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Such analytic approaches can help provide clearer criteria for 
defining "Perceptually-based" automated analysis of remotely 
sensed data. 

INTRODUCTION (1975), Landgrebe (1978), and Hsu (1978), 
the bulk of the studies have centered on the 

T HE PERCEPTION of visual texture, though development of texture measurements for 
poorly understood, has long been recog- mathematical discrimination of patterns. 

nized by aerial photo interpreters and Few studies have attempted to relate these 
psychologists as an important characteristic digitized image measurements to the visual 
for the identification of objects and scenes texture recognition process (Mitchell et al., 

ABSTRACT: Some of our initial attempts to relate digitized image 
measurements to the visual texture recognition process are pre- 
sented. Specifically, we have compared human similarityldi$ference 
judgments of textural patterns based on real-world images with out- 
comes of the RADCIHsu machine texture analysis which employs 
local statistics from small (e.g., 3 x 3) moving pixel windows. Such 
comparisons included the use of non-metric, multidimensional 
scaling techniques which allow the construction of stimulus dimen- 
sion models for human and machine processes using micro- 
texturally common and specifiable image conditions. Our results 
indicate that such analytic approaches can help provide clearer 
criteria for defining "perceptually-based" automated analysis of 
remotely sensed data and the conditions which produce individual 
differences in the weighting of stimulus dimensions when judging 
dgferences among visual patterns. The data also corroborate the 
idea that a micro-texture approach to such problems is most appro- 
priate since it can specify the building blocks which define complex 
configurations of given stimulus arrays "perceived either by man 
or machine. 

(Avery, 1968; Gibson, 1950; Koffka, 1935; 1977; Tamura et al., 1978; Hsu, 1978; Hsu 
Reed, 1973). Recently, computer scientists, and Bumght, 1979), although efforts have 
electrical engineers, geographers, and other been made regarding texture perception by 
scientists have vigorously engaged in phys- humans (Lipkin and Rosenfeld, 1970; Pick- 
ical/mathematical texture analyses of im- ett ,  1970; Ginsburg, 1973; Pollen and 
ages. However, as shown in the literature Taylor, 1974; Pribrum, 1974; Rosenfeld, 
reviewed by Rosenfeld (1975), Haralick 1975; Richards, 1978). 
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Using "random-dot" patterns, and a 
matching procedure analogous to that 
employed in human colorimetry, Richards 
(1978) has recently shown that visually 
equivalent textures (metamers) can be  
achieved by appropriate manipulations of a 
set of 3-5 "primaries". For instance, he has 
shown that the texture of a random-dot pat- 
tern with 63 greytone levels is not perceptu- 
ally different from that of a pattern consisting 
of only three greytone levels. Obviously, the 
human visual system involves certain filter- 
ing processes. However, the generalizability 
of Richards' results to real-world pattern 
recognition and of machine texture analyses 
to human perception is poorly understood. 
This paper presents some of our initial at- 
tempts to address such questions more di- 
rectly. Specifically, we have compared 
human similarityldifference judgments of 
textural patterns based on real-world images 
with machine texture measurement out- 
comes developed using local statistics from 
moving 3 x 3 and 5 x 5 pixel windows as 
employed in the RADClHsu texture analysis 
(Hsu, 1978). Such comparisons include the 
use of non-metric multi-dimensional scaling 
techniques (Takane et al., 1977), which en- 
able us to construct models for human and 
machine processes using microtexturally 
common and specifiable image conditions. 

Among the texture measures developed 
for image processing by machine, a few have 
been termed "perceptually-based"-but, for 
obvious reasons, such terminology certainly 
should be considered debatable at present. 
This section reviews brieflv Mitchell/Myers/ 
Boynes's Max-Min ~ e s c i ~ t o r  (~itche-11 et 
al., 1977), TarnuralMoriNamawaki's texture 
feature extractor (Tamura et al., 1978), and 
the RADCIHsu texture measurement sys- 
tem (Hsu, 1978). 

Based on Mitchell's earlier work (Mitch- 
ell, 1976), Mitchell et a2. published their 
Max-Min Descriptor in 1977. Their texture 
parameters were obtained from the number 
of peaks (Max) and troughs (Min) along a 
scan line using several thresholds; e.g., 
given three threshold settings, three param- 
eters based on the sum of peaks and troughs 
provided three texture measurements. This 
texture descriptor has been considered 
perceptually-based because it was inferred 
from the psychophysical literature that the 
human visual system tends to respond to 
local extremes. This texture feature extractor 
also has been tested against Haralick's 

grey-tone co-occurrence method (Haralick et 
al., 1973), and shown to be equally effective 
for machine discrimination of patterns; how- 
ever, the Max-Min descriptor is computa- 
tionally much simpler. 

Unlike Mitchell/Myers/Boyne's intuitive 
approach, Tamura et al. (1978) attempted to 
develop a set of complicated texture mea- 
surements from a relatively large group of 
pixels (128 x 128) which were supposedly 
visually identifiable texture features such as 
coarseness, contrast, directionality, line- 
likeness, regularity, and roughness-a 
macro-texture approach. Human experi- 
ments also were conducted with often used 
textural patterns produced in Brodatz' (1966) 
photographic album of textures. The authors 
indicated that their perceptually-based tex- 
ture feature extractor did not perform well in 
similarity judgment tasks. 

To investigate the relationship between 
the human performance and a machine so- 
lution regarding similarity judgments of 
texture patterns as revealed in choropleth 
maps, Hsu (1974) devised a ten-variable 
texture measure coupled with a normal 
model classifier to analyze differences (in 
terms of Mahalanobis D2) among map sur- 
faces. These variables were extracted from 
the wave-form parameters of both x and y 
axis scan lines, and involved (1) area above 
datum, (2) area below datum, (3) sum of the 
peak positions from origin, (4) sum of con- 
trast values from peaks to troughs, and (5) 
sum of the number of peaks and troughs. 
Since a very high coefficient of correlation (r 
= 0.97) existed between the distances 
judged by human subjects and the machine 
solution (D2), this ten-variable system was 
viewed as perceptually-based. 

THE RADClHsu TEXTURE FEATURE 
EXTRACTO~CLASSIFIER SYSTEM 

As reported in 1978, Hsu (under the spon- 
sorship of U.S. Air ForceIRome Air Devel- 
opment Center) developed a new texture 
measure with 17 and 23 variables derived 
from a 3 x 3 and a 5 x 5 moving grid, re- 
spectively. The original (Hsu, 1974) five 
wave-form parameters were included in this 
sytem. This texture feature extractor has 
been shown to be highly effective; e.g., in 
reference to ground-truth information, a hit- 
rate of 85 to 90 percent has been obtained 
regarding land-use analysis from digitized, 
panchromatic images (Hsu, 1977). 

The major difference between the ten- 
variable wave-form system (Hsu, 1974) and 
the 17-23 variable system (Hsu, 1978) is that 
the former was based on a concept of 
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MAP 1: DENSITY SURFACE PRODUCED BY INTERVALS 

HAVING EVEN AREAL DISTRIBUTION OF EACH CATEGORY 

eersonr ear rauore mile 

70.1 - 100 

0 0.1 - 16 100.1 - 2 0 0  

16.1 - 45 7 2 0 0  

45.1 - 7 0  

MAP 3: DENSITY SURFACE PRODUCED BY INTERVALS 

WITH ALGEBRAIC PROGRESSION 

MAP:2: DENSITY SURFACE PRODUCED BY INTERVALS 

WITH GEOMETRIC PROGRESSION 

persons par square mil. 

I 0 - 1  11 64.1 - 256 

0 1.1 - 4 1 256.1 - 1025 

a 4.1 - 16 7 1025 

16.1 - 6 4  

MAP 4: DENSITY SURFACE PRODUCED BY INTERVALS 

WITH EVEN PROORESSION 

persons per squore mile parsons per squore mile 

0 0 11 80.1 - 160 0 0 - SO 200.1 - 250 

0 1 - 2 0  160.1 - 3 2 0  10.1 - 100 250.1 - 300 

20.1 - 4 0  > 320 100.1 - 150 > 300 

40.1 - 8 0  150.1 - 2 0 0  

FIG. 1. The four choropleth maps which represent population density patterns as scaled by four different 
class-interval systems (see text). 
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macro-texture analysis, whereas the latter is 
derived from a micro-texture approach. That 
is, the latter system uses a moving grid (3 x 3 
or 5 x 5 pixels) where the center-point is 
treated as the control point representing 
characteristics of the relatively small control 
(grid) area. With this control pointlcontrol 
area concept, we are able to generate a vec- 
tor of texture variables for a single pixel, thus 
allowing us to perform a pixel-by-pixel clas- 
sification task with black-and-white image 
data. Indeed, we believe that machine simi- 
larity measurements, especially if they are 
expected to relate generally to human per- 
ception, should be made on micro-textural 
features instead of visually apparent macro- 
textural features which already have been 
subjected to largely unknown and labile 
integrative processes (cf., Kolers, 1972). 

EXPERIMENT 1 

To perform perceptual analyses with 
human subjects regarding similarity judg- 
ments, four choropleth maps were made 
showing population density patterns as 
scaled by four different class-interval sys- 
tems (Figure 1). In the first experiment, ten 
naive human observers (cartography stu- 
dents) were asked to estimate the visual dif- 
ferences in all six of the possible double- 
map comparisons; e.g., map 1 vs map 2, map 
1 vs map 3, etc. The allowable scale ranged 
from 0 (no perceptual difference) to 10 ("ex- 
tremely different"). Table 1 summarizes the 
results in a symmetrical dissimilarity matrix 
of mean judged differences on the 10-point 
scale-standard deviations are given in pa- 
renthesis. 

As indicated in Table 1, the map 1 vs 4 and 
map 2 vs 4 pairs were judged most different. 
The map pair judged least different, on aver- 
age, was the map 1 vs 3 comparison. 

Such a perceptual analysis of these map- 
similarity judgments is indeed an analog of a 

MAP 
1 

2 

3 

4 

statistical classification logic utilizing a 
minimum distance criterion. Thus, a direct 
comparison between this perceptual analy- 
sis and a statistical discriminant analysis 
based on the machine feature extractor/ 
classifier was attempted. To provide data 
for such a comparative analysis, the statisti- 
cal distances between the same six pairs 
of maps were computed using the 10 wave- 
form parameters as response variables. 
Here, the texture variables were obtained 
from scan lines on both the x and y axes. The 
macro-texture of these four maps were sub- 
sequently represented by four, 10 x 13 ma- 
trices, one for each map. The numbers of 
scan lines correspond with the rows and col- 
umns of the choropleth maps. 

Discriminant analysis is precisely the 
statistical technique that can be used to as- 
sess the distances among these data matrices, 
and to determine whether the separation 
between two surfaces is statistically sig- 
nificant (Momson, 1976). Table 2 shows re- 
sults of this normal model machine solution 
in a symmetrical dissimilarity matrix analo- 
gous to the matrix of perceptual results given 
in Table 1. 

The degree of correspondence between 
the average human perceptual judgments 
and the statistical discriminant analysis of 
the machine data was assessed by calculat- 
ing a Pearson correlation coefficient. Using 
the data from Tables 1 and 2, the obtained 
coefficient is very high indeed (r = 0.95). 

EXPERIMENT 2 

Since we developed a texture feature ex- 
tractor capable of analyzing the micro- 
texture of individual pixels using a 3 x 3 
moving grid, we proceeded to determine 
how closely this 17-variable system corre- 
lated with human perceptual judgments. In 
addition, we wanted to know whether we 
could use only 3-5 of the 17 variables in this 
system to achieve a comparable level of 
performance. While such a 3-5 variable sys- 
tem would obviously result in reduced com- 
puter time (see below), it also is interesting 

MAP 1 2 3 4 
1 6.64* 1.05 13.45* 
2 2.87 16.95* 
3 12.84* 
4 

r*p < 0.01-F = 3.16, df = 10,25.] 
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to recall that Richards (1978) has reported 
that 3-5 "primaries" can produce texture 
metamers in visual matching of "random- 
dot" patterns by human observers. 

To compensate for the potential loss of 
power in the feature extractor by using only 
3-5 variables, and/or to better reflect the 
characteristics of the distributions of dig- 
itized image information (cf., Hsu, 1978), 
we developed a non-linear classifier based 
on the stable distribution model which is 
still capable of ultimately employing the 
Mahalanobis D2 as a quantitative distance 
measure (Hsu and Klimko, 1979). Compared 
with the normal distribution model, the sta- 
ble distribution has four (instead of two) 
basic parameters, and is capable of handling 
both non-normal as well as normal distribu- 
tions. Experiments with this stable model 
classifier have shown that the needed num- 
ber of texture variables for a machine solu- 
tion comparable to that obtained with the 
original, 17-variable normal model clas- 
sifier is typically drastically reduced to about 
3: e.g., stable distributions of the mean, 
first-neighbor contrast, and second-neighbor 
contrast. As a result, the data processing time 
for the same number of points (256 x 256) 
was reduced to 15 minutes from 90 minutes 
of CPU time using standard FORTRAN. 

To assess the degree of correspondence 
between the human visual system and this 
newly developed machine processing sys- 
tem, we replicated the perceptual test dis- 
cussed in Experiment 1 utilizing the same 
four choropleth maps, but ten different, 
naive observers (again, graduate and under- 
graduate Geography volunteers at SUNY- 
Binghamton). The judgments in replications 
1 and 2 were quite comparable (r for first and 
second replications means = 0.92), and we 
pooled the set of 20 human observations to 
yield the mean (and standard deviation) re- 
sults shown in Table 3, which is directly 
comparable to Table 1. 

Comparable to Experiment 1, we also 
computed the distance between map pairs 

MAP 1 2 3 4 
1 4.72 298 7.30 

(1.46) (1.82) (1.83) 
R 4.12 7.70 

(1.68) (1.37) 
6.68 

using the stable Mahalanobis classifier with 
only three tone-texture variables: mean 
brightness, 1st neighbor contrast, and 2nd 
neighbor contrast. Since individual matrices, 
instead of a pooled dispersion matrix, was 
utilized in the analysis, the Mahalanobis D" 
distances in the dissimilarity matrix are not 
symmetric (see Table 4). The upper diagonal 
D2 values represent row to column compari- 
sons and the lower diagonal D2 values indi- 
cate column to row comparisons. The differ- 
ences may be analogous to influences of 
orientation on human judgments, but these 
matters deserve further study. In these 
studies, the maps were oriented for human 
judgments as they are presented on these 
pages. However, to correlate this set of 
machine outcomes to the perceptually- 
judged scores, we initially employed the 
upper off-diagonal stable distribution solu- 
tion. Other aspects of the asymmetric 
machine solution pattern will be considered 
below. 

A product-moment correlation of r = 0.96 
was obtained using the upper diagonal D2 
values in Table 4 and the average of the 20 
human judgments (Table 3). Using the nor- 
mal distribution machine solution for these 
four maps (Table 2), and the means of the 20 
human judgments, the correlation is 0.98. 
The rank order correlation between the 
normal distribution machine solution and 
the human observations is perfect, as is the 
rank order correlation between the upper 
and lower diagonal stable distribution solu- 
tions. In terms of rank order, the normal so- 
lutions and the human judgments are very 
closely (but not perfectly) related to the 
upper and lower diagonal stable distribution 
solutions. Clearly, the outcome of our 
three-variable feature extractor/classifier 
also is highly correlated with human judg- 
ments, and provides another indication that 
our texture-tone machine analysis method 
may provide some insight into the intricate 
relationships between purely machine- 
based and perceptually-based pattern rec- 
ognition systems. 

TABLE 4. THE ASYMMETRIC DISSIMILARITY 
MATRIX (D3 FROM THE 3-VARIABLE FEATURE 

EXTRACTOR A N D  NON-LINEAR (STABLE) CLASSIFIER 
MACHINE SOLUTION 

MAP 1 2 3 4 
1 0 1.9 0.3 3.0 
2 1.7 0 0.6 4.3 
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EXPERIMENT 3 human and machine "judgments" of simi- 

In the next experiment, we decided to 
further examine the relationship between 
the 20 human perceptual judgments and the 
two machine solutions (normal and stable 
distribution models), and to determine how 
the machine solutions relate to a two- 
dimensional space derived by the non- 
metric individual difference scaling tech- 
nique recently developed by the Psycho- 
metrics Laboratory at the University of North 
Carolina (cf., Takane et al., 1977). 

First, we converted the entire three sets of 
data (human, normal model, and upper- 
diagonal stable model) into z-scores based 
on a common scale of 0-10 as used by the 
human observers. This was accomplished 
directly for the judgments of each individual 
human observer, and by considering the D 
(not DZ) values of each machine solution, and 
then assigning appropriate values relative to 
a maximum D = 10. These standardized dis- 
similarity scores are presented in Figure 2, 
with the x-coordinate as map pairs and y- 
coordinate as the z-scores. Standard errors 
for the mean human judgments ranged be- 
tween 0.09 and 0.21 on this z-scale. The 
similarities among configurations of these 
standardized dissimilarity distances be- 
tween map pairs by the three solutions, as 
expected by the correlations already re- 
ported, is quite striking. 

To determine a framework in which the 

C t y *  ; k ; C 
- M A P  PAIRS- 

FIG. 2. Pattern of standardized (2-scores) dissim- 

- - 

larity among these map pairs might be  
viewed, we decided to use non-metric scal- 
ing procedures (cf. Hake and Rodman, 
1966). Employing the multi-dimensional 
scaling technique developed by Takane et 
al. (1977), we obtained a two-dimensional 
model using the dissimilarity matrices gen- 
erated by each of the 20 human subjects, 
plus those obtained from four machine solu- 
tions defined by the normal model as well as 
by the upper diagonal, lower diagonal, and 
upper plus lower averages of the stable 
model. 

The two-dimensional model derived by 
this alternating least-squares method using 
the 24 dissimilarity matrices as defined 
above is presented in Figure 3. Dimension I 
(the x-axis) orders our four map stimuli as 
follows: Map 4, Map 1, Map 3, and finally 
Map 2. Since Map 4 is lightest, and the aver- 
age greytone becomes darker following the 
map order along this dimension, it seems 
reasonable, at least tentatively, to label Di- 
mension I as a "tone" dimension. 

Dimension I1 (the y-axis) of the derived 
stimulus space orders our maps as Map 1, 
Map 3, Map 4, and finally Map 2. Since these 
maps were made from the same data set by 
systematically varying the class-interval 
used, we are able to describe the nature of 
each pattern quite accurately (cf. Hsu, 1974). 
For instance, Map 1 was produced by re- 
quiring that each class have the same areal 
distribGtion (equal area system); therefore, 
among all four maps, Map 1 should have the 
highest neighbor contrasts or the highest 
frequency of greytone changes between 
neighboring cells. In this regard, Map 3 is 

ilarity differences (see text) between map pairs FIG. 3. Location of the four maps in the two di- 
(x-axis) for two machine solutions (o and x) and the mensional stimulus space derived from an alter- 
average of 20 human observers (.). Note that this nating least-squares method; Dimension I appears 
pattern is, of course, an arbitrary profile with re- to represent "tone" and Dimension I1 to represent 
spect to the ordering of map pairs along the x axis. "texture" (see text). 
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almost the same as Map 1 since their class- 
interval systems vary only slightly. In con- 
trast, Maps 2 and P a t  the "other e n d  of 
Dimension I1 re Maps 1 and %used class- 
interval systems which necessarily resulted 
in greytone patterns which ~ r o d u c e  rela- 
tively little contrast between and among 
neighboring cells. Thus, comparatively, the 
near neighbor contrasts in Maps 2 and 4 are 
considerably less than those displayed in 
Maps 1 and 3, and may be considered per- 
ceptually less "busy" or texturally less com- 
plex. Dimension I1 might reasonably be 
considered a "texture" dimension. How- 
ever, it should be noted that it is doubtful 
that texture can be fully described, in gen- 
eral, along a single dimension (see above). 

The individual differences scaling model 
employed enables us to examine how each 
of the 24 dissimilarity matrices (20 human 
observers, plus four machine solutions) 
weighted the importance of the two derived 
stimulus dimensions. All 24 of these weight 
vectors are plotted in Figure 4, with human 
observations de~ic ted  by dots, and the four 
machine solutions identified appropriately; 
the two coordinates re~resent  the weights on - 
Dimension I ("tone") and Dimension I1 
("texture"), respectively. 

From Figure 4, it can be noted that all of 
the individual decisions are distributed very 
nearly along an arc of radius 1.0 in this 
weighting space. Any point on such an 
arc represents a perfect fit to the two- 
dimensional "tone-texture" model derived; 
the further a point is from this arc, the 
greater the stress (cf. Takane et al., 1977) of 
that individual's judgment for the model. 
Clearly, there are distinct individual differ- 
ences of the weightings in this model space, 

:,I ; ; ; ;!\\ ; 
* = 0.r 

s 
0.L 0.6 1 .0  

- 0.L. 
W e i , h t i ~ ,  o f  D;re.st.n I 

FIG. 4. Individual weight vectors displaying how 
each of the 24 outcomes (20 humans, 4 machine 
solutions) weighted the importance of the derived 
"tone" and "texture" dimensions (see text). 

both among humans and among the machine 
solutions; but few of the points stress the 
model very highly. Interestingly, the bulk of 
the human observations tended to weigh the 
"texture" dimension somewhat more than 
the machine solutions did. Of the 20 human 
observers, six (almost 30 percent) yielded 
relatively high stress measures (>0.15) for 
the derived model, seven gave moderate 
stress scores (0.05 < stress < 0.15) and seven 
provided very little stress ( ~ 0 . 0 1 ) .  Of the 
four machine solutions included in the cre- 
ation of the "tone-texture" model presented, 
the stress value yielded by the normal dis- 
tribution solution was 0.016, whereas all 
three of the stable distribution solutions had 
stress values of virtually zero. 

Of course, ideally we would like to be able 
to establish a priori models of stimulus di- 
mensions based strictly upon either human 
or machine solutions alone, and then deter- 
mine how individual results relate to such 
models. Unfortunately, our present version 
of the Takane et al. scaling program does not 
perform this procedure appropriately, but 
such an approach is possible. In addition, 
the generality of our findings must be more 
fully explored. For instance, the four maps 
employed in these studies were created by 
varying class intervals and providing each 
stimulus with a total of seven greytone val- 
ues. We are currently investigating patterns 
derived from real-world images which 
necessarily have different levels and num- 
bers of levels of greytone values. Further- 
more, additional human observers must be 
examined to determine if and how different 
perceptual models or dimensional weight- 
ings may appropriately characterize dif- 
ferent sub-populations of subjects and/or 
viewing conditions. 

Nonetheless, we believe that the types of 
analytical approaches utilized in the present 
series of experiments will continue to pro- 
vide us with new and better insights re- 
garding questions of what constitutes a 
perceptually-based system for automated 
analysis of remotely-sensed data, as well as a 
clearer appreciation of what human percep- 
tion of visual textures involves, thus serving 
to bridge the gap between basic research 
with "random-dots" and the applied work of 
photo interpretation. Finally, we also wish to 
emphasize that a micro-texture approach to 
such problems is most appropriate since it 
can specify the basic building-blocks which 
define the complex structural configura- 
tions, in space (and time), of given physical 
stimulus arrays that are "perceived"-either 
visually, or by machine. 
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