formed by a double sum
mation ofl-scaled column-row products of covariance vectors

m m

C~ L C x = I I CYr lrs cis'
(n,m) (m,m) (m,lI) r=1 s=I (n,l) (1,1) (l,n)

Only table-extracted values of covariance vectors are used in the products, and the results
are properly positioned within matrices of Equation 9. The same procedure also' is applied
in the computation of new predictions z or Z using Equations 10.

Figure 1 gives a graphical representation of the operations in a new prediction z of an
individual point. Table-extracted values of covariances cover only a minor portion of vectors
C and interact with a suitable submatrix S within G to yield the correct prediction z =
w'l;Sw x = CrGc x with a n~duction of the storage space requirement. The same idea is extended
into the prediction of a regular, dense array of new points. In Figure 2 matrices C are formed
by a diagonal band of values defined by gliding vectors w T

• They represent a diagonal ridge
in otherwise zero-filled matrices. Furthermore, in grid-structured fields the gliding vectors
assume only a limited number of sets of values which repeat periodically, depending on
the grid intervals for carrier points and for newly defined points. As a result, the need to
store the covariance vectors is restricted to skewed submatrices W, which are invariant and

(1,1) (1,9)(9,9)(9,1)

z s wx

G I
I

-- -- -tB-
I
I

cx

w
X

FIG. 1. Prediction for a single point.



REFLEXIVE PREDICTION AND DIGITAL TERRAIN MODELLING 573

z

z

FIG. 2. Prediction for an array of points.

W SWT
y x

(13)

interact with variable submatrices S within G to determine individual meshes of the array
of new points Z = W.sWi.

COMPUTATION OF SLOPES

The separation of x,y-components in the covariance function makes it possible to handle
not only the basic observed and predicted values, but also their appropriate gradients, e.g.,
slopes in addition to elevations. The value for z in Equation 10 is expressed as a bilinear
form expanded in Equation 7. Slopes f, 7) are defined by paltial derivatives dz/dx and dz/dy,
respectively. In accordance with the expression in Equation 7 slope f is affected only by
x-derivatives of c( ill:)j

, dc(/:;,x)
c (ill:) =~= d(exp(-k x ill: 2 ))/dx = 2kx ill: c(ill:)

so that
d n n

f = ~ = 2.: I C(/:;,Y)j gij c'(ill:)j
dx i=1 ;=1

Defining cx as a vector composed of elements c' (ill:)j and using analogous relations for the
y-direction, one arrives at values

f =cLGcx ,

7) = cL G C x

with vectors cx, cy composed of derivatives

c'(ill:) = 2k x ill:c(ill:) , c'(/:;,y) = 2k y /:;,y c(/:;,y) .

These values are easy to derive at the time when covariances c(ill:), c(/:;,y) are computed.
With the knowledge of slopes f, 7) it is possible to determine the local direction Q' of a

contour

and the magnitude of the local maximum slope

p2 = e + 7)2

Both these values are· important for procedures which reconstruct contour lines from digital
terrain models. A single set of parameters G contains full information needed for both the
densification of z and for contouring.

MODEL GENERALIZATION

In the solution of Equations 6 the information contained in the original m 2 observation
data points was compressed by the least squares procedure into n 2 carrier points represented
here by parameters g. One can easily find the corresponding set of unknown observations
1 in these points. The degree of change introduced by the compression is characterized by
corrections v applied to the original observations 1. Obviously, the corrections represent the
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effect of the least squares filtering of the original data. Values l resulting from this filtering
are identical with the predictions which could be derived from parameters g or, indirectly,
from pseudo-observations I in the condensed array of carrier points.

The filtering has a smoothing effect on the analytical surface modelled by the prediction
and represents certain generalization of its features. With the use of previous formulations
parameters associated with the given configuration of carrier points can be directly con
verted into a different set of parameters typical for another configuration of carrier points.
In accordance with Equation 6 the original observations in array L(m,m) are also related to
parameters G in coincident carrier points by

L = C yGC~ (14)

where all matrices have the same dimension (m,m). By substituting this expression for Lin
Equation 9, one obtains

G = Ct Cy GC~ CiT = Cy GCi . (15)

This formula represents a direct compression of a given parameter array G(m,m) into a
new array G(n,n) simply by multiplication of matrices derived from covariance vectors, i.e.,
without using any observation data. The compression can be applied in two different ways;
either maintaining the same area of the model and enlarging the grid interval or maintaining
the interval and reducing the size of the model. The latter method of implementation is
typically used for situations in which two or more overlapping digital terrain models are
unified and their overlaps eliminated.

CONCLUSIONS

The array algebra formulation is well suited for Bjerhammar's reflexive prediction when
used with data sets of a grid pattern. By its use, computer time and memory requirements
for solutions in large models are drastically reduced. Digital models are analytically defined
by parameters which are applied to compute model values, as well as their gradients. It may
be advantageous to detennine a regular array of parameters and preserve them for further
processing even if original data are not available in a grid pattern.
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