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Flight Path Curvature Distortion
in Side-Looking Airborne
Radar Imagery

A quasi-circular piecewise function was fitted to map points
transferred from the SLAR imagery in order to correct for flight
path curvature distortion.

S LAR (SIDE-LOOKING AIRBORNE RADAR)
imagery of surface features of the Earth

obtained from aircraft may contain distor
tions due to (1) yaw, roll, or pitch; (2) change
of height; (3) curvature of flight path; and
(4) velocity change of the airplane. Previous
attempts at correcting these distortions have
been made by other authors (Derenyi, 1974;
Leber!, 1972). Derenyi and Leber! used two
dimensional polynomials to express overall
distortions, with polynomial coefficients

fects of pitch angle and change of height of
the airplane) are compensated for electroni
cally, while those due to yaw are compen
sated for manually. However, effects offlight
path curvature and change of velocity still
need to be corrected. When the distortions
due to curvature are corrected, those from
change in velocity are to some extent auto
matically compensated for, with the remain
ing distortion becoming primarily local and
usually not significant. This is because a

ABSTRACT: Although several of the errors in obtaining SUR (Side
Looking Airborne Radar) imagery can be substantially corrected
electronically, the error due to the curvature of the flight path can
not be. For a 130 km flight over the Alaskan coast this error is esti
mated to be as much as 2.8 km. A correction method is proposed that
requires only a few points identifiable both on the image and on the
map. It employs a quasi-circular piecewise function passing through
these identifiable points, which enables the image coordinates of
any other points to be rapidly converted to map coordinates. Syn
thetic test data and the Alaskan imagery indicate that the error re
maining after applying this curvature correction is about 0.2 km.

found by the comparison of the imagery with
a ground map. In this paper we want to pre
sent a different approach. The relative merits
of our method and their methods will be dis
cussed briefly at the end of this paper.

In a SLAR system such as the Motorola*
APS-94 D some distortions (such as the ef-

* The use of the brand name in this report is for
identification purposes only and does not imply
endorsement by the U.S. Geological Survey.

correction for curvature requires a compari
son of the imagery with a ground map for a
number of fixed points along the direction
of the flight path. Thus, curvature is the one
source of distortion that warrants the most
attention. In this paper we discuss some
aspects of this problem and provide a simple
method of approximation as a solution.

The return signal to an aircraft SLAR system
comes from strips along the surface of the
Earth nearly perpendicular to the flight path.
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FIG. 1. (a) Geometric relationships between
identifiable points and the flight path on the
image. (b) Geometric relationships between iden
tifiable points and the flight path on the map.

where Y = f(x) represents XX andf; = dy/dx
at (X2,Y2)'

The principal difficulty is in constructing
the line PF on the map so that it is normal
to the flight path XX, which is as yet un
known. A second difficulty occurs when
there is no identifiable point on the line
through P normal to the flight path X'X ' on
the image.

Let us choose A I ••• E' on the image along
a straight line parallel to the flight path. We

image through pi perpendicular to X'X' (the
apparent flight path) and try to locate an
identifiable fixed point, F ' , on the line. Next,
draw on the map the line PF through F
perpendicular to XX, with the length of PF
= l6' Then, P is the position of the point on
the map. When a large number of points
need to be transferred to the map, this graph
ical method involves considerable manual
work. Therefore, it is desirable to make the
transfer numerically.

Consider a curve Y = g(x) which passes
through ABCDE in Figure lb. If we know
l7 and the location of H (that is, the inter
section of PF and g(x)) on the map at (X3,Y3),
the position of P at (x"y,) can be expressed
as follows:

(I)

(b)

Xl = X3 - f;l7rv'1 + (f~)2

YI = Y3 + ll\/J + (f;)2

A

Image
p

x

I,

F

---5 (a)

Map

~x

(This is an adequate approximation for our
purposes in the case of real aperature, which
we used.) The strips of information are re
ceived continuously and are combined into
the final image. Regardless of its curvature,
the flight path appears as a straight line on
the image. Although all remote-sensing
flights are intended to follow a great circle,
most are influenced considerably by wind
and inertial navigation error. Thus, a straight
line connecting identifiable points on an
image is usually a curve on a map of the
ground.

When the airplane is making a left turn,
the actual distances parallel to the flight
path would be smaller on the left side of the
flight path than as seen from the image, and
greater to the right of the path. Therefore,
we have to bend the image according to the
flight path before we can use it. One may
ask what quantities remain unchanged
during the turning of the airplane. There are
only three invarient quantities: the distance,
l, from a point to the flight path; the right
angle, y, between the flight path and any
scanning line; and the total distance traveled
by the airplane.

Any point on the image can be located on
the map as follows: first, measure on the
image the lateral distance of the point from
the flight path and the total distance the air
craft has traveled along the flight path up to
that point. Then transfer the point by mea
suring first the total distance along the actual
curved path that was flown and then the
lateral distance on a normal to the curve.
The essential palt of this procedure is to re
construct the actual flight path on the map.
In the following, we will use primed sym
bols to indicate apparent locations and dis
tances as observed on the image (Figure
la) and unprimed symbols to indicate the
correct values as observed on the map (Fig
ure 1b).

If there exist a number of identifiable fixed
points on both the imagery and the map,
and if we can construct a function Y = g(x)
connecting the map points, then we can
graphically construct the flight path on the
map as follows: let A' ... E ' be identifiable
fixed points on the image and l, ... ls the
distance of these points from the flight path
X'X' (see Figure 1a). Ifwe draw circles with
radii l, ... ls and centers at A ... E (that is,
the correct map positions), then the envelope
of these circles gives the actual flight path
on the map (XX, see Figure 1b).

To find the map position P, of a general
point, which could, for example, be a target
on a moving ice floe, draw a line on the
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introduce the following parametric modifi
cation of the circle to avoid this difficulty:

Here we used a simple assumption that the
radius of curvature for the arc changes lin
early ,"vith the angles from r... to rB'

To resolve a quadrant ambiguity,

{
+1 when a" > a...

u = -1 when a" < a...

then assume that g(x) on the map can be
approximated by a mathematical function.
The given quantities are (X3,y3,g~h, ... ,
(X3,Y3,g;)E corresponding to A, B, C, D, E,
etc. It is difficult to find a function that fits
all the given quantities, but the Cl\lve g(x)
can conveniently be fitted piecewise. Fitting
with segments of circles appears the simplest
and the best way because then all that is
needed to find the length of a part of an arc
is to use the angle, 8, in Figure 2.

Now the problem has been reduced to the
one shown in Figure 2. Given t and s (which
is the ratio (S-SJ (Sn-S,,) on the image, find
P(X,Y) on the map. Since (X... ,Y... ), (XB,YB),
and (Xc,Ycl are known, a... and aB can be
found by fitting with a quadratic through
points A, B, awl C. A circle can be con
structed with center at (Xo,Yo) that passes
through (X... ,Y... ) with slope m ... = tan a... , and
whose radius, through (XB,YB), is normal to
nlB = tan aB'

where

r., = (1 - s) r + sr,],

a" = (1 - s)a + sa",

r, = V(X.! - XO)2 + (Y... - YO)2,

r/3 = Y(X/3 - XO)2 + (Y/3 - Yo)2·

(3)

and

(2)
Yo = (m/3Yn + X/J) - (m Y... + X... )

In" - m ...

The circle mayor may not go through (X",Y,,)
since r ... and rlJ could be different. One can

The case of a ... = a,] will be discussed later.
To accommodate the point P, which is a

distance t from the straight line on the
image, Equations 3 are slightly altered to
give

(4)

Path

Imagery

P 15,11

____·U=~=dL_____!!

(0,0) (SA'O) (5.,0)

--l

I
S" 5 - SA I

Se- 5",

where k is the cross-track scale factor be
tween the map and the image, which can be
obtained by comparing one or more identifi
able length segments on the map with those
on the image in the cross-track direction,
and t is positive to the left of AB.

When a ... = an, the curve degenerates to a
straight line on the map

x., = X., + s(X" - X A )

(5)

FIG, 2. Piecewise fitting with circular curves be
tween two identifiable points on the map.

Y, = Y., + s(Y" - Y.,)

and the coordinates of P are given by

X" = X" - v(Y8 - YA )

Y" = y, + v(X/J - X.-tl

where

v = ktIY(X/J - X,)2 + (1'" - Y ... )2 (6)

The degeneration of the curve to the
straight line cannot be successfully repli
cated on a computer with a finite word
length because as m... approaches mB the dis
tance to (Xo,Yo) becomes large, as do the
radii r ... and rlJ, so that one or both of the
relations in Equation 4 become numerically



1258 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1978

~m

x Test points
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,
{79.9, -9.41

point that measures (S,t) on the image are
calculated using Equations 4. This is done
for x = 0.1, 0.2, ... , 0.9, 1.0 and t = 0, 0.2,
0.4, ... , 1.0. The numbers are then com
pared with the exact solution that follows:

X" = x - t/Yl + (1/0.04 x2
)

¥" = 0.1 x2 + t/Yl + 0.04 x2

In all cases they differ by about 10-4 or less.
This is very good agreement because for an
image 1 m long and 40 cm wide the differ
ence corresponds to an error of 1/20 of a
millimetre (since the error is only 5 x 10-5

for O:S:;x:s:;1 and t:s:;O.4), which is well within
the error ofmeasuring distances on an image.

(2) A SLAR image of the Alaska coast-ice
shear zone made by W. F. Weeks and W. J.
Campbell (USGS-CRREL report in preparation)
is used here with a topographic map (U.S.
Geological Survey, Alaska Topographic
Series, Barrow, Meade River, and Wain
wright Sections, 1:250,000) made in 1955.
Ten strips of images are available. The one
strip showing the greatest amount of land
was chosen for the test. We picked five iden
tifiable points along the flight path and made
four nearly circular curves for the map. The
five points cover about 130 km in real dis
tance and 52 cm on the map. Five more
identifiable points were picked for testing,
all far from the flight path. (See Figure 3.)

The coordinates of five control points as
well as five testing points are shown in
Table 1.

Column (2) in Table 1 is used for the cal
culation of Equation 2. The m's in Equation
2 are found by fitting a quadratic through
three points, with the point in question in
the middle, if it is not an end point. (An end
point shares the same quadratic with the
point next to it.) Thus, four sets of values
for (Xo,¥o) can be obtained from the five
points in column (2). Column (1) provides
four sets of values for SB - SA; namely, 13.4,

FIG. 3. Orientation of the coordinate system for
the SLAR data (units in km).

where d is the distance from A to B, and

(mB - mAl d2

ill-conditioned. It is therefore appropriate
to switch to Equations 5 and 6 before the
two slopes become identical.

It may be shown, where D is the distance
between the point given by Equations 4 and
the point given by Equations 6, that the rela
tive error obeys the relation

D < I~ml (-.l + W)
d 8 2d

in which ~ = XB - XA and ~¥ = ¥B - ¥A'
For Ikt I :s:; 10 d, the relative error does not

exceed 41/8 I~m I. Then, for example, I~m I
< 0.0002 produces a relative error less than
0.001 when Equations 6 are used instead of
Equations 4. This avoids the ill-conditioning
in Equations 4 even on a computer with a
mantissa length as short as 20 bits.

The above method can be used when r A

and rB are equal or only slightly different
(otherwise the radius and its tangent will not
be quite perpendicular and error is intro
duced). However, some uncertainty arises
in trying to find the slope of a curve that is
fitted to a number of discrete points either
graphically or numerically. Another require
ment is that a line normal to g(x) is also near
ly normal to the flight path.

The above method was tested two ways:
(1) a fictitious image and a corresponding
fictitious map were made up in which the
flight path is a simple mathematical func
tion. Thus, an exact solution exists for Equa
tion 1. The results from the method using
Equation 4 were compared with the exact
solution; and (2) real SLAR data with corre
sponding ground maps were used for com
parison with the method. The details of the
two methods are as follows:

(1) For a mathematical function as a flight
path on the map, y = 0.lx2 was used with
O:s:;x:s:;1. This function makes a total turning
of about 11°, which is roughly twice the
amount of actual turning of the airplane
based on the SLAR data we have. Three iden
tifiable points at x = 0, 0.5, and 1 were used
to produce two separate, nearly circular
curves by the use of Equations 2. For a point
(x,y) on y = 0.lx2, it is simple to find the
length of the curve s from (0,0) to (x,y). Con
struct a normal at (x,y) and measure t away
from it to end up at (Xp,Yp). The point (Xp,Yp)
corresponds exactly to (S,t) on the image.
The point (x,t) is specified arbitrarily to get
(S,t) and (s,t). The map coordinates of a
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TABLE 1. COORDINATES OF FIVE CONTROL POINTS AND FIVE TESTING POINTS
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Five Control Points Five Testing Points

(1) (3)
Image, Image, (5) (6)

(x,y) (2) (x,y) (4) Map, Map,
or (S,t) Map (X,Y) or (S,t) Image (s,t) Measured Calculated

(0,0) (0,0.1) (4.6, 7.8) (.3433, 7.80) (6.8, 7.7) (6.42, 7.81)
(13.4,0) (18.5,0) (40.7, 3.45) (.6352, 3.45) (55.5, 4.25) (55.26, 4.20)
(30.6,0) (41.7,0.4) (37.2,-6.5) (.415, -6.5) (50.3,-5.9) (50.80,-5.88)
(46.5,0) (63.2,1.0) (50.55, 7.7) (.291, 7.7) (68.2, 8.8) (68.57, 8.89)
(60.4,0) (82.6,1.75) (55.1, 7.9) (.6187, 7.9) (74.5, 9.3) (74.89, 9.33)

Note: Units ohhe above coordinates are in terms 01''14 of an inch. To change the map scale to kilometers. the scale factor is 20 km/12.6
units.

17.2, 15.9, and 13.9. Column (3) provides
the values of S and Column (4) gives the
values of (s,t) where S = (S - SA)/(SB - SA)'
Equation 4 is used for the calculation of the
coordinates of the five test points, using
k = 1. The calculated results are shown in
column (6). Figure 3 shows the orientation
of the coordinate system.

Column (5) and Column (6) in Table 1
show that the calculations agree very well
with measurements in the direction normal
to the flight path, the maximum difference
being 0.2 km (after applying the scale factor
of20 km/12.6 units). However, the maximum
difference in the direction parallel to the
flight path is about 0.7 km. It was discovered
that this discrepancy comes from the fact
that the distortion due to the yaw of the air
plane was not adequately compensated for
by the SLAR equipment. However, the image
used is as good as the present state of the
art permits.

It seems likely that in the future the effects
of yaw and of change in velocity can be
accurately compensated for electronically
because the correction involves mechanical
elements that can be controlled electronical
ly (the angle of the trace and the speed ofthe

film-drive motor). These compensations can
be performed while the film is being taken.
The curvature effect, on the other hand, can
not be compensated for until the whole film
has been made, and it is doubtful that com
pensation can be accomplished electronical
ly unless at least two more degrees of free
dom can be introduced to the film take-up
spool, which illustrates the necessity for an
adequate method to deal with the curvature
effect.

What are the consequences of not using
this "curvature correction" at all? Tests
show that failure to make the correction does
not affect distances parallel to the flight
path significantly, but that it affects distances
normal to the flight path a great deal. Instead
of an error of 0.2 km on the map, an error
of 2.8 km occurs for the imagery from the
APS-94 D. Therefore, the "curvature correc
tion" is significant in the use of SLAR imagery.

A comparison has been made between our
method, Derenyi's method, and Leberl's
method using the same control points and
testing points as shown in Table 1. The re
sults are tabulated in Table 2.

Column (2) of Table 2 is obtained by the
use of the following linear transformation:

TABLE 2. A COMPARISON OF RESULTS FROM DIFFERENT METHODS

Calculated Coordinates

Map (4)
Coordinates, (1) (2) (3) Linear Trans.

Measured Ling, et al. Derenyi Leber! Only

(6.8, 7.70) (6.42, 7.81) (9.21, 21.63) (9.21, 28.80) (6.08, 10.89)
(55.5, 4.25) (55.26, 4.20) (70.97, 10.96) (70.97, 12.48) (55.56, 5.93)
(50.3,-5.90) (50.80,-5.88) (36.10, -16.96) (36.10,-12.02) (51.05,- 7.77)
(68.2, 8.80) (68.57, 8.89) (105.41, 23.27) (105.41, 30.95) (68.92, 12.01)
(74.5, 9.30) (74.89, 9.33) (1l6.14, 24.04) (1l6.14, 32.19) (75.14, 12.41)

Note: Units of the above coordinates are in tenus of % of an inch. To change the map scale to kilometers, the scale factor is 20 km/12.0
units.
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x = Ax - By + C I (7a)

Y = Bx + Ay + C2 (7b)

and a five term polynomial correction:

dX = Al + A 2X + BIY + B2XY + A 3 X" (8a)

dY = C 3 + DIY + C.X + D 2 XY + CoX" (8b)

Column (3) is obtained by using Equations
7a, 7b, and a slightly different polynomial
for dY:

Column (4) is obtained by using Equations
7a and 7b only.

Table 2 shows that the results from
Derenyi's method, as well as Leberrs meth
od, do not compare favorably with the mea
sured map coordinates. Even the results
from linear transformation only (dX = dY
= 0) are better than those with the use of
Equations 8a, 8b, and 9. The reason is that
Equations 8a, 8b, and 9 are two-dimensional
curves, the fitting of which requires enough
data points throughout a two-dimensional
domain in order to give good results. But
the five control points used are almost on a
straight line (see Figure 3), and therefore
the two-dimensional polynomial fittings fail

to produce good agreement for the five test
ing points, which are quite far from the con
trol points.

Our method is an approximation to the
mathematical solution of Equation 1 for the
problem of curvature distortion which re
lates the distortion of the image to the turn
ing of an airplane. It is not just a curve fit
ting. Thus, it can give very reasonable re
sults without the need of a two-dimensional
set of control points. It does, however, need
several identifiable points on a line parallel
to the flight path.
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