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A Closed Solution 
for Space Resection 
A set of equations has been derived in which the three 
elements of camera rotation are eliminated, thus giving linear 
equations for the exposure station coordinates. 

T HE BASIC EQUATIONS for photogrammetric resection are the projective equations (Thomp- 
son, 1966) connecting photo and ground coordinates. These equations contain six un- 

knowns per photo, the three exposure station coordinates Xo, Yo, and Zo and the three rota- 
tion elements K, +, and w. These equations are non-linear and the solution forXo, Y o  Zo, K, 4, 
and w is obtained in an iterative manner with some assumed initial values. 

The object of this paper is to derive a set of new equations which are linear and therefore 
require no initial approximate values. These new equations, as is shown in the subsequent 
paragraphs, do not contain the rotational elements K, 4, and w but have only the exposure 

- -  - 
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station coordinates, reducing the number of parameters from six to three. The equations 
developed by Church (Baker, 1960) also solve for X ,  Y, and Z ,  but these are non-linear and 
require initial approximate values. The rate of convergency of the solution depends upon 
nearness of initial values to true values. Church's method requires a minimum of three 
ground control and photo-points and considers the photo pyramid formed by the three 
ground and photo points at the exposure station. The apex angles are determined first and 
then the exposure station coordinates are obtained by iteration. 

MATHEMATICAL FORMULATION 
The basic equation to solve for the elements of exterior orientation are the projective 

equations of the type 

where C is the principal distance and the a's contain the rotational elements K, 4, and w. For 
vertical photography with K = 4 = o = 0, Equations 1 reduce to 
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Equations 2 are linear equations for the solutions ofX,, Yo, and 2,. This suggests that, if we 
are to get linear equations for the solution of space resection elements Xo, Yo, and Zo, we 
must attempt to eliminate the rotational elements from the projective equations. 

Equations 1 are non-linear and have to be solved for X,,, Yo, Z,, K, 6, and o by a process of 
successive iterations. Normally three to four iterations yield quite successful and converging 
results. Such a solution, however, requires initial approximate values of the unknowns. In 
near vertical photography, this is no problem. Approximate values of X,, Yo, and Z, can be 
estimated graphically or otherwise. Some difficulty is encountered for determination of ini- 
tial values and the signs of the rotational elements for a highly tilted photo or for terrestrial 
photography. A wrong sign for the estimated values of K, 4, and o may fail to yield a converg- 
ing solution. This can cause a lot of frustration and considerable difficulty. This paper shows 
how such a difficulty can be totally eliminated by a new set of projective equations which 
are linear in X,, Yo, and Z, and which give an exact solution without any need for initial 
approximate values. Moreover, the rotational elements do not enter into such linear equa- 
tions and, hence, offer no problem of sign or magnitudes. The derivation follows on the strict 
assumption that collinearity is valid. 

Let us consider two given ground control points labeled 1 and 2 as in Figure 1 with their 
coordinates XI, Y,, Z, and X2, Yb Z2 referred to an arbitrary origin 0'. It is not necessary to 
assume knowledge of flight direction. All that is required is a knowledge of the photo co- 
ordinates referred to the photo principal point x,, yo. Let x,, y ,  and x2, yz be the observed 
coordinates of the corresponding photo images. 

- 
FIG. 1. Geometry of the space resection. FIG. 2. Ground and photo distances. 

From the definition of scale of a photograph at a point and referring to Figure 1 and Figure 
2, we can write the basic linear differential equation of the first order for this case as 

[(x -xop + (Y -Y,)~+(Z-Z,,)~] 
dS = ds 

[(x-X,)Z + (y-yo)2+c2] 

where 
dS = an element of ground length, 
ds = an element of photo length parallel to ground length 'D' (see Figure 2), and 
C = principal distance. 

We can write Equation 3 as 

Hence, in going from point 1 to point 2, 

It has been shown by Rampal (1975) that the left hand side of Equation 4 reduces to the form 
(see Appendix) 
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where k is defined by the equality sign and other notations as in Rampal (1975). Equation 6 
expresses the relationship between photo and ground coordinates for a set of two points 
labeled as '1' and '2'. The right hand side of Equation 6 involves observed and computed 
data as obtained from photo coordinates and the elements of interior orientation x,, y ,  and C. 
The left hand side contains the ground data and the unknowns Xu, YO, and Z,. This is then 
the projective equation for two points as opposed to that of a single point as expressed by 
Equation 1. Equation 6 obviously is independent of rotational elements K,  4, and o and 
contains only the exposure station coordinates. Thus, in going from Equation 1 to Equation 6 
we have eliminated K, 4, and o and, hence, initial values and their signs are not required. 
Equation 6 is still, however, non-linear so far as X,,  Y,,, and Z ,  are concerned because S, and 
S,  contain X ,  Yo, and Zo in quadratic form. Now it will be shown how this nonlinearity can 
also be removed by determination of u and b, the base angles as shown in Figure 2, and 
hence S, and S, from ground and photo data. 

- 
FIG. 3. Geometry of photo angles. 

From Figure 3, making use of the common side of the triangles in the figure, it is easy to 
write the condition equations: 

Dl S,  =- sin (b t+a)  = - D3 sin (e l -7)  
sin 0' sin 0"' 

D ,  s ,  =- sin (a'-a) =- D2 sin (d1+p! 
sin 0' sin 0" 

Dz S ,  =- sin (cl-P) = - D3 sin (f + y) 
sin 0" sin 0"' 

Since a, p, and y are small (unless we are dealing with extremely tilted photos or very high 
altitude differences), we can write Equations 7, 8, and 9 in a linear form as 

which gives 

where 

a,  = D ,  cos a' sin 0" 
b, = D2 cos d '  sin 0' 
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C ,  = D l  sin a '  sin 6" - D, sin d '  sin 6' 
a, = D l  cos b '  sin 0" 
6, = D, cos e' sin 0' 
C, = D, sin c' 0' - D l  sin b '  sin 0"' 
a, = D, cos c '  sin 0"' 
b, = D, cos f' sin 8" 
C, = D, sin c' 6"' - D, sin f' sin 8" 

Here Dl, D,, and D, are the ground distances which are computed from the ground coordi- 
nates XI, Y,, Z,;  X,, Y,, Z,; a n d X ,  Y ,  Z, of the three given ground points. The angles a ' ,  b ' ,  
c', d', e', and f' are photo angles and are computed, along with %', 8", and OM', from photo data. 
As an example we have 

S: + sS2 - dl 
cos 6' = 

2 SlS2 

where s f  = (x,-x0), + (yI-yO)2 + C Z  
sz2 = (3i2-~0)2 + ( ~ z - y o ) ~  + C Z  
d2 = (x2-~1)~ + ( Y Z - Y I ) ~  

Similarly, 

s2, + d2 - S: 
cos b '  = 

2s ,d 

Equations 7 to 14 make the determination of a, P, and y possible by using photo and ground 
data. It is then possible to solve for the sides S,, S,, and S, by the simple sine formula, 

s1 - Dl 
sin(al-a) sin 0' 

The computation of S, and S, follows in the same manner. Once S ,  and S, are known, Equa- 
tion 6 reduces to a linear form very easily. This can be shown as follows: 

Using Equation 6 we have 

AX(X2-X,) + AY (Y,-Y,) + AZ (2,-Z,)) = D (kS,-S,) 

Since X, = XI + AX, Y, = Y, + AY, and Z, = Z, + AZ. 
Further simplification yields: 

AX. 

we get 
- 

AX . X, + AY . Y,) + AZ . Z, = AXX, + AYY, + AZ Z,  - Dl .  (18) 

Equation 18 is the linear equation for direct (closed) solution of the exposure station coordi- 
nates. One can note that 

It requires no knowledge of the initial values of the parameters, 
No knowledge of the initial values or the signs of the rotational elements is required, 
It is applicable to both aerial and terrestrial types of photography, and 
Only photo data along with the necessary ground information is used. 

From the nature of Equation 18 it can be  inferred that we need at least four ground and 
photo points (and not a minimum of three) for independent equations, unless we separate 
planimetry from height. The other case is that when we have a very nearly flat terrain. A 
numerical example has been worked out, as below, to illustrate this case. This is obvious 
from the fact that AX,, + AX,, + AX,, = 0. Similarly, it is true with AY and AZ. 

The data as given in Table 1 are from the Casa Grande Test Range (Arizona) and are pub- 
lished by the Defense Mapping Agency HydrographicITopographic Center, Washington 
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Point Point 
No. Identification 

Ground Data 
in Metres 

Photo Data 
in mm 

D.C. The photo coordinates were observed by the author during his stay at The Ohio State 
University (Department of Geodetic Science) using a Zeiss-PSK Stereocomparator. The 
program TRANC-4 was used to transform comparator coordinate to photo coordinates. Glass 9 
by 9 in. diapositives were available for observations. 

The photo and ground data yield the following: 

0' = 1T.552 D l  = 1611.9354 metres 
0" = 15O.3550 D ,  = 1559.754 metres 
0"'= 23O.3910 D ,  = 2230.0891 metres 
a '  = 71°.4410 b '  = 9V.7038 c '  = 10V.1732 d '  = 56O.4716 
e' = 6T.3674 f = 89O.2416 

Using Equation 13 we get 

Substituting this value of a in Equations 10 and 11 we get 

/3 = 0°.55618 
y = - 1°.89419 

Equations 7,8, and 9 are now expanded by Taylor's series around the values of a, /3, and y as 
obtained to improve their values. This results in the following: 

Finally we get: 

The base angles, a, b, c, . . . , having been determined, it is now easy to compute Sl,  Sz, S 3  
from D l ,  D,, D ,  and 0', 0': W"', etc. 

To separate height from planimetry, we rewrite Equation 18 for points 1, 2, and 3 as 

A X z l  XO + AYZ1 Y O  = AYZIYl + AYZ1Y1 + M Z 1 H  - 
AX32X0 + AY32 Y O  = AY32Y2 + AY32Y2 + M3zH - D2 (19) 

where H = (2 a.,r,g, - 2") 

Since the terrain under consideration is flat, we can obtain the value of H from the focal 
length and the mean photo scale h from: 

The mean photo scale is computed from the known photo and ground distances of points 1, 
2, and 3. 

With Equation 17 and 19 and using the data of Table 1, we get S l  = 5253.3998 
S 2  = 4938.7064 
S 3  = 5612.1550 
S 4  = 5046.9696 
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The solution gives 

Z, now can be computed from any of the slant distances S,, S,, etc., from the relation 

s, = [(x,-x")" (Yl-Yo)2 + (zl-z,)~]l~~ (20) 

The values of Z,, as obtained by using Equation 20 with the computed values ofX* Yo and 
S,, S,, S,, S, give 2, as 5141.1606, 5141.1800, 5140.6069, 5138.5864, respectively, with a 
mean of 5140.3832. Thus, the final results of the computations, done with a small pocket 
calculator and using the linear solution, are 

X,, = 432,584.4881 
Y,, = 3,633,271.4521 
Z,, = 5140.3832 

The results, using the RESEC-1 program on the IBMi370 of the Department of Geodetic 
Science, The Ohio State University, Columbus, Ohio, and using the well known projective 
equations with a least squares solution, gave the results as Rampal (1973): 

A new mathematical model has been derived which is linear in terms of the parameters of 
the exposure station, i.e., coordinates Xo, Yo, and 2,. The rotational elements K, 4, and o have 
been eliminated and, hence, the solution is independent of the orientation of the photo and 
ground coordinate system. The solution also requires no initial or approximate values of the 
parameters. This reduces the computation time considerably as there are no iterations in- 
volved. In  fact, the solution is so simple that, with a minimum of three ground and photo 
points for flat terrain, a solution is possible with a pocket electronic calculator. 
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Consider two ground points 1 and 2 imaged at p and q (see Figure 2). Let P be a point on 
the line with photo coordinates x and y. Let P' be another point so that PP' is of infinites- 
imal length ds'. Through P draw a line p'q' parallel to the ground distance 'D', intersecting 
OP' at Q. Let PQ = ds. 

Let PQP' = 6 and QPP' = a be the angles as shown in the figure. We have also the follow- 
ing relations: 

From triangle O P Q  

ds = 
O P  sinhe 

sin 6 

Since A0 can be chosen as small as we like, we can write Equation 2 as 
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but OP = [ ( x - x , )~  + (y-yo)" fCL]'.'' 
Therefore, we have 

0' +a 
= In tan - cot 012 

2 

but a + 0' = 180-b 

d o  
- In [cot hi2 cot ai2] .  

sin (a+O) 

Therefore, we have 

ds  
= In [cot(ai2)cot(b/2)]. J [ ( ~ - x , , ) ~ + ( ~ - y , , ) ~ + C ~ ]  1,]'.'2 

since J dS 
[(x -x,)~+(Y - ~ , ) 2 +  ( Z - 2 , , ) 2 ]  

= In AXAX,+AYAY,+AZAZ, + DS, 
A X ~ , + A Y A Y , + A Z A Z ,  + D S ,  

hXAX,+AYAY,+AZAZ, + DS,  
= cot - cot 

AXAX,+AYAY,+AZAZ, + D S ,  ( 1  (9 
= cot ( y ) 

(Received December 6, 1977; revised and accepted March 31, 1979) 
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