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The Space Oblique
Mercator Projection

A mathematical development for the Space Oblique Mercator
Projection, which provides continuous mapping of satellite
imagery true to scale along the groundtrack, is presented.

INTRODUCTION

I N 1974 ALDEN P. COLVOCORESSES of the U. S. Geological Survey announced a new map
projection which would permit continuous mapping of satellite imagery, especially

Landsat.' He named it the "Space Oblique Mercator (SaM) Projection." The editor of this
journal suggested the name "Colvo's Projection," after the originator's nickname. Until
then no map projection had been devised which shows the satellite groundtrack continuous­
ly true to scale for a revolving satellite combined with a rotating Earth. It was preferred
that the areas scanned by the satellite be mapped conformally with a minimum of scale
error; thus, the relationship to the oblique Mercator.

The mapping problem was simplified by the relatively narrow swath covered by the
Landsat (formerly ERTS) satellite at any given time, officially 185 km, but the mathematical
formulas had not been developed when Dr. Colvocoresses presented the projection. He

ABSTRACT: The Space Oblique Mercator projection, a concept that
was originated by Colvocoresses in 1974, has been mathematically
implemented as the first map projection to provide continuous
mapping of satellite imagery true to scale along the groundtrack,
and within a few millionths of accurate conformal projection.
Specifically designed for Landsat (formerly ERTS) imagery, it is
also suitable for other satellites with broader scans. Formulas are
given for both sphere and ellipsoid. A unique feature is the need for
a curved groundtrack and skewed scan lines on the SOM projection,
although they would be straight and parallel, respectively, on a
normal oblique cylindrical projection.

made numerous appeals for formulas, but they were not developed until 1977, when John L.
Junkins of the University of Virginia and the writer independently and almost simultaneous­
ly developed equations. Both men were made fully aware of the progress of the other's work
through Dr. Colvocoresses, who provided much inspiration, guidance, and intensive inter­
communication with others who were interested.

Dr. Junkins took a more general, theoretical approach. His formulas are much more com­
plex, but are more universal, permitting application to non-circular orbits and other general
cases. Indicated scale errors are somewhat greater than those for the following formulas. 2

This writer began with simpler approaches, including a programmable hand calculator and
application to the sphere, eventually employing a mixture of rigorous theory and empirical
approaches to arrive at apparently satisfactory formulas for the sphere and the ellipsoid (or
spheroid), based on a circular satellite orbit.

The formulas in this article are not copyrighted and have been given to the Geological
Survey for its and the public's use without restriction, except that credit in publications
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should be given. It should be stressed that the formulas do not give an exactly conformal
projection, but scale factors are within a few millionths of correct values for a conformal
projection, and are thus well within mapping accuracy.

SOM FOR THE SPHERE

For the stationary sphere, the regular Mercator projection formulas are frequently written:

x = RA (1)
y = R In tan (1j.l7T + V2¢) (2)

where ¢ and A are geodetic (or geographic) latitude and longitude, respectively, and R is the
radius of the globe. Radians are used throughout this paper, except where the degree
symbol (0) or word is used.

To convert to the oblique Mercator, these fonnulas may be rewritten with ¢' and A' in
place of ¢ and A, respectively, followed by one of several fOnTIS of transformation equations.
The following form seems most suitable for subsequent derivations:

tan A' = cos i tan A + sin i tan ¢lcos A (3)

sin ¢' = cos i sin ¢ - sin i cos ¢ sin A (4)

where ¢ and A are as before, and i is the angle of inclination between the Earth's equator
and the transformed equator of the oblique Mercator projection. Geodetic longitude A is
measured eastward from the intersection of the two equators. The transformed longitude A'
is the angular distance along the transformed equator, measured north from the same inter­
section, while the transformed latitude ¢' is the angular distance from the transformed
equator.

If a satellite is following a uniform circular orbit inclined counterclockwise i (99.092° for
Landsat) to the Earth's equator, its groundtrack will follow the transformed equator, and A'
will be directly proportional to the time elapsed since the satellite crossed the plane of the
Earth's equator in a northerly direction (the ascending node). (This crossing for Landsat
occurs on the dark side of the Earth; mapping occurs as the satellite is proceeding south on
the opposite face.) The angular distance along the scan line will be ¢' measured from the
groundtrack.

For a stationary, spherical Earth with a revolving satellite, these formulas are exact. Let us
think, however, of the satellite orbit as fixed in space with the satellite revolving and the
Earth rotating with respect to the orbit. At the time the satellite has reached A', starting from
zero, the parallels will not have changed latitude, but the meridians will have rotated so
that, from the viewpoint of the satellite in space, the actual longitude Awill appear along the
scanning line at the point where some other longitude At would have appeared if the Earth
had remained stationary. The "satellite-apparent" longitude At is found from the equation

At = A + (P2/P,)A', (5)

where P2 is the time required for the revolution of the satellite (103.267 min. for Landsat)
and PI is the length of the Earth's rotation with respect to the precessed ascending node of
the orbit. For Landsat, the satellite orbit is actually sun-synchronous-that is, it is always the
same with respect to the sun-equating PI to the solar day (1440 min.). (The Landsat satellite
is orbited to complete exactly 251 revolutions in 18 days.)

Letting At take the place of A in Equations 3 and 4:

tan A' = cos i tan At + sin i tan ¢/cos At

sin ¢' = cos i sin ¢ - sin i cos ¢ sin At.

(6)

(7)
Since At is a function of A', finding A' for a given ¢ and Ainvolves trial and error (or iteration),
but Equations 5, 6, and 7 are exact for the transformation in the case of the rotating sphere.
(For calculations, see note 1.) Equations 1 and 2, with ¢' and A' substituted for ¢ and A,
respectively, are inappropriate, however. They would show the satellite groundtrack as a
straight line and the scan lines as a series of parallel lines perpendicular to the groundtrack.

Actually, the groundtrack should not be plotted perpendicularly to the scan lines on the
map projection because of the rotation of the Earth. At the Earth's equator, the direction of
the Landsat groundtrack on the Earth is about 86° from that of the scan lines, although it is
perpendicular in space. This angle becomes 90° when the satellite comes closest to the
poles (at 180° minus 99.092° or about 81° N or S latitude). Derivation of the proper projected
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path for the groundtrack, if the scan lines remain parallel to each other, leads to the equa­
tions:

x = R HJ...' (8)

y = R [(P21P,) sin i sin J...' + In tan (1!47T + V2c/>')] (9)

where H = 1 - (P2/P,) cos i (10)

and c/>' and J...' are found from Equations 5, 6, and 7. The groundtrack is plotted by letting
c/>' = 0 and determining x and y for a series of J..."s. It is a sinusoidal curve which is true to
scale and conformal, inclined about 4° to the X-axis at the crossings of the equator. Time is
propOitional to x, but is not quite proportional to distance along the satellite path, and
should not be because of the effect of Earth rotation.

This change from a straight to a curved transformed equator (or satellite groundtrack) is
not enough to place scale errors within the satellite swath at less than the desired limit of
about one pmt in 10,000 for mapping accuracy. The normal scale factor for a tangent, con­
formal cylindrical projection, whether regular, oblique, or transverse Mercator, is sec c/>', or
1.000152 at 1° from the transformed equator, somewhat farther than the 0.83° limit of the
Landsat scan. Dividing out this factor leaves remaining errors of over one paIt in 1000 at the
polar approaches when c/>' = ± 1°: the sc:;.ale is too large poleward and too small on the oppo­
site side of the groundtrack. At the equator, this discrepancy practically disappears.

Therefore, it was deduced that the sinusoidal groundtrack should be bent more sharply on
the projection in the polar areas, but not equatorial areas, while the scan lines should
continue to intersect the track at the same angles as before to prevent distortion along the
track. The scan lines would thus become skew with respect to the Y-axis.

By observing the magnitude of this residual scale error at various values of J...', it was
decided to double (approximately) the angle of the slope of the groundtrack in Equations 8
and 9 and to rotate the scan lines to the same extent. After determining new scale residuals
and readjusting the angle of rotation, the following final formulas for the sphere were
derived:

~ = J~'
R 0

JL= (H + 1)
R

where S = (PiP,) sin i cos J...'

H - S2 S
• ~dJ...' - ~ln tan (%7T + V2c/>')
vI + S2 1 + S2

J~ dJ...' + 1 In tan (1/47T + V2c/>')
o \/1 + S2

(11)

(12)

(13)

and H, c/>', and J...' are found from Equations 5, 6, 7, and 10. The resulting scale factors, after
dividing by sec c/>', are within six palts in one million of correct, in a zone lOon either side of
the satellite groundtrack. This is still not a perfectly conformal projection, but the discrep­
ancy within the required scanning range is negligible,for the sphere. The X-axis is not now
directly proportional to time, but J...' remains so. The poles are near to, but not on, the new X­
axis. The scan lines vary between ±4.05° fi'om vertical, at counterclockwise angle arc tan S,
and ±4.01° (at clockwise angle arc tan (SIH)) from normal to the satellite groundtrack, which
now is inclined 8.06° to the X-axis at the equator. Figure 1 shows a 30° graticule extended to
most of the globe for one-and-one-half orbits. The progressive rotation of meridians may be
observed. Table 1 lists scale factors at various points of the projection for Landsat imagery.

Numerical integration is now required, but this can be reduced to a one-time calculation
of constants for a Fourier series for any given satellite orbit, as Dr. Junkins suggested to the
writer. The integrals may be rewritten:

~'

x: J ~dJ...' =BJ...' +A 2 sin2J...' +A.sin4J...' + ...
o 1 + S2

1 2.,,- H - S2
where A" =- f [v'f+S2- B] cos nJ...' dJ...'

7Tn 1 + S2
o

2 J .,,-/2 H - S2 d '
and B = ;;. \If+S2 J....

o

(14)

(15)

(16)
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DAY NIGHT DAY NIGHT

SPACE OBLIQUE MERCATOR
COlVO'S PROJECTION
APPLIED TO SPHERE

SATElliTE PATH III SCAN - -­

ORBIT INCLINATION 99·, PERIOD 103 MIN.

FIG. 1. A 30° graticule extended to most of the globe for one-and-one-half orbits.

J A' 5
y: (H + 1) VI + 52 dA' = C I sin A' + C 3 sin 31..' + ...

where C
n

=H + 1 J2" 5 cos nA' dA'.
7T1l 0 vT'+""S'2

IfP2 = 103.267 min., PI = 1440 min., and i = 99.092°,

B = 0.0175853340 for A' in degrees
A2 =-0.0018820
A 4 = 0.0000007
C 1 = 0.1421598
C 3 =-0.0000296

Additional terms are unnecessary for up to 7-place accuracy for the sphere.

(17)

(18)

INVERSE EQUATIONS FOR THE SPHERE

For <f>' and A' in terms of x and y: Equation 19 is to be used for finding A' by iteration.

x + y 5 = J A' H - 52 dA' + 5 (H + 1) JA' 5 dA' (19)
R vT+S~ vT+$2

o 0

The repeated integration may be eliminated by use of Equations 14 and 17, combining and
transposing as follows, although trial and error remains (see sentence following Equation 72
for iteration procedure):

BA' = (x/R) + (y/R) D cos A' - E 2 sin 21..' - E 4 sin 41..', (19a)

where D = (P2/P 1) sin i = 0.0708122
E 2 =A 2 + V2D (C 1 + C 3 ) = 0.0031503
E 4 = A4 + V2DC 3 = -0.0000003 .



THE SPACE OBLIQUE MERCATOR PROJECTION

TABLE 1. RELATIVE SCALE FACTORS

589

Calculated along sides and diagonals of quadrilaterals 0.01° of AU and cfl" (A' and cf,' for the sphere),
respectively, on each side, using inverse formulas. Calculated factors would vary for ellipsoid up to
0.000006 if direct formulas were used. For sphere, inverse formulas are exactly equivalent to direct
formulas. Scale factors for each quadrant of the projection are identical except for reversals due to
symmetry, etc. Scale factors are given relative to sec cfl" to indicate "conformal trueness," and must be
multiplied by sec cfl" for true scale factors.

Sphere: Ellipsoid:
** cfl": 1° 0° _1° 1° 0° _1°

AU 1) 1.000152 1.000000 1.000152 1.000152 1.000000 1.000152

0° 2) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3) 0.999999 1.000000 0.999999 0.999999 1.000000 0.999999
4) 0.999995 1.000000 0.999995 0.999995 1.000000 0.999995
5) 1.000005 1.000000 1.000005 1.000005 1.000000 1.000005

15° 2) 1.000000 1.000000 1.000000 1.000004 0.999999 0.999994
3) 0.999997 0.999999* 1.000001 1.000000 1.000000 0.999999
4) 0.999994 1.000000 0.999995 0.999984 0.999999 1.000006
5) 1.000004 1.000000 1.000006 1.000022 0.999999 0.999986

30° 2) 1.000000 1.000000 1.000000 1.000006 0.999996 0.999988
3) 0.999997 1.000000 1.000002 1.000000 1.000000 1.000000
4) 0.999995 1.000000 0.999997 0.999976 0.999998 1.000014
5) 1.000003 1.000000 1.000006 1.000034 0.999998 0.999971

45° 2) 1.000000 1.000000 1.000000 1.000010 0.999994 0.999984
3) 0.999998 1.000000 1.000002 1.000001 1.000000 0.999999
4) 0.999995 1.000000 0.999998 0.999976 0.999997 1.000016
5) 1.000002 1.000000 1.000005 1.000038 0.999997 0.999965

60° 2) 1.000000 0.999999* 1.000000 1.000015 0.999996 0.999983
3) 0.999999 1.000000 1.000001 1.000002 1.000000 0.999999
4) 0.999997 1.000000 0.999998 0.999983 0.999998 1.000014
5) 1.000003 1.000000 1.000003 1.000036 0.999998 0.999967

75° 2) 0.999999* 1.000000 1.000000 1.000020 0.999998 0.999985
3) 0.999999 1.000000 1.000001 1.000004 1.000000 0.999999
4) 0.999998 1.000000 0.999999 0.999998 0.999999 1.000006
5) 1.000001 1.000000 1.000002 1.000026 0.999999 0.999977

90° 2) 1.000000 1.000000 1.000000 1.000018 1.000001 0.999981
3) 1.000000 1.000000 1.000000 1.000005 1.000000 0.999999
4) 1.000000 1.000000 1.000000 1.000011 1.000000 0.999990
5) 1.000000 1.000000 1.000000 1.000012 1.000000 0.999990

* Should be 1.000000, hut reported as calculated for consistency with other data, all obtained from lO-place programmable hand calcu-
lator.

** (1) sec <b", or nomlal scale factor in all directions for a truly confonnal cylindrical projection.
(2) scale factor divided by sec cf>" along scan line of SOM (constant A").
(3) scale factor divided by sec tjJ" in direction parallel to (or along) satellite groundtrack (constant 4>").
(4) scale factor divided by sec <pit along diagonal of quadrilateral, cb" and A" both becoming more positive.
(5) scale factor divided by sec cb" along diagonal of quadrilateral, cb" becoming more negative and A" becoming more positive.

where

Equation 20, for finding 1>', requires finding 'A' from Equation 19 or 19a:

[

A' S ]
In tan (V47T + V21>') = vT+S2 JL -(H + 1) J v'f+ST dA

R 1 + S?
o

With series, it may be rewritten:

In tan (%7T + 1/21>') = (y/R) VI + DZcoszA' - L l sin 'A' - L 3 sin 3'A'

L, = CIGO - Y2G z (C l - C 3) = 0.1422488

L 3 = C 3G O + V2C, (G z - G 4 ) = 0.0000594
Go = 1 + DZ/4 - 3D4f64 = 1.0012524

G z = DZ/4 - D4/16 = 0.0012520

G 4 = -D4f64 = -0.0000004 .

(20)

(20a)
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For <p and A in terms of </>' and A' (for calculations, see note 1);

A = At - (P2/p\)A'

tanAt = cos i tan A' - sin i tan </>'/cos A'
sin </> = cos i sin </>' + sin i cos </>' sin A'.

(21)

(22)
(23)

SOM FOR THE ELLIPSOID

Accurate though these formulas may be for the sphere, there are errors of over a half
percent in using these (or any accurate spherical formulas) in place of formulas based on the
ellipsoid, especially in tropical latitudes. In maps of very large areas, errors fundamental
to plane projection far outweigh the effect of the ellipsoid but, for topographic mapping of
small areas or strips, the use of the ellipsoid is essential for high-quality mapping. There­
fore, the development of SOM formulas for the sphere served largely to avoid more complex
derivations and calculations in determining the feasibility of various concepts.

At first, the writer assumed that Hotine's classic work on the ellipsoidal oblique Mercator
would be the logical link in changing from sphere to ellipsoid. 3 Indeed, John B. Rowland
of the Geological Survey had applied it in five stationary zones to approximate each nOlth­
to-south pass of the satellite, with consequent discontinuities. 4 It was soon evident that
Hotine's work was less applicable to a continuous projection than the basic geometry of the
ellipsoid, assisted by Thomas.s

For ellipsoidal formulas, the path of the satellite groundtrack can be derived rigorously
without excessive work, but the positioning of points along the scan lines seems to require
certain simplifying assumptions to prevent staggering derivations and overly cumbersome
fom1Ulas. The chief assumption made is that the radius of curvature of the ellipsoid in the
direction of the scan lines does not vary £i'om its value at the groundtrack in the same
direction. This leads to errors of about 2 palts in 100,000 in scale, relative to sec </>', at
</>' = ± 1°. It was found possible to compensate for this effect in the direction of the scan lines
with a fairly simple empirical fOimula, but this causes other errors to increase in patterns
which are not readily correctable, so this adjustment was omitted, since residual errors
remain well within the desired range. Scanning is assumed to be instantaneous. Two
assumptions also affect the groundtrack: (1) a mass-centered perfect ellipsoid, and (2) a
uniform circular orbit for the satellite (see note 8 below).

The ellipsoidal formulas are presented here without describing the derivation in any
further detail. It is hoped that the derivation will be available at a later date in a Geological
Survey publication, which will also include any refinement of the formulas resulting from
further testing. Figure 2 shows an enlargement of the second quadrant ofthe projection after
the ascending node. This graticule is 10°, calculated for the ellipsoid, but almost impercep­
tibly different from the sphere at this scale.

For x and y in terms of </>" and A":

x
a

!L =
a

(24)

(25)

where
1 + T sin2 A"

(1 + W sin2 A") (1 + Q sin2 A")

H =" /1 + Q sin
2

A" [ 1 + W sin2 A" (P.lP ) c i1'V 1 + W sin2 A" (1 + Q sin2 A")2 - 1 os j

F 1 + Q sin2 A" [1 U (1 + Q sin2 A")2 ]
= I + T sin2 A" + (1 + W sin2 A") (1 + T sin2A")

J = (1 - e2)3

W = [(1 - e2 cos2 i)2/(I - e2)2] - 1

Q = e 2 sin2 if(I - e 2 )

T = e 2 sin2 i (2-e 2)/(I - e 2 )2

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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FIG. 2. The second quadrant ofthe Space Oblique Mercator Projection after the ascending node with a
10° graticule.

U = e 2 cos2 i/(1 - e 2 ) (33)
A" = pseudotransformed longitude relative to a geocentric satellite

groundtrack. Because the satellite scans vertically, this is slight­
ly different hom A' (see Equation 40).

tP" = pseudotransformed latitude relative to a geocentric satellite
groundtrack (see Equation 39).

a = major semi-diameter of ellipsoid (6378206.4 meters for the 1866
Clarke ellipsoid).

e 2 = square of eccentricity of ellipsoid (square is 0.00676866 for the
1866 Clarke ellipsoid).

For Fourier equivalents, see Equations 58 and 66.

For tP and A in terms of tP" and 'A":

sin tP = K/ VI + e2 K2 (34)

where
(35)

(36)

(37)

(38)

K = _1_ [sin i sin 'A" ( 1 _ 1 - cos tP" ) + cos (j sin tP"]
1 - e 2 VI + Q sin2 'A" F F

tan (j = tan i (1 - e 2 cos2 11.")/(1 - e 2
)

'A = 'At - (P2/P I)'A"

where t \ . t \ " s=-i..:.n=-t,·~ta~n=tP~'='==an At = COSt anA -..:.
F cos 'A" VI - e2 sin2 tP

Note: (j should be in the same quadrant as i. For other quadrant adjustments, see note 1.

For tP" and 'A" in terms of tP' and 'A':

tP" = tP' + jl sin 'A' + j3 sin 3'A'

'A" = A' + m2 sin 2'A' + m. sin 4'A'

(39)

(40)
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Fourier forms are given here because of the unwieldiness of closed forms of the equations.
Constants are determined as follows:

jn = ! J2" ep" sin nI..' dA ' (41)
7T 0

m n = ! J2" (A" - A') sin nI..' dA '
7T 0

(42)

where ep" and.A" are determined for the groundtrack as functions of A', from Equations 55, 56,
46,47, and 48. IfP2/Pl = 18/251, i = 99.092°, Ro = 7294.69 km, and the 1866 Clarke ellipsoid
is used, these are the only significant terms:

j, = 0.008556 for ep" and ep' in degrees
j3 = 0.000818 for ep" and ep' in degrees

m2 = -0.023840 for A" and A' in degrees
m 4 = 0.000105 for A" and A' in degrees

Note: ep' and A' have the same definitions as they have for the spherical form of the projec­
tion; thus A' is proportional to time along the true groundtrack.

For ep' and A' in terms of ep" and A":

ep' = ep" - j, sin A" - j3 sin 31.."

A' = A" - m2 sin 21.." - m 4 sin 41.."

(43)

(44)

These are within 0.000003° and 0.000009°, respectively, of the true inverses of Equations 39
and 40.

For ep" and A" in terms of ep and A:

tan A" = cos i tan At + (1 - e2
) sin i tan eplcos At.

Equation 46, like 6, requires trial and error. For techniques, see note 1.

. F [(1 - e 2
) cos i sin ep - sin i cos ep sin At]

sin ep" = --'=--------r.:===:====;,~------=:..
VI - e 2 sin2 ep

(46)

(47)

(48)

Equations 46 to 48 are not exact inverses of Equations 34 to 38, except when ep" = O. Within
the band ep" = ± 1°, however, ep" and A" vary less than 0.000005° between the two sets of equa­
tions.

For ep" and A" in terms of x and y:

Equation 49, for A", requires numerical integration as well as iteration, but Equation 70 with
its Fourier series should be substituted to eliminate repeated numerical integration:

x + (SI]) y = JA" H] - S2 dA" + ~ JA" S(H + ]) dA" (49)
a 0 VF + S2 ] 0 VF + S2

Equation 50, for ep", requires the calculation of A" from Equation 49 or 70, and preferably the
substitution of Fourier equivalent 73 for Equation 50:

In tan (%7T + %ep") = F"1/f2'+S2 [!L _ J A" ~dA" ] . (50)
] a 0 r + S2

EQUATIONS FOR THE SATELLITE GROUNDTRACK

If ep' = 0, equations to find A' from epo or 1..0, latitude or longitude of any point along the true
(vertical) satellite groundtrack, may be written as follows (all these formulas are thoretically
exact for the ellipsoid and circular orbit):

sin A' = sin epglsin i (51)
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(52)where cf>g = cf>o - arc sin [ a e
Z

sin 2cf>0 ]
2 Ro VI - e Z sinz cf>o

= geocentric latitude along the geocentric satellite ground­
track.

Ro = radius of circular satellite orbit (in same units as a)
(7294.69 km for Landsat).

since >"t = >"0 + (PZ/P 1)>..'.

(If tracking were geocentric, tan cf>g = (1 - eZ) tan cf>o.)
Conversely, for cf>o or >"0 from >..',

A. . (. • . \ ') . a e Z sin 2cf>0
"+,0 = arc SIn SIn 1 SIn 1\ + arc SIn , ! ? Z

2Ro v 1 - e- Sill cf>o

Also tan >..' = tan >"t/cos i, requiring iteration, (53)

(5)

(54)

(55)

requiring iteration; convergence is quite rapid.
Also >"0 = arc tan (cos i tan >..') - (PZ/P 1)>..'. (56)
(If tracking were geocentric, tan cf>o = tan cf>g/(1 - e Z

), where sin cf>g = sin i sin >"'.) (57)
The cf>o corresponding to a given >"0' or vice versa, may also be found from Equations 53, 5,

and 55 for cf>o, and Equations 51, 52, and 56 for >"0. Table 2 lists these values for the first
two quadrants for both sphere and ellipsoid, and also shows the extent of errors using the
sphere instead of the ellipsoid.

NOTES

(1) The programming of Equations 6, 46, and 53 requires care to avoid quadrant problems
and discontinuities near >.." (or >..') of 90°, 270°, etc., in the calculation of >.." as an arc tangent
determined for a given cf> and/or A.. These trial and error equations converge rapidly if, after
selecting the desired cf> and >.., the >.." of the nearest polar approach, >..' p, is used as the first
trial >.." on the right-hand side, solving for the corresponding >.." on the left-hand side, adding
a factor (see below), using that as the next trial >..", etc. This value may be calculated as
>..' p = 90° x (4N + 2 ± 1), where N is the number of orbits completed at the last ascending
node before the satellite passes the nearest pole, and the ± takes minus in the northern
hemisphere and plus in the southern (either for the equator). Since a computer normally
calculates the arc tangent as an angle between -90° and 90°, it is necessary to add the proper

TABLE 2. GEODETIC COORDINATES ALONG SATELLITE GROUNDTRACK

Ellipsoid
or sphere Sphere Ellipsoid Error using sphere

""
Longitude Latitude Latitude Shape* Displacement**

0" 0.00000° 0.00000° 0.00000° 0.68% 0.00 km
15 -3.50023 14.80720 14.89143 0.64 -9.32
30 -7.36423 29.58525 29.73140 0.52 -16.20
45 -12.20673 44.28458 44.45437 0.35 -18.87
60 -19.60972 58.77571 58.92599 0.18 -16.74
75 -35.90801 72.51389 72.61090 0.06 -10.83
90 -96.45418 80.90800 80.96079 0.02 -5.89

105 -157.00035 72.51389 72.61090 0.06 -10.83
120 -173.29865 58.77571 58.92599 0.18 -16.74
135 179.29837 44.28458 44.45437 0.35 -18.87
150 174.45586 29.58525 29.73140 0.52 -16.20
165 170.59187 14.80720 14.89143 0.64 -9.32
180 167.09163 0.00000 0.00000 0.68 0.00

Constants: PzlP, = 18/251; i = 99.092°; Clarke 1866 ellipsoid.
Radius of satellite orbit: 7294.69 km.

* A shape error calc.:uJateel as the ratio of the scale along a meridian ofthe spherical projection to that of the ellipso'idal after scales along
the parallel are equalized, or (l - e 2 sin:! cb)/(l - e2 ), minus 1. It is only one of the useful correlation f~lCtors.

** A location error in plotting the latitude along the grouneltrack at a given time, calculated as the sphericallatituele minus the ellipsoidal
latitude, converted to distance along the ellipsoidal meridian.
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(65)

(61)

(62)

(63)

(64)

(60)

(58)

(59)where

factor. Each An (or A') given on the left-hand side of the computer must be increased by A'p
minus the following factor: 90° times sin A'p times ± 1 (taking the sign of cos A/P' where
A,P = A + (P.jP ,)A'p). If cos A,P is zero, the final An is A'p' Thus A'p is 90°, 90°, 270°, 270°, 450°,
etc., and the adder to arc tan is 0°, 180°, 180°, 360°, 360°, etc., for each successive quadrant
beginning at the origin (ep, A, cf/', and An = 0). These quadrants automatically change along
the equator, rather than along the scan line which crosses the equator at the node.

Different corrections are required in inverse Equations 22, 38, and 56. Subtract from the A
initially calculated in these equations this factor: 90° times (l ± 1, taking the opposite sign of
cos An) times ± 1, taking the sign of the initial A (assume - if A = 0). If cos An = 0, add 10-8

degree to An for the calculation. Thus the subtrahend is 0, ± 180°, ± 180°, 0, 0, etc., in succes­
sive quadrants of the orbit, depending on the sign of the initial A.

For Equation 36, add 180° to the (J initially calculated as arc tan. In other equations, no
correction is needed in arc function calculations.

(2) In order to reduce computer time substantially, it is recommended that Fourier series
be used as follows, especially to replace repeated numerical integration, since the constants
need to be computed only once for a given satellite:

For Equation 24, use:

x/a = BAn + A 2 sin 2An + A 4 sin 4An - In tan (1.47T + V2epn)

'(b l cos An + b3 cos 3An + b5 cos 5An),

2 I "/2 H] - 52
B = - dAn

7T 0 \IF + 52

A = _1_ I 2" [H] - 52 _ B]COS nAn dAn
II 7Tn 0 LVp + 52

b, = V2 (D,go + D 1g 2 + D~2)

b3 = V2 (D~o + D,g2 + D,g4)

b5 = V2 (D,,go + D~2 + D lg 4 )

1 2"

D = - I 5 cos nAn dAn
II ]7T 0

g = 1: I 2" ] COS nAn dAn
II 7T FVp + 52

If P2/P, = 18 days/251 orbits, or 103.2669 ... /1440, i = 99.092°, and the ellipsoid is the
Clarke 1866,

B = 0.0175544891 for An in degrees
A2 = -0.00109792
A4 = -0.00000129
b l = 0.07211679
b 3 = -0.00004718
b.; = -0.00000013

For Equation 25,

y/a = C, sinAn + C 3 sin 3An + In tan (%7T + V2epn)
. (V2go + g2 cos 2 An + g4 cos 4An),

where gil is as in Equation 65, and

C = _1_ I 2" 5 (H + J)cos nAn dAn
II 7Tn 0 \IF + 52

(66)

(67)

With the above constants,

C, = 0.14344099
C 3 = 0.00002851
go = 2.00038442
g2 = -0.00295993
g4 = -0.00000324
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In Equations 35, 38, and 47, the calculation for F may be replaced, with some benefit, with

where

F = V2do + d 2 cos 2A" + d. cos 4A"

d" = ! I 21T F cos nA" dA".
7T 0

do = 1.99702155
d 2 = 0.00165458
d. = 0.00000480

(68)

(69)

(75)
(76)
(77)

For Equation 49, consolidating the series and transposing leads to the following important
substitution:

BA" = (xla) + (yla) (D, cos A" + D 3 cos 3A" + D" cos 5A") - E 2 sin 2A" - E. sin 4A". (70)

where Band D II are defined in Equations 59 and 64, and

E 2 = A2 + V2 (C,D, + C 3D 1 - C 1D 3) (71)

E. = A. + Y2 (C 3D, + C,D 3 ) (72)

With the above constants,

D, = 0.07220987
D 3 = 0.00005979
D" = 0.00000007
E 2 = 0.00407775
E. = 0.00000402 .

While Equation 70 is still trial and error, it converges rapidly by trying almost any A" in the
right-hand side, solving for A" on the left side and using the latter A" for the next trial, etc.,
until there is no significant change between successive trial A"'s.

Equation 50 may be replaced with

In tan (V47T + V2cp") = (yla) . (iI2G o + G 2 cos 2A" + G. cos 4A" +
G 6 cos 6A") - L, sin A" -
L3 sin 3A" - L" sin 5A". (73)

where G". = ! I 21TF~ cos nA" dA" (74)
7T 0 ]

L, = V2 (C,Go - C,G 2 + C 3G 2 )

L3 = V2 (C 3G O + C,G 2 - C,G.)
L" = 1/2 (C,G. + C 3G 2 )

Go = 1.99962441
G 2 = 0.00295883
G. = 0.00000761
G 6 = 0.00000002
L, = 0.14320189
L3 = 0.00024017
L" = 0.00000059

While all constants are calculated specifically for Landsat, the formulas permit calculating
constants for other orbits.

(3) Scan lines are inclined with respect to vertical at an angle of arc tan (-51]), thus vary­
ing hom 4.13° counterclockwise from vertical at the ascending node to 4.13° clockwise at the
descending node. The linear distance on the ellipsoid along a given scan line from the true
vertical groundtrack is acp'IF.

(4) For a given differential time interval along the geocentric satellite groundtrack, the
distance is proportional to VH2 + 52. The true groundtrack is for all practical purposes (with­
in 10-7

) at the same true scale as the geocentric. It is at the most 0.008° displaced.
(5) The maximum deviation of scale from the normal sec cp' in any direction is 0.004

percent at cp' = ± 1°,0.03 percent at cp' = ±5°, 0.08 percent at ± 10°, and 0.15 percent at ± 15°.
The effect of sec cp' itself is much greater (0.015 percent, 0.38 percent, 1.5 percent, and 3.5
percent, respectively). The projection is thus suitable for weather and other satellites with a
scan broader than that ofLandsat. Table 1 lists various scale factors affecting Landsat imagery.
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(6) If e = 0, the preceding formulas for the sphere result. Any other ellipsoid or circular
orbit may be used by substitution of the appropriate a, e, i, R o, and P2/P 1 in the ellipsoidal
formulas.

(7) If P2 = 0, the formulas give the ordinary oblique Mercator projection (transverse, if
i = 90°) for sphere or ellipsoid. The ellipsoidal formulas are limited to a narrow band.

(8) For a non-circular orbit, A' is not proportional to time, but if the orbit is elliptical it
may be calculated from the mean longitude in orbit of the satellite by Keplerian formulas.
The factor (P2/P 1)A' is now (P 2/P 1)· (L + w), and this change necessitates rederivation of most
earlier formulas. The writer has not attempted this, except as follows, although Dr. Junkins
includes elliptical and even non-elliptical orbits in his analysis.

These formulas permit use of an elliptical orbit in plotting the groundtrack only on the
ellipsoid: Use Equations 51 through 57, and 5, except that Equation 5 becomes

Equation 56 becomes

Ao = arc tan (cos i tan A') - (P2/P,) (L + w),

A' is found from Equation 80:

tan Vz (A'-w) = (tan Vz E') V(l + e')/(l - e'),

and Ro from Equation 81:

(78)

(79)

(80)

where
Ro = a' (1 - e' cosE') (81)

E' - e' sinE' = L (82)
L = mean anomaly, or mean longitude of satellite trom perigee, directly proportional to

time
w = geocentric longitude in orbit of satellite perigee from ascending node of orbit
e' = eccentricity of satellite orbit
a' = mean distance of satellite from center of earth, same units as "a"
E' = "eccentric anomaly" of satellite orbit
A' = geocentric longitude of satellite at a given time, relative to ascending node, as in earlier

formulas.
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